JPH02302577A - Dry control system for grain drying machine - Google Patents
Dry control system for grain drying machineInfo
- Publication number
- JPH02302577A JPH02302577A JP12193989A JP12193989A JPH02302577A JP H02302577 A JPH02302577 A JP H02302577A JP 12193989 A JP12193989 A JP 12193989A JP 12193989 A JP12193989 A JP 12193989A JP H02302577 A JPH02302577 A JP H02302577A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- hot air
- drying
- hot blast
- air temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001035 drying Methods 0.000 title claims abstract description 59
- 238000010438 heat treatment Methods 0.000 claims abstract description 18
- 238000000034 method Methods 0.000 claims description 4
- 235000013339 cereals Nutrition 0.000 abstract 7
- 239000000446 fuel Substances 0.000 description 9
- 238000002485 combustion reaction Methods 0.000 description 7
- 238000009423 ventilation Methods 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 238000001514 detection method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000010981 drying operation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000002828 fuel tank Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
Landscapes
- Drying Of Solid Materials (AREA)
Abstract
Description
【発明の詳細な説明】 産業上の利用分野 この発明は、穀粒乾燥機の乾燥制御方式に関する。[Detailed description of the invention] Industrial applications The present invention relates to a drying control method for a grain dryer.
従来の技術
従来は、穀粒は乾燥室を流下循環を繰返しながら、この
乾燥室ヘバーナから発生する熱風を通風させてこの熱風
に晒して乾燥させ、この熱風温度は熱風温度センサで検
出され、この検出熱風温度と乾燥する穀粒量によって設
定された設定熱風温度とが比較され、相違していると設
定熱風温度と同じ温度になるように制御され、又循環す
る穀粒量は制御せず一定の循環量で乾燥される乾燥制御
方式であった。Conventional technology In the past, grains were dried by repeatedly circulating the grains in a drying chamber while exposing them to hot air generated from a heburner in the drying chamber.The temperature of this hot air was detected by a hot air temperature sensor. The detected hot air temperature and the set hot air temperature set according to the amount of grains to be dried are compared, and if there is a difference, the temperature is controlled to be the same as the set hot air temperature, and the amount of circulating grains is not controlled and remains constant. It was a drying control method that dried with a circulation rate of .
発明が解決しようとする課題
穀粒は乾燥室内を一定量で繰出し流下する@環を繰返し
ながら、バーナから発生する熱風がこの乾燥室を通風す
ることにより、この乾燥室を流下。Problems to be Solved by the Invention Grain is fed out in a constant amount inside the drying chamber and flows down the drying chamber while repeating the @ ring, while the hot air generated from the burner is passed through the drying chamber and flows down the drying chamber.
中のこの穀粒はこの熱風に晒されて乾燥される。The kernels inside are exposed to this hot air and dried.
この乾燥中は熱風温度は熱風温度センサで検出され、こ
の検出熱風温度が設定熱風温度と同じ温度になるように
制御されるが、該乾燥室を通風する通風個所によってこ
の熱風温度に温度斑があると、この温度斑によって乾燥
中の穀粒に乾燥斑が発生し、この乾燥斑が原因で穀粒に
粗割が発生することがあった。During this drying, the hot air temperature is detected by a hot air temperature sensor, and the detected hot air temperature is controlled to be the same as the set hot air temperature, but the hot air temperature may vary depending on the ventilation points in the drying room. In some cases, this temperature unevenness causes drying spots to occur in the grains during drying, and these drying spots sometimes cause coarse splitting of the grains.
課題を解決するための手段
この発明は、穀粒を流下循環させながらバーナ(1)に
よる熱風を通風させて乾燥する乾燥室(2)、及びこの
乾燥室(2)へ通風する熱風の温度を検出する熱風温度
センサ(3)を複数個設けると共に、外気温度を検出す
る外気温度センサ(4)を設けた穀粒乾燥機において、
該熱風温度センサ(田が検出する熱風温度と該外気温度
センサ(4)が検出する外気温度とにもとづいて、該バ
ーナ(1)による加温度のばらつきを算出しながら、こ
の算出ばらつきが所定領域以上に達したとき自動的に該
熱風温度を下げると同時に該循環穀粒量を増加するよう
に制御して乾燥することを特徴とする乾燥制御方式の構
成とする。Means for Solving the Problems The present invention provides a drying chamber (2) in which grains are dried by passing hot air from a burner (1) while circulating them downward, and a drying chamber (2) in which the temperature of the hot air ventilated to this drying chamber (2) is controlled. In a grain dryer that is provided with a plurality of hot air temperature sensors (3) to detect the temperature of the outside air and an outside air temperature sensor (4) that detects the outside air temperature,
While calculating the variation in heating temperature by the burner (1) based on the hot air temperature detected by the hot air temperature sensor (field) and the outside air temperature detected by the outside air temperature sensor (4), the calculation variation is determined within a predetermined area. The drying control method is characterized in that when the above temperature is reached, drying is performed by automatically lowering the hot air temperature and simultaneously increasing the circulating grain amount.
発明の作用
穀粒は乾燥室(2)内を繰出し流下する循環を繰返しな
がら、バーナ(1)から発生する熱風がこの乾燥室(2
)を通風することにより、この乾燥室+2)を流下中の
穀粒はこの熱風に晒されて乾燥される。Effect of the invention While the grains are repeatedly circulated in the drying chamber (2) and flowing down, the hot air generated from the burner (1) flows into the drying chamber (2).
), the grains flowing down this drying chamber +2) are exposed to this hot air and dried.
この乾燥中は熱風温度は複数の熱風温度センサ(3)で
検出されると同時に、外気温度も外気温度センサ(4)
で検出され、この検出熱風温度の平均値が算出され、こ
の算出平均温度が設定熱風温度と同じ温度になるように
制御され、又これら検出熱風温度と検出外気温度とによ
って、該バーナ(1)の加温度のばらつきが算出され、
この算出ばらつきが所定の領域以上に達すると、自動的
に設定熱風温度が所定温度低温度に制御されると同時に
、流下循環する循環穀粒量が所定量増加制御されて穀粒
は乾燥される。During this drying, the hot air temperature is detected by multiple hot air temperature sensors (3), and at the same time, the outside air temperature is also detected by the outside air temperature sensor (4).
The average value of the detected hot air temperature is calculated, and the calculated average temperature is controlled to be the same as the set hot air temperature. The variation in heating temperature is calculated,
When this calculation variation reaches a predetermined range or higher, the set hot air temperature is automatically controlled to a predetermined low temperature, and at the same time, the amount of circulating grains flowing down is controlled to increase by a predetermined amount to dry the grains. .
発明の効果
この発明により、バーナfilの加温度のばらつきが算
出され、この算出ばらつきが所定以上になると該バーナ
(11の熱風温度が低温度に制御されると同時に、乾燥
中の穀粒の循環速度が早くなることにより、穀粒の乾燥
斑が減少し、これにより穀粒に粗割が発生することなく
安定した穀粒の乾燥を得ることができる。Effects of the Invention According to this invention, the variation in the heating temperature of the burner fil is calculated, and when the calculated variation exceeds a predetermined value, the hot air temperature of the burner (11) is controlled to a low temperature, and at the same time, the circulation of the grains during drying is controlled. By increasing the speed, drying spots on the grains are reduced, thereby making it possible to obtain stable drying of the grains without causing coarse cracking of the grains.
実施例
なお5図例において、(5)は穀粒乾燥機であり、この
乾燥機(5)の機壁(6)は前後方向に長い長方形状で
、前後壁板及び左右壁板よりなり、この前壁板にはこの
乾燥機(5)を始動及び停止操作する操作装置(7)及
びバーナ(1)を内装したバーナケース(8)を設け、
このバーナケース(8)下板外側には燃料バルブを有す
る燃料ポンプ(9)を設け、この燃料バルブの開閉によ
りこの燃料ポンプ(9)で燃料タンク(lu内の燃料を
吸入して該バーナ(11へ供給する構成であり、上板外
側には送風機+111及び変速モータ(lδを設け、こ
の変速モータ(121の回転により該送風機(11)を
回転駆動して供給燃料量に見合った燃焼用空気を該バー
ナ(1)へ供給する構成であり、該バーナケース(8)
内を通過する風量を風量センサu9で検出する構成であ
り、該後壁板には排風機+131 、モータQ41及び
変速モータ(1つを設けた構成である。Embodiment In the example shown in Figure 5, (5) is a grain dryer, and the machine wall (6) of this dryer (5) has a rectangular shape that is long in the front and back direction, and consists of front and rear wall plates and left and right wall plates. The front wall board is provided with an operating device (7) for starting and stopping the dryer (5) and a burner case (8) containing a burner (1),
A fuel pump (9) having a fuel valve is provided on the outer side of the lower plate of the burner case (8), and when the fuel valve is opened and closed, the fuel pump (9) sucks the fuel in the fuel tank (lu) to the burner ( A blower +111 and a variable speed motor (lδ) are provided on the outside of the upper plate, and the rotation of the variable speed motor (121) drives the blower (11) to generate combustion air commensurate with the amount of fuel to be supplied. is configured to supply the burner (1) to the burner case (8).
The configuration is such that an air volume sensor u9 detects the amount of air passing through the interior, and the rear wall plate is provided with an exhaust fan +131, a motor Q41, and a variable speed motor.
該機壁(6)内下部の中央部には前後方向に亘り移送螺
旋を内装した集穀樋(旧を設け、この集穀樋(IQ上側
には通気網間に形成した乾燥室(2)を並設して連通さ
せ、この乾燥室(2)下部には穀粒を繰出し流下させる
繰出バルブ(171を内装した構成であり、この各乾燥
室(2)内側間には熱風室(18を形成して前記バーナ
(11と連通させ、この熱風室(1111内にはこの熱
風室f11を通過する熱風温度を検出する熱風温度セン
サ(3)を複数個設けた構成であり、該各乾燥室(2)
外側には排風室(191を形成してこの各排風室(1ω
と該排風機(1′5とを連通させた構成であり、該モ〜
り(1シで該排風@ (13)を回転駆動する構成であ
り、該変速モータ(151で変速装置シOを介して該各
繰出バルブ(17)を回転駆動する構成である。In the center of the lower part of the inside of the machine wall (6), there is a grain collection gutter (formerly known as "former") equipped with a transfer spiral in the front and back direction, and on the upper side of the IQ there is a drying chamber (2) formed between the ventilation nets. The drying chambers (2) are arranged in parallel and communicated with each other, and the lower part of the drying chamber (2) is equipped with a feed-out valve (171) that feeds out the grains. The hot air chamber (1111) is provided with a plurality of hot air temperature sensors (3) for detecting the temperature of the hot air passing through the hot air chamber (1111), and is connected to the burner (11). (2)
A ventilation chamber (191) is formed on the outside, and each ventilation chamber (1ω
It has a configuration in which the exhaust fan (1'5) is communicated with the exhaust fan (1'5), and the
The variable speed motor (151) rotationally drives each of the delivery valves (17) via the transmission device (151).
該乾燥室(11上側には貯留室(21)を形成して連通
させ、この貯留室0’+1上側には天井板(23及び移
送螺旋を内装した移送樋(至)を設け、この移送樋(2
3中央部には移送穀粒をこの貯留室+211内へ供給す
る供給口を設け、この供給口の下側には該貯留室21)
内へ穀粒を均等に拡散還元する拡散盤24+を設けた構
成である。A storage chamber (21) is formed above the drying chamber (11) and communicated with the storage chamber (21), and a ceiling plate (23) and a transfer gutter equipped with a transfer spiral are provided above the storage chamber 0'+1. (2
3. A supply port for supplying the transferred grains into this storage chamber +211 is provided in the center, and below this supply port is the storage chamber 21).
This configuration includes a diffusion plate 24+ that uniformly diffuses and returns grains inside.
昇穀機?9は、前記前壁板前方部に設け、内部にはパケ
ットコンベアt2Gベルトを上下プーリ間に張設し、上
端部と該移送樋(0始端部との間には投出筒(5)を設
けて連通させ、下端部と前記集穀樋t+61終端部との
間には供給樋121を設けて連通させた構成であり、こ
の昇穀機129上部にはモータ(291を設け、このモ
ータ四で該パケットコンベア四ベルト、該移送樋(至)
内の該移送螺旋、該拡散盤Q/D及び該パケットコンベ
ア12日ベルトを介して該集穀樋(回内の前記移送螺旋
等を回転駆動する構成であり、又上下方向はぼ中央部に
は該パケットコンベア(2Sで上部へ搬送中に落下する
穀粒を受け、この穀粒を挟圧粉砕すると同時に、この粉
砕穀粒の水分を検出する水分センサ001を設け、この
水分センサOlの各部は内部に設けたモータ0υで回転
駆動する構成である。Grain raising machine? 9 is provided in the front part of the front wall plate, and a packet conveyor T2G belt is stretched between the upper and lower pulleys inside, and a dispensing tube (5) is installed between the upper end and the transfer gutter (starting end of 0). A supply gutter 121 is provided between the lower end and the terminal end of the grain collecting gutter t+61 to communicate with each other, and a motor (291 is provided above the grain hoist 129), In the packet conveyor four belts, the transfer gutter (to)
It is configured to rotate the grain collecting trough (the transfer spiral in the pronator, etc.) via the inner transfer spiral, the spreading plate Q/D, and the packet conveyor belt, and the upper and lower directions are approximately in the center. is equipped with a moisture sensor 001 that receives grains that fall while being conveyed to the upper part of the packet conveyor (2S), crushes the grains under pressure, and simultaneously detects the moisture content of the crushed grains. is configured to be rotated by an internally provided motor 0υ.
前記操作装置(7)は、箱形状でこの箱体の表面板、に
は、前記乾燥機(5)を張込、乾燥及び排出の各作業別
に始動操作する各始動スイッチ(ロ)、停止操作する停
止スイッチ03、前記バーナ(1)から発生する熱風温
度が操作位置によって設定される各温度設定派み(ロ)
、仕上目標水分が操作位置によって設定される水分設定
猟みOe、該水分センサ0[Dが検出する穀粒水分、前
記熱風温度センサ(3)が検出する熱風温度、乾燥残時
間等を交互に表示する表示窓OQ及びモニター表示等を
設け、下板外側には外気温度を検出する外気温度センサ
(4)を設けた構成であり、内部には乾燥制御装置■及
び燃焼循環制御装置(至)を設けた構成であり、該各設
定猟み(ロ)、(至)、09はロータリスイッチ方式で
あり、操作位置によって所定の数値が設定される構成で
ある。The operating device (7) is box-shaped, and the surface plate of the box body includes a start switch (b) for starting the dryer (5) and a stop operation for each operation of loading, drying and discharging. A stop switch 03, which sets the temperature of the hot air generated from the burner (1) according to the operating position (b)
, the moisture setting setting Oe where the finishing target moisture is set depending on the operating position, the grain moisture detected by the moisture sensor 0[D, the hot air temperature detected by the hot air temperature sensor (3), the remaining drying time, etc. It has a display window OQ and a monitor display, etc., and an outside air temperature sensor (4) that detects the outside air temperature is installed on the outside of the lower plate, and inside there is a drying control device (2) and a combustion circulation control device (2). Each setting (B), (To), and 09 is a rotary switch type, and a predetermined value is set depending on the operating position.
該燃焼循環制御装置(至)は、前記各熱風温度センサ(
3)、該外気温度センサ(4)及び風量センサCIjが
検出する検出値をA−D変換するA−D変換器(ト)、
このA−D変換器−で変換される変換値が入力される入
力回路f411 、該各温度設定猟み(ロ)の操作が入
力される入力回路6り、これら各入力回路@1)、(転
)から入力される各種入力値を算術論理演算及び比較演
算等を行なうCPUf43.このCPU[43から指令
される各種指令を受けて出力する出力回路に)を設けた
構成である。The combustion circulation control device (to) includes each of the hot air temperature sensors (
3), an AD converter (g) that converts the detection values detected by the outside air temperature sensor (4) and the air volume sensor CIj from AD to AD;
An input circuit f411 to which the converted value converted by this A-D converter is input, an input circuit 6 to which the operation for each temperature setting (b) is input, and each of these input circuits @1), ( CPU f43. which performs arithmetic and logical operations and comparison operations on various input values input from This CPU (in an output circuit that receives and outputs various commands from the CPU 43) is provided.
前記乾燥制御装置−は、前記水分センサC1[Dが検出
する検出値をA−D変換するA−D変換器、このA−D
変換器で変換される変換値が入力される入力回路、前記
各スイッチ(至)、03及び前記水分設定猟み09の操
作が入力される入力回路、これら各入力回路から入力さ
れる各種入力値を算術論理演算及び比較演算等を行なう
該CPUf43.このCPU(43から指令される各種
指令を受けて出力する出力回路を設けた構成である。The drying control device includes an A-D converter that converts a detection value detected by the moisture sensor C1[D into an A-D converter;
An input circuit into which the converted value converted by the converter is input, an input circuit into which the operations of the switches (to) 03 and the moisture setting switch 09 are input, and various input values input from these input circuits. The CPU f43. performs arithmetic and logical operations, comparison operations, etc. The configuration includes an output circuit that receives various commands from this CPU (43) and outputs them.
前記燃焼循環制御装置(至)による燃焼制御と穀粒の循
環循環制御とは下記の如く行なわれる構成であり、前記
各熱風温度センサ(3)が検出する熱風温度(TB)の
平均値(TBI)の算出及び外気温度(TA)を基準と
した加温度ばらつき(TW)を、この燃焼循環制御装置
(至)の前記CPUH3へ設定して記憶させた下記式(
イ)へ代入して算出する構成であり。Combustion control and grain circulation control by the combustion circulation control device (to) are performed as follows, and the average value (TBI) of the hot air temperature (TB) detected by each hot air temperature sensor (3) is ) and the heating temperature variation (TW) based on the outside air temperature (TA) are set and stored in the CPUH3 of this combustion circulation control device (to) using the following formula (
It is a structure that is calculated by substituting into (b).
加温度ばらつき(TV)= C熱風温度最大値+(TB
2)−熱風温度最小値(TB3))/〔熱風温度平均値
(TBI)−外気温度(TA))X100・・・(イ)
この算出式(イ)で算出した加温度ばらつき(TW)と
、該CPU!0へ、例えば、設定して記憶させた加温度
のばらつき(TWI)60%とを比較する構成であり、
算出加温度ばらつき(TW)が設定記憶油温度ばらつき
(TWI)60%以下のときには、熱風温度(TB)は
変更制御しない構成であり、又穀粒の乾燥が進んで算出
加温度ばらつき(TV)が80%が算出され、設定記憶
油温度ばらつき(TWI)60%以上であると、第2図
の如く、該C:PUG43へ設定して記憶させた熱風温
度(TB)の減少温度(TE)が2℃と選定され、該熱
風温度(TB)が55℃であったとすると、この55℃
が選定された2℃低温度の53℃になるように、このC
PU!43で制御される構成であり、又前記温度・設定
猟み(ロ)、(ロ)を操作して設定した設定熱風温度と
該各熱風温度センサ(3)が検出した熱風温度の平均値
(TB、1)とが比較され、相違していると同じ温度に
なるように前記燃料バルブの開閉回数を制御して、前記
燃料ポンプ(9)で吸入する燃料量を制御する構成であ
る。Heating temperature variation (TV) = C hot air temperature maximum value + (TB
2) - Minimum hot air temperature (TB3)) / [Average hot air temperature (TBI) - Outside air temperature (TA)) , the CPU! 0, for example, a heating temperature variation (TWI) of 60% that has been set and stored,
When the calculated heating temperature variation (TW) is 60% or less of the set memorized oil temperature variation (TWI), the hot air temperature (TB) is not changed and controlled, and the calculated heating temperature variation (TV) increases as the drying of the grain progresses. is calculated to be 80%, and if the set memorized oil temperature variation (TWI) is 60% or more, as shown in Fig. 2, the temperature at which the hot air temperature (TB) decreases (TE) set and stored in the C:PUG43 is is selected as 2℃, and the hot air temperature (TB) is 55℃, this 55℃
This C
PU! 43, and the average value ( TB, 1) are compared, and if they are different, the number of times the fuel valve is opened and closed is controlled so that the temperatures are the same, and the amount of fuel sucked by the fuel pump (9) is controlled.
又上記の如く、算出加温度ばらつき(TW)が80%が
算出され、設定記憶加温度ばらつき(TWl)の60%
以上のときには、前記温度制御と同時に、前記CPU[
43へ設定して記憶させた下記式(ロ)で乾燥エネルギ
ー(K)が算出され、この算出乾燥エネルギー(K)を
同じにするために、穀粒の循環量が制御される構成であ
り、例えば、乾燥穀粒量、(W)が3.6tonであり
、前記風量センサ(49が検出した風量(M)が0.3
6rn’ / seeであり、循環量(H)が4.0t
on/hrであり、前記熱風温度センサ(3)が検出し
た熱風温度(TB)が55℃であり、αは空気の比熱X
空気の比重量であり、これらにより下記の如く、792
00αKcal/hrと算出される構成であり、
乾燥エネルギー(K)=熱風温度(TB)X風量(M)
×αX循環量(H)/乾燥穀粒量(W)・・・(ロ)
乾燥エネルギー(K) =55X0.36X a X3
600X4.O/3.6
乾燥エネルギー(K) =79200akcal/hr
この算出乾燥エネルギー(K) 79200 akca
l/hrと同じにするためには、前記で熱風温度(TB
)は53℃に制御され、又該風量センサ(ト)が検出し
た風量(M)が0.30rn″/secであると、下記
式()))で穀粒の循環量が5.0ton/hrと算出
される構成であり、
算出エネルギー(K) 79200α =熱風温度(T
B)−減少温度(TE)X風量(M)×循環量(H)/
乾燥穀粒量(W)・・・(ハ)79200α= (55
−2)xo、30x循環量(H)/3.6
循環量(H) =4.98
弁5.0ton/hr
穀粒循環量(H) 4.0ton/hrをこの算出穀粒
循環量(H) 5.0ton/hrになるように、前記
繰出バルブ(mを回転駆動する前記変速モータ(19の
回転数170Or 、 p 、 mを、2125r、p
、m回転に該CPUf43で増速回転制御する構成であ
り、前記バーナ(11の算出加温度ばらつき(TV)が
設定記憶加温度ばらつき(TWI)以上であれば、前記
の如く、熱風温度(TB)を所定温度低温度に、制御す
ると同時に又穀粒循環量(H)を所定量増加制御して穀
粒を乾燥する構成である。Also, as mentioned above, the calculated heating temperature variation (TW) is calculated to be 80%, which is 60% of the set memory heating temperature variation (TWl).
In the above case, at the same time as the temperature control, the CPU [
Drying energy (K) is calculated by the following formula (b) set and stored in 43, and in order to make this calculated drying energy (K) the same, the circulation amount of grain is controlled, For example, the dry grain amount (W) is 3.6 tons, and the air volume (M) detected by the air volume sensor (49) is 0.3 tons.
6rn'/see, circulation amount (H) is 4.0t
on/hr, the hot air temperature (TB) detected by the hot air temperature sensor (3) is 55°C, and α is the specific heat of air
It is the specific weight of air, and based on these, 792
The configuration is calculated as 00αKcal/hr, and drying energy (K) = hot air temperature (TB) x air volume (M)
× αX Circulation amount (H) / Dry grain amount (W)... (B) Drying energy (K) = 55X0.36X a X3
600X4. O/3.6 Drying energy (K) = 79200akcal/hr
This calculated drying energy (K) 79200 akca
In order to make it the same as l/hr, the hot air temperature (TB
) is controlled at 53°C, and the air flow rate (M) detected by the air flow sensor (g) is 0.30 rn''/sec, the circulation amount of grains is 5.0 ton/sec according to the following formula ())). hr, calculated energy (K) 79200α = hot air temperature (T
B) - Decreasing temperature (TE) x air volume (M) x circulation volume (H)/
Dry grain amount (W)...(c)79200α= (55
-2) xo, 30x circulation amount (H) / 3.6 Circulation amount (H) = 4.98 valve 5.0ton/hr Grain circulation amount (H) 4.0ton/hr is calculated from this calculated grain circulation amount ( H) The speed change motor (19) which rotationally drives the delivery valve (m) has a rotational speed of 170 Or, p, m, 2125 r, p so that the rotation speed is 5.0 ton/hr.
, m rotations, the CPUf43 performs accelerated rotation control, and if the calculated heating temperature variation (TV) of the burner (11) is greater than or equal to the set memory heating temperature variation (TWI), the hot air temperature (TB ) is controlled to a predetermined low temperature, and at the same time, the grain circulation amount (H) is increased by a predetermined amount to dry the grains.
前記乾燥制御装置(9)による乾燥制御は下記の如く行
なわれる構成であり、前記水分センサ0Φが前記水分設
定猟み09を操作して設定した仕上目標水分と同じ穀粒
水分を検出すると、この乾燥制御装置−で自動制御して
前記乾燥機(5)を自動停止する構成である。The drying control by the drying control device (9) is performed as follows. When the moisture sensor 0Φ detects the same grain moisture as the finishing target moisture set by operating the moisture setting controller 09, this The dryer (5) is automatically controlled by a drying control device to automatically stop the dryer (5).
以下、上記実施例の作用について説明する。Hereinafter, the operation of the above embodiment will be explained.
操作装置(7)の各設定猟み(ロ)、C341,O’j
を所定の位置へ操作し、乾燥作業を開始する始動スイッ
チ叩を操作することにより、穀粒乾燥機(5)の各部、
バーナ(11及び水分センサOn等が始動し、このバー
ナ111から熱風が発生しこの熱風が熱風室fl+3か
ら乾燥室(2)を通風し、排風室(目を経て排風機++
3)で吸引排風されることにより、この乾燥機(5)の
貯留室1211内へ収容した穀粒は、この貯留室+21
1から該乾燥室(2)内を流下中にこの熱風に晒されて
乾燥され、繰出バルブ(171で下部へと繰出されて流
下し集穀樋(IGI内へ供給され、この集穀樋flGl
から供給樋Qlを経て昇穀機国内へ下部の移送螺旋で移
送供給され、パケットコンベア(ハ)で上部へ搬送され
投出筒(5)を経て移送樋(至)内へ供給され、この移
送樋(至)から拡散盤Q4上へ上部の移送螺旋で移送供
給され、この拡散盤(241で該貯留室G!+1内へ均
等に拡散還元され1wi環乾燥されて該水分センサ0ω
が該水分設定猟み09を操作して設定した仕上目標水分
と同じ穀粒水分を検出すると、該操作装置(7)の乾燥
制御装置(資)で自動制御して該乾燥機(5)を自動停
止する。Each setting of the operating device (7) (b), C341, O'j
Each part of the grain dryer (5), by operating the start switch to start the drying operation
The burner (11 and moisture sensor On, etc.) are started, and hot air is generated from this burner 111. This hot air is ventilated from the hot air chamber fl+3 to the drying chamber (2), and is passed through the exhaust chamber (through the air exhaust
3), the grains accommodated in the storage chamber 1211 of this dryer (5) are transported to this storage chamber +21.
It is exposed to this hot air and dried while flowing down from the drying chamber (2) from 1 to the drying chamber (2), and is fed to the lower part at the feeding valve (171) and is supplied to the grain collection gutter (IGI).
The grains are transferred from the feeder via the supply gutter Ql to the grain raising machine by the lower transfer spiral, transported to the upper part by the packet conveyor (c), passed through the dispensing tube (5), and are supplied into the transfer gutter (to). It is transferred and supplied from the gutter (to) onto the diffusion plate Q4 by the upper transfer spiral, and in this diffusion plate (241) it is evenly diffused and reduced into the storage chamber G!
When the dryer (5) is automatically controlled by the drying control device (supply) of the operating device (7) when the grain moisture content is the same as the finishing target moisture set by operating the moisture setting device 09, the dryer (5) is automatically controlled. Automatically stop.
この乾燥作業中は、該バーナfilから発生する熱風温
度が各熱風温度センサ(3)で検出され、外気温度が外
気温度センサ(4)で検出され、これら検出熱風温度と
検出外気温度とによって、該バーナ(1)の加温度ばら
つきが算出され、この算出ばらつきが設定記憶させた所
定の加温度ばらつき以上になると、該バーナ(1)から
発生する熱風温度が所定温度燃焼循環制御装置(至)で
低温度に制御されると同時に、該繰出バルブ(mで繰出
し流下する循環穀粒量が所定量この燃焼循環制御装置国
で増加制御されて穀粒は乾燥される。During this drying work, the hot air temperature generated from the burner fil is detected by each hot air temperature sensor (3), and the outside air temperature is detected by the outside air temperature sensor (4), and based on these detected hot air temperature and detected outside air temperature, The heating temperature dispersion of the burner (1) is calculated, and when this calculated dispersion exceeds the predetermined heating temperature dispersion that has been set and stored, the temperature of the hot air generated from the burner (1) reaches the predetermined temperature. At the same time, the temperature is controlled to be low by the combustion circulation control device, and at the same time, the amount of circulating grains fed out and flowing down by the feeding valve (m) is controlled to increase by a predetermined amount, and the grains are dried.
図は、この発明の一実施例を示すもので、第1図はブロ
ック図、第2図は前温度ばらつきと熱風減少温度との関
係図、第3図は一部破断せる穀粒乾燥機の全体側面図、
第4図は第3図のA−A断面図、第5図は第3図のB−
B断面図、第6図は穀粒乾燥機の全体背面図、第7図は
穀粒乾燥機の一部の一部破断せる拡大正面図で蔦る。
図中、符号(1)はバーナ、(2)は乾燥室、(3)は
熱風温度センサ、(4)は外気温度センサを示す。The figures show one embodiment of the present invention. Fig. 1 is a block diagram, Fig. 2 is a relationship diagram between pre-temperature variation and hot air reduction temperature, and Fig. 3 is a partially breakable grain dryer. Overall side view,
Figure 4 is a sectional view taken along line A-A in Figure 3, and Figure 5 is a cross-sectional view taken along line B-- in Figure 3.
B is a sectional view, FIG. 6 is an overall rear view of the grain dryer, and FIG. 7 is an enlarged front view of a part of the grain dryer with a partial cutaway. In the figure, reference numeral (1) indicates a burner, (2) indicates a drying chamber, (3) indicates a hot air temperature sensor, and (4) indicates an outside air temperature sensor.
Claims (1)
風させて乾燥する乾燥室(2)、及びこの乾燥室(2)
へ通風する熱風の温度を検出する熱風温度センサ(3)
を複数個設けると共に、外気温度を検出する外気温度セ
ンサ(4)を設けた穀粒乾燥機において、該熱風温度セ
ンサ(3)が検出する熱風温度と該外気温度センサ(4
)が検出する外気温度とにもとづいて、該バーナ(1)
による加温度のばらつきを算出しながら、この算出ばら
つきが所定領域以上に達したとき自動的に該熱風温度を
下げると同時に該循環穀粒量を増加するように制御して
乾燥することを特徴とする乾燥制御方式。A drying chamber (2) in which grains are dried by circulating hot air from a burner (1) while circulating the grains, and this drying chamber (2).
Hot air temperature sensor (3) that detects the temperature of hot air flowing into
In a grain dryer that is equipped with a plurality of external air temperature sensors (4) and an external air temperature sensor (4) that detects the external air temperature, the hot air temperature detected by the hot air temperature sensor (3) and the external air temperature sensor (4) are
) based on the outside temperature detected by the burner (1).
The drying method is characterized in that while calculating the variation in heating temperature due to the heating temperature, when the calculated variation reaches a predetermined range or more, the hot air temperature is automatically lowered and at the same time the circulating grain amount is controlled to increase. Drying control method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12193989A JPH02302577A (en) | 1989-05-15 | 1989-05-15 | Dry control system for grain drying machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12193989A JPH02302577A (en) | 1989-05-15 | 1989-05-15 | Dry control system for grain drying machine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02302577A true JPH02302577A (en) | 1990-12-14 |
Family
ID=14823672
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12193989A Pending JPH02302577A (en) | 1989-05-15 | 1989-05-15 | Dry control system for grain drying machine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02302577A (en) |
-
1989
- 1989-05-15 JP JP12193989A patent/JPH02302577A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH02302577A (en) | Dry control system for grain drying machine | |
JPH03113282A (en) | Dry control system for grain dryer | |
JPH03113284A (en) | Dry control system for grain dryer | |
JPH01219491A (en) | Control system for cereals grain drier | |
JPH03236591A (en) | Control system for drying in grain drying machine | |
JPS61213481A (en) | Cereal grain drying controller for cereal grain drier | |
JPH0313786A (en) | Control system of drying of grain drier | |
JPH06273048A (en) | Operation display system for grain dryer | |
JPS63282479A (en) | Method of drying cereal grain in cereal grain drier | |
JPH0350485A (en) | Control system for grain drier | |
JPS62178880A (en) | Cereal grain drying control system of cereal grain drier | |
JPH01219493A (en) | Drying control device for cereals grain drier | |
JPH04263781A (en) | Control method of fuel supply for grain drier or the like | |
JPH02306085A (en) | Controlling method for drying of cereals drier | |
JPH02219976A (en) | Dry control system for grain drier | |
JPH0313783A (en) | Control system of drying of grain drier | |
JPH03113286A (en) | Dry control system for grain dryer | |
JPH04288473A (en) | Control method of drying in grain drying machine | |
JPS6399484A (en) | Cereal grain drying control system of cereal grain drier | |
JPS6391478A (en) | Cereal grain drying control system of cereal grain drier | |
JPS6287781A (en) | Drying control system of cereal grain for cereal grain drier | |
JPS61246581A (en) | Cereal grain drier | |
JPH0428994A (en) | Drying control system for cereals drier | |
JPS6233275A (en) | Control system of drying of cereal grain of cereal grain drier | |
JPH02101315A (en) | Combustion control method in burner for grain dryer |