JPH02303034A - Manufacture of multilayer wiring structure - Google Patents

Manufacture of multilayer wiring structure

Info

Publication number
JPH02303034A
JPH02303034A JP12391189A JP12391189A JPH02303034A JP H02303034 A JPH02303034 A JP H02303034A JP 12391189 A JP12391189 A JP 12391189A JP 12391189 A JP12391189 A JP 12391189A JP H02303034 A JPH02303034 A JP H02303034A
Authority
JP
Japan
Prior art keywords
film
thin film
silicon thin
halation
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12391189A
Other languages
Japanese (ja)
Inventor
Yukihiro Takao
幸弘 高尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP12391189A priority Critical patent/JPH02303034A/en
Publication of JPH02303034A publication Critical patent/JPH02303034A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To take preventive measures simultaneously against both halation and hillocks by forming a silicon thin film as a halation prevention film on the surface of an Al layer and providing its film as a hillock prevention film by oxidizing the above thin film. CONSTITUTION:A field oxide film 2 for element-isolation is formed after oxidizing selectively the surface of a substrate 1 and a gate electrode 3 is formed on the surface of the substrate 1 through a gate oxide film 4. The electrode 3 is covered with an insulating film 6 and the 1st Al film 7 is deposited on the insulating film 6 and further, a silicon thin film 8 is laminated. Then a photoresist film is applied on the thin film 8 and, in addition to patterning the above thin film, patterning of an electrode material layer and the thin film 8 is performed by using a photoresist pattern as a mask. Then, the principal face of its film 8 is treated with heat in a short while to oxidize its film 8. Further, an interlayer insulation film 10 is deposited on the thin film 8 and an upper wiring layer is formed by patterning its film. In this way, the thin film 8 is formed as a halation prevention film and the oxidized thin film 8 is formed as a hillock prevention film. Preventive measures against both halation and hillocks are thus compatible with each other.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、アルミニウム(Ae)合金配線を有する半導
体集積回路に適用して最適な多層配線構造の製造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a method for manufacturing a multilayer wiring structure that is optimally applied to a semiconductor integrated circuit having aluminum (Ae) alloy wiring.

(ロ)従来の技術 近年、LSIにおいては、配線幅の微細化や配線の多層
化が進み、これに伴い配線の信頼性の向上が従来以上に
重要になっている。この配線の信頼性を決定する要因と
しては、エレクトロマイグレーション、いわゆるヒロッ
ク(hillock )の成長による積層配線間のショ
ート等が考えられる。
(B) Prior Art In recent years, in LSIs, the wiring width has become smaller and the wiring has become more multilayered, and as a result, improving the reliability of the wiring has become more important than ever. Possible factors that determine the reliability of this wiring include short circuits between laminated wirings due to electromigration, the growth of so-called hillocks, and the like.

ヒロックはアルミニウム(Af!、)N1堆積後の長時
間熱処理によって成長するので、これらの問題に対処す
るために、近時、AI!、合金膜上に還移金属等の硬質
膜を設けた構造の積層膜から成る配線が注目されている
。(例えば、特開昭83−143842号) 一方、Affi層のホトレジスト工程においては、Af
!層表面が光を反射(ハレーション)することによる、
レジスト膜のパターン精度の劣化という問題がある。こ
の問題に対しては、反射光を吸収する物質をレジストに
含ませることで解決していた。
Since hillocks grow due to long-term heat treatment after aluminum (Af!,)N1 deposition, recently AI! , wiring made of a laminated film with a structure in which a hard film of reduced metal or the like is provided on an alloy film is attracting attention. (For example, Japanese Patent Laid-Open No. 83-143842) On the other hand, in the photoresist process of the Affi layer,
! Due to the layer surface reflecting light (halation),
There is a problem of deterioration in pattern accuracy of the resist film. This problem has been solved by including a substance in the resist that absorbs reflected light.

(ハ)発明が解決しようとする課題 しかしながら、配線幅の微細化を押し進めるには、上記
したハレーション対策では対処しきれないことが本願発
明者によって明らかになった。
(c) Problems to be Solved by the Invention However, the inventors of the present invention have found that the above-mentioned halation countermeasures are not sufficient to advance the miniaturization of wiring width.

また、上記ヒロック対策とハレーション対策が別個に行
われるので、プロセスが煩雑になる欠点を有していた。
Furthermore, since the hillock countermeasures and the halation countermeasures are performed separately, there is a drawback that the process becomes complicated.

〈二)課題を解決するための手段 本発明は上記従来の課題に鑑み成されたもので、先ずA
2層表面にシリコン薄膜(8)を形成してハレーション
防止膜とし、続いてシリコン薄膜を酸化してヒロック防
止膜とすることにより、ヒロック対策とハレーション対
策との両方を同時的に行える多層配線構造のプロセスを
提供するものである。
(2) Means for solving the problems The present invention has been made in view of the above-mentioned conventional problems.
By forming a silicon thin film (8) on the surface of the two layers to form an anti-halation film, and then oxidizing the silicon thin film to form an anti-hillock film, this multilayer wiring structure can simultaneously provide both hillock and halation countermeasures. It provides a process for

(*)作用 本発明によれば、Aり層表面に非透明のシリコン薄膜(
8)を形成するので1、ホトレジスト工程においてA!
層表面での露光光の反射を防止できる。また、RTA処
理を行なうので、シリコン薄膜(8)を酸化してヒロッ
ク成長防止膜に転用できる他1.11層側面の表面を改
質できる。
(*) Effect According to the present invention, a non-transparent silicon thin film (
8), so 1, A! in the photoresist process.
Reflection of exposure light on the layer surface can be prevented. Further, since RTA treatment is performed, the silicon thin film (8) can be oxidized and used as a hillock growth prevention film, and the surface of the side surface of the 1.11 layer can be modified.

(へ)実施例 以下に本発明の一実施例を図面を参照して詳細に説明す
る。
(F) Example An example of the present invention will be described below in detail with reference to the drawings.

先ず第1図Aに示すように、本実施例によるMoS型L
SIにおいては、例えばP型シリコン基板(1)の表面
を選択酸化して素子分離用のフィールド酸化膜(2)を
形成し、フィールド酸化膜〈2)で囲まれた基板(1)
表面にはポリシリコン(Po1y−5ilicon )
から成るゲート電極(3)がゲート酸化膜(4)を介し
て形成される。ゲート電極(3)両脇の基板(1)表面
にはソース・ドレイン領域(5)が設けられる。ゲート
電極(3)は例えば減圧CVD法によるPSG(リン・
シリケート・グラス)又はBPSG(ボロン・リン・シ
リケート・グラス)等の絶縁膜(6)で覆われている。
First, as shown in FIG. 1A, the MoS type L according to this embodiment is
In SI, for example, the surface of a P-type silicon substrate (1) is selectively oxidized to form a field oxide film (2) for element isolation, and the substrate (1) is surrounded by the field oxide film (2).
Polysilicon (Poly-5ilicon) on the surface
A gate electrode (3) consisting of is formed via a gate oxide film (4). Source/drain regions (5) are provided on the surface of the substrate (1) on both sides of the gate electrode (3). The gate electrode (3) is made of, for example, PSG (phosphorus) by low pressure CVD method.
It is covered with an insulating film (6) such as silicate glass (silicate glass) or BPSG (boron phosphorus silicate glass).

この絶縁膜(6)上に、例えばスパッタ法によりシリコ
ン(5i)を数%含むアルミニウム(A l )を約1
μm厚に堆積して1stA1層(7)とし、続いて1 
stA 1層(7)上に同じくスパッタ法によりシリコ
ン(Si)を100〜300人程度積層してシリコン薄
膜(8)とする。これらの工程は比較的簡単な工程で済
ませることができる。つまり、1stAffi層(7)
として使用するアルミ・シリコン(Aj!−5i)形成
用のスパッタ装置は、アルミニウム(A2)とシリコン
(Si)との2つのターゲットを有するものであり、先
ず2つのターゲットで1stA1層(7)を堆積し、続
いてシリコン(Si)ターゲットだけに切換えてシリコ
ン薄膜(8)を積層することにより、同一装置内の1回
の処理で積層構造にできる。
On this insulating film (6), approximately 1% of aluminum (A l ) containing several percent of silicon (5i) is deposited, for example, by sputtering.
1stA1 layer (7) is deposited to a thickness of μm, and then 1stA1 layer (7) is deposited.
About 100 to 300 layers of silicon (Si) are laminated on the stA 1 layer (7) by the same sputtering method to form a silicon thin film (8). These steps can be completed with relatively simple steps. In other words, 1stAffi layer (7)
The sputtering equipment used for forming aluminum silicon (Aj!-5i) has two targets, aluminum (A2) and silicon (Si), and first, the 1st A1 layer (7) is By depositing and subsequently layering a silicon thin film (8) by switching only to a silicon (Si) target, a layered structure can be obtained in one process in the same apparatus.

次に第1図Bに示すように、例えばポジ型レジストを基
板(1)上にスピンオン塗布、ベーキングを処し、続い
て下層配線パターンに対応するパターンをホトマスクを
使用して例えばステッパ装置により露光し、現像液で現
像して前記配線パターンに対応したレジスト膜(9)パ
ターンを形成する。上記露光時に、1stA 12層(
7)表面がシリコン薄膜(8)で覆われるので、光干渉
による反射光の打消し合いにより露光光が1 stA 
1層(7)表面で反射(ハレーション)することが無く
、従ってホトマスクパターンに対応する高精度のレジス
ト膜(9)パターンを得ることができる。その後、例え
ばプラズマ等の異方性エツチングにより1stAN層(
7)とシリコン薄膜(8)を同時的にパターニングして
下層配線パターンを形成する。
Next, as shown in FIG. 1B, for example, a positive resist is spin-on coated onto the substrate (1) and subjected to baking, and then a pattern corresponding to the lower layer wiring pattern is exposed using a photomask using, for example, a stepper device. , a resist film (9) pattern corresponding to the wiring pattern is formed by developing with a developer. At the time of the above exposure, 1stA 12 layers (
7) Since the surface is covered with a silicon thin film (8), the exposure light is reduced to 1 stA due to the cancellation of reflected light due to optical interference.
There is no reflection (halation) on the surface of the first layer (7), and therefore a highly accurate resist film (9) pattern corresponding to the photomask pattern can be obtained. After that, the 1st AN layer (
7) and the silicon thin film (8) are simultaneously patterned to form a lower wiring pattern.

次に第1図Cに示すように、レジスト膜(9)を沸酸系
溶液で除去した後ランプヒートアニール(RTA)方式
によって基板(1)表面を短時間熱処理する。雰囲気は
酸化性とし、この処理によってシリコン薄膜(8)のシ
リコン(Si)を酸化してシリコン酸化膜(Sin、)
とする、パターニングによって露出した1 stA 1
2層(7)の側面もランプヒートアニール処理により酸
化(A ffi *Os>される。
Next, as shown in FIG. 1C, after removing the resist film (9) with a boiling acid solution, the surface of the substrate (1) is heat-treated for a short time using a lamp heat annealing (RTA) method. The atmosphere is oxidizing, and this treatment oxidizes the silicon (Si) of the silicon thin film (8) to form a silicon oxide film (Sin).
1 stA 1 exposed by patterning
The side surfaces of the second layer (7) are also oxidized (Affi *Os>) by the lamp heat annealing process.

次に第1図りに示すように、減圧CVD法等の手段によ
り1 stA e B (7)とシリコン薄膜(8)を
覆うようにPSG等から成る層間絶縁膜(10)を形成
する1本工程は数百℃、30分〜1時間もの長時間熱処
理となる。
Next, as shown in the first diagram, one step is performed to form an interlayer insulating film (10) made of PSG or the like so as to cover the 1stA e B (7) and the silicon thin film (8) by means such as low pressure CVD. This involves heat treatment at several hundred degrees Celsius for a long time of 30 minutes to 1 hour.

次に第1図Eに示すように、層間接続を行う為のスルー
ホール(11)を異方性、又は等方性+異方性の組合せ
エツチングにより形成する。シリコン薄膜(8)はラン
プヒートアニール処理によってシリコン酸化膜(SiO
x)と°化しているので、同じくシリコン酸化物から成
る層間絶縁膜(10)と同一工程で除去する。
Next, as shown in FIG. 1E, through holes (11) for making interlayer connections are formed by anisotropic or a combination of isotropic and anisotropic etching. The silicon thin film (8) is made into a silicon oxide film (SiO) by lamp heat annealing treatment.
x), so it is removed in the same process as the interlayer insulating film (10) also made of silicon oxide.

そして第1図Fに示すように、再びスパッタ法等により
2 ndA I MA (12)を堆積し、これをパタ
ーニングすることにより上層配線とする。
Then, as shown in FIG. 1F, 2nd A I MA (12) is deposited again by sputtering or the like and patterned to form an upper layer wiring.

以上に説明した本発明のプロセスによれば、シリコン薄
膜(8)が露光光の反射(ハレーション)を防止するの
で、レジスト膜(9)パターンヲXWt度に現像でき、
従って1 stA 1層(2)の微細化を更に押し進め
ることができる。
According to the process of the present invention described above, since the silicon thin film (8) prevents reflection (halation) of exposure light, the resist film (9) pattern can be developed to XWt degrees.
Therefore, the miniaturization of the 1 stA 1 layer (2) can be further promoted.

一方、1 stA 1層(7)表面が酸化シリコン薄膜
(8)で覆われるので、層間絶縁膜り10)形成時のヒ
ロック(hilLock )の成長を、防止し、従って
層間耐圧の劣化を防止できる。尚、シリコン薄膜(8)
が無い状態で1 stA 1層(7)表面にランプヒー
トアニール処理を実施することにより、ある程度ヒロッ
ク成長を抑制できることが本願発明者により確認きれて
いるので、本願によれば1 stA 9層(7)の横方
向へのヒロック成長をも防止できる。
On the other hand, since the surface of the 1stA 1 layer (7) is covered with the silicon oxide thin film (8), it is possible to prevent the growth of hillocks during the formation of the interlayer insulating film 10), thereby preventing deterioration of the interlayer breakdown voltage. . In addition, silicon thin film (8)
The inventor of the present application has confirmed that hillock growth can be suppressed to some extent by performing lamp heat annealing treatment on the surface of the 1 stA 1 layer (7) in the absence of the 1 stA 9 layer (7). ) can also prevent hillock growth in the lateral direction.

(ト)発明の詳細 な説明した如く、本発明によれば1 stA 11層(
7)表面のシリコン薄膜(8)が露光光の反射(ハレー
ション)を防止するので、下層配線層の微細化を押し進
められる利点を有する。
(G) As described in detail, according to the present invention, 1 stA 11 layers (
7) Since the silicon thin film (8) on the surface prevents reflection (halation) of exposure light, there is an advantage that miniaturization of the lower wiring layer can be promoted.

また、ランプヒートアニール処理により短時間で1st
A1層(7)表面を酸化されたシリコン薄膜(8)で覆
うので、ヒロックの成長を防止でき、従って信頼性の高
い多層配線を形成できる利点を有する。
In addition, lamp heat annealing allows for 1st operation in a short time.
Since the surface of the A1 layer (7) is covered with the oxidized silicon thin film (8), it is possible to prevent the growth of hillocks, which has the advantage that a highly reliable multilayer wiring can be formed.

さらに、ランプヒートアニール処理によって横方向への
ヒロック成長をも防止できるので、1stAfi層(7
)の微細化に寄与できる利点をも有する。
Furthermore, since the lamp heat annealing treatment can also prevent hillock growth in the lateral direction, the 1stAfi layer (7
) also has the advantage of contributing to miniaturization.

そしてさらに、シリコン薄膜(8)をハレーション防止
とヒロック成長防止との両方に利用できるので、工程の
簡略化が図れる利点をも有する。
Furthermore, since the silicon thin film (8) can be used for both prevention of halation and prevention of hillock growth, there is an advantage that the process can be simplified.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図A−Fは本発明を説明する為の断面図である。 FIGS. 1A to 1F are cross-sectional views for explaining the present invention.

Claims (2)

【特許請求の範囲】[Claims] (1)半導体装置の主面上に下層配線となる電極材料層
を形成し、続いてその表面にシリコン薄膜を堆積する工
程、 前記シリコン薄膜上にホトレジスト膜を塗布しこれをパ
ターニングすると共に、前記ホトレジストパターンをマ
スクとして前記電極材料層とシリコン薄膜をパターニン
グする工程、 前記半導体装置の主面を短時間熱処理し、前記電極材料
層上のシリコン薄膜を酸化する工程、前記シリコン薄膜
の上に層間絶縁膜を堆積し、続いて上層配線となる電極
材料層を形成し、これをパターニングして上層配線とす
る工程とを具備することを特徴とする多層配線構造の製
造方法。
(1) A step of forming an electrode material layer to serve as a lower wiring on the main surface of a semiconductor device, and then depositing a silicon thin film on the surface thereof; applying a photoresist film on the silicon thin film and patterning it; a step of patterning the electrode material layer and the silicon thin film using a photoresist pattern as a mask; a step of briefly heat-treating the main surface of the semiconductor device to oxidize the silicon thin film on the electrode material layer; and interlayer insulation on the silicon thin film. 1. A method for manufacturing a multilayer wiring structure, comprising the steps of: depositing a film, subsequently forming an electrode material layer to become an upper layer wiring, and patterning this to form an upper layer wiring.
(2)前記短時間熱処理がランプヒートアニールである
ことを特徴とする請求項第1項に記載の多層配線構造の
製造方法。
(2) The method for manufacturing a multilayer wiring structure according to claim 1, wherein the short-time heat treatment is lamp heat annealing.
JP12391189A 1989-05-17 1989-05-17 Manufacture of multilayer wiring structure Pending JPH02303034A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12391189A JPH02303034A (en) 1989-05-17 1989-05-17 Manufacture of multilayer wiring structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12391189A JPH02303034A (en) 1989-05-17 1989-05-17 Manufacture of multilayer wiring structure

Publications (1)

Publication Number Publication Date
JPH02303034A true JPH02303034A (en) 1990-12-17

Family

ID=14872397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12391189A Pending JPH02303034A (en) 1989-05-17 1989-05-17 Manufacture of multilayer wiring structure

Country Status (1)

Country Link
JP (1) JPH02303034A (en)

Similar Documents

Publication Publication Date Title
US4525733A (en) Patterning method for reducing hillock density in thin metal films and a structure produced thereby
JPH0729846A (en) Formation of electrode in semiconductor device
JPH02303034A (en) Manufacture of multilayer wiring structure
JPH08162460A (en) Semiconductor device and manufacturing method thereof
JPH1174174A (en) Manufacture of semiconductor device
JPS62137853A (en) Formation of multilayer interconnection
JPS5966150A (en) Semiconductor device and manufacture thereof
US6133060A (en) Method of protecting light sensitive regions of integrated circuits
KR100219062B1 (en) Process for forming metal interconnector of semiconductor device
JPS63133646A (en) Manufacture of semiconductor device
JPS6059737A (en) Manufacture of semiconductor device
JPH03142833A (en) Manufacture of semiconductor device
KR0139570B1 (en) A method forming contact and insulation layer
JPH0427703B2 (en)
JPS5850755A (en) Semiconductor device
JPH02105554A (en) Manufacture of semiconductor device
JPH05152444A (en) Manufacture of semiconductor device
KR100260356B1 (en) Method for forming multi metal interconnection
JPH01109749A (en) Formation of wiring
JPH04348054A (en) Manufacture of semiconductor device
JPS6134956A (en) Method for forming wiring layer
JPH03152931A (en) Manufacture of semiconductor device
JPH05251383A (en) Manufacture of semiconductor device
JPH05160275A (en) Manufacture of semiconductor device
JPH01241845A (en) Manufacture of semiconductor device