JPH0313783A - Control system of drying of grain drier - Google Patents

Control system of drying of grain drier

Info

Publication number
JPH0313783A
JPH0313783A JP14713789A JP14713789A JPH0313783A JP H0313783 A JPH0313783 A JP H0313783A JP 14713789 A JP14713789 A JP 14713789A JP 14713789 A JP14713789 A JP 14713789A JP H0313783 A JPH0313783 A JP H0313783A
Authority
JP
Japan
Prior art keywords
grains
drying
moisture
grain
hot air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14713789A
Other languages
Japanese (ja)
Inventor
Eiji Nishino
栄治 西野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iseki and Co Ltd
Iseki Agricultural Machinery Mfg Co Ltd
Original Assignee
Iseki and Co Ltd
Iseki Agricultural Machinery Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iseki and Co Ltd, Iseki Agricultural Machinery Mfg Co Ltd filed Critical Iseki and Co Ltd
Priority to JP14713789A priority Critical patent/JPH0313783A/en
Publication of JPH0313783A publication Critical patent/JPH0313783A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Solid Materials (AREA)

Abstract

PURPOSE:To dry grains stably by reducing the quantity of the flowing-down of grains in a drying chamber and the quantity of air passing in the drying chamber on the basis of the dispersion of the initial moisture of grains and controlling the temperature of hot air so as to approximately equalize drying heat given to grains. CONSTITUTION:The quantity of the flowing-down of grains flowing down in a drying chamber 1, the quantity of ventilation passing in the drying chamber 1 and the temperature of hot air passing in the drying chamber 1 are controlled by the dispersion of the initial moisture of grains to be dried detected by a moisture sensor 2. Consequently, when the dispersion of the moisture of grains is large, both the quantity of flowing-down and the quantity of ventilation are controlled so as to be increased, and drying heat given to grains is controlled so as to approximately equalize, thus drying grains by an air-quantity type, not a hot air type. Accordingly, the barrel-cracking generation rate of grains is also reduced, the drying factor of grains is not lowered, and grains are dried stably.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、穀粒乾燥機の乾燥制御方式に関する。[Detailed description of the invention] Industrial applications The present invention relates to a drying control method for a grain dryer.

従来の技術 従来は、穀粒は乾燥室を循環移送を繰返しながら、この
乾燥する穀粒量と水分センサが検出する初期の穀粒水分
とによって熱風温度が設定され、この設定された熱風温
度が該乾燥室を通過し、この熱風に該乾燥室を流下中の
穀粒は晒されて乾燥される乾燥制御方式であり、該水分
センサが検出する初期の穀粒水分のばらつきによって、
該乾燥室を流下する穀粒の流下量、又この乾燥室を通風
する風量及び流下中の穀粒に与える乾燥熱をほぼ同じに
なるように熱風温度の制御等は行なわれない乾燥制御方
式であった。
Conventional technology Conventionally, while grains are repeatedly circulated through a drying chamber, a hot air temperature is set based on the amount of grains to be dried and the initial moisture content of the grains detected by a moisture sensor. This is a drying control method in which the grains passing through the drying chamber and flowing down the drying chamber are exposed to the hot air and dried, and depending on the initial moisture content of the grains detected by the moisture sensor,
A drying control method in which the temperature of hot air is not controlled so that the amount of grain flowing down the drying chamber, the amount of air passing through this drying chamber, and the drying heat given to the grains flowing down are almost the same. there were.

発明が解決しようとする課題 穀粒は乾燥室を流下するm環が繰返されながら。Problems that the invention aims to solve The grains flow down the drying chamber in a repeated cycle.

この乾燥する穀粒量と水分センサが検出する初期の穀粒
水分とによって、例えば、乾燥する穀粒量が多量であり
、又穀粒水分が高水分であると熱風温度が高温度に設定
され、この設定された高温度の熱風が該乾燥室を通過し
、この熱風にこの乾燥室を流下中の穀粒は晒されて乾燥
される。
Depending on the amount of grain to be dried and the initial grain moisture detected by the moisture sensor, for example, if the amount of grain to be dried is large and the grain moisture is high, the hot air temperature may be set to a high temperature. This set high temperature hot air passes through the drying chamber, and the grains flowing down the drying chamber are exposed to this hot air and dried.

この乾燥中の穀粒の初期水分のばらつきが大きい穀粒で
あると、高水分の穀粒に合せた熱風温度にして穀粒の乾
燥を行なうと、低水分の穀粒に対して高水分の穀粒の乾
減率が高くなり、このためこの高水分の穀粒に胴側の発
生がしやすくなったり、又高水分の穀粒から低水分の穀
粒へ水分移行が行なわれるときに、穀粒水分のばらつき
が大きいことにより、この低水分の穀粒の胴側発生率が
高くなったり、又穀粒の品質が低下することがあった・ 課題を解決するための手段 この発明は、乾燥室(1)に穀粒を循環移送させながら
熱風を通風して乾燥する穀粒乾燥機において、水分セン
サ(2)が検出するこの移送中の穀粒の初期制御すると
共に、該移送中の穀粒に与える乾燥熱をほぼ同じにする
風量とを増減制御して乾燥することを特徴とする乾燥制
御方式の構成とする。
If there is a large variation in the initial moisture content of the grains during drying, if the grains are dried using a hot air temperature that matches the high moisture content of the grains, the high moisture content will be higher than that of the low moisture content of the grains. The drying rate of the grain becomes high, which makes the high-moisture grain more likely to develop shell side, and when moisture transfer occurs from the high-moisture grain to the low-moisture grain, Due to the large variation in grain moisture, the incidence of low-moisture grains on the body side increases, and the quality of the grains deteriorates. Means for Solving the Problems This invention provides: In a grain dryer that circulates and transfers grains to a drying chamber (1) while blowing hot air to dry them, a moisture sensor (2) detects the initial control of the grains being transported, and The drying control method is characterized in that drying is performed by controlling the increase or decrease of the air volume to make the drying heat given to the grains almost the same.

る。Ru.

発明の作用 穀粒は乾燥室(1)を流下する循環が繰返されながら、
この乾燥する穀粒量と水分センサ(2)が検出する初期
の穀粒水分とによって熱風温度が設定され、この設定さ
れた熱風が該乾燥室(1)を通過し、この熱風にこの乾
燥室を流下中の穀粒は晒されて乾燥され、又該水分セン
サ(2)が検出する初期の穀粒水分から穀粒のばらつき
が検出され、この検出ばらつきによって、例えば、ばら
つきの大きいときには、該乾燥室(1)を流下する流下
量が所定量増加するように制御され、この乾燥室(1)
を通過する風量も所定量増加するように制御され、又こ
の乾燥室(11を流下する穀粒に与える乾燥熱がほぼ同
じになるように、上記で設定された熱風温度が所定温度
上昇制御されて穀粒は乾燥される。
Effect of the invention While the grains are repeatedly circulated down the drying chamber (1),
The hot air temperature is set based on the amount of grain to be dried and the initial grain moisture detected by the moisture sensor (2), and the set hot air passes through the drying chamber (1). The grains flowing under the water are exposed to dryness, and the moisture sensor (2) detects the initial moisture content of the grains to detect variations in the grains. The amount of flow flowing down the drying chamber (1) is controlled to increase by a predetermined amount, and this drying chamber (1)
The amount of air passing through the drying chamber (11) is also controlled to increase by a predetermined amount, and the temperature of the hot air set above is controlled to increase by a predetermined temperature so that the drying heat imparted to the grains flowing down the drying chamber (11) is approximately the same. The grains are then dried.

発明の効果 この発明により、乾燥する穀粒の初期水分のばらつきに
よって、乾燥室(11を流下する穀粒の流下量、この乾
燥室(1)を通過する通風量及びこの乾燥室(1)を通
過する熱風温度が制御されることにより、例えば、穀粒
の水分のばらつきが大きいと、流下量、通風量共に多く
なるように制御され、又穀粒に与える乾燥熱はほぼ同じ
になるように制御されることにより、穀粒の乾燥は熱風
型ではなく風量型で乾燥されることにより、穀粒の胴側
発生率も減少するし、又乾燥熱はほぼ同じになるように
制御されることにより、穀粒の乾減率が低下することも
なく、安定した穀粒の乾燥が行なわれる。
Effects of the Invention With this invention, depending on the initial moisture content of the grains to be dried, the amount of grains flowing down the drying chamber (11), the amount of ventilation passing through this drying chamber (1), and the amount of air flowing through this drying chamber (1) By controlling the temperature of the hot air that passes through it, for example, if there is a large variation in the moisture content of the grains, both the flow rate and the ventilation amount are controlled to be large, and the drying heat applied to the grains is controlled to be approximately the same. By being controlled, the drying of the grains is done by the air flow type rather than the hot air type, which reduces the incidence of grain development on the shell side, and also controls the drying heat to be almost the same. As a result, the drying rate of the grains does not decrease and stable drying of the grains is performed.

実施例 なお、回倒において、(3)は穀粒乾燥機であり、この
乾燥機(3)の機構(4)は前後方向に長い長方形状で
、前後壁板及び左右壁板よりなり、この前壁板にはこの
乾燥機(3)を始動及び停止操作する操作装置(5)及
びバーナ(6)を内装したバーナケース(7)を設け、
このバーナケース(7)下板外側には燃料バルブを有す
る燃料ポンプ(8)を設け、この燃料バルブの開閉によ
りこの燃料ポンプ(8)で燃料タンク(9)内の燃料を
吸入して該バーナ(6)へ供給する構成であり、上板外
側には送風機(10及びこの送風機fl[lを変速回転
駆動する変速用の送風機モータ(11)を設け、この送
風機(1〔で供給燃料に見合った燃焼用空気を該バーナ
(6)へ供給する構成であり、該後壁板には排風機+1
21、この排風機(1δを変速回転駆動する変速用の排
風機モータ(1勇及び繰出バルブ(141を減速機構+
151を介して変速回転駆動する変速用のバルブモータ
(1119を設けた構成である。
Example In the rotation, (3) is a grain dryer, and the mechanism (4) of this dryer (3) has a rectangular shape that is long in the front and back direction, and consists of front and rear wall plates and left and right wall plates. A burner case (7) containing an operating device (5) for starting and stopping the dryer (3) and a burner (6) is installed on the front wall plate.
A fuel pump (8) having a fuel valve is provided on the outer side of the lower plate of the burner case (7), and when the fuel valve is opened and closed, the fuel pump (8) sucks the fuel in the fuel tank (9), and the burner (6), and a blower (10) and a variable-speed blower motor (11) that drives the blower fl[l to rotate at variable speeds are installed on the outside of the upper plate, and this blower (1 The structure is such that combustion air is supplied to the burner (6), and an exhaust fan +1 is installed on the rear wall plate.
21, This exhaust fan (1δ is a variable speed exhaust fan motor that drives variable speed rotation (1 yen and delivery valve (141) is a speed reduction mechanism +
This configuration includes a variable speed valve motor (1119) which is rotated and driven via variable speed valve motor 151.

該機構(4)内下部の中央部には前後方向に亘り移送螺
旋を内装した集穀樋(1″Aを設け、この集穀樋(17
1上側には通気網板間に形成した乾燥室(11を並設し
て連通させ、この乾燥室(1)下部には穀粒を繰出し流
下させる該繰出バルブ041を内装した構成であり、こ
の各乾燥室(1)内側間には熱風室theを形成して該
バーナ(6)と連通させ、この熱風室(I8内にはこの
熱風室(18内の熱風温度を検出する熱風温度センサ(
19を設け、該各乾燥室(1)外側には排風室c!Oを
形成して該排風機(1りと連通させた構成である。
In the center of the lower part of the mechanism (4), there is a grain collection gutter (1''A) which is equipped with a transfer spiral in the front and back direction, and this grain collection gutter (17
On the upper side of 1, there are drying chambers (11) formed between ventilation mesh plates that are arranged in parallel and communicated with each other, and in the lower part of this drying chamber (1), there is installed a feeding valve 041 that feeds out the grains and lets them flow down. A hot air chamber the is formed between the inner sides of each drying chamber (1) and is communicated with the burner (6).
19, and an exhaust chamber c! is provided outside each drying chamber (1). This is a configuration in which an exhaust fan is formed and communicated with the exhaust fan.

該乾燥室(1)上側には貯留室(211を形成して連通
させ、この貯留室21)上側には天井板Qδ及び移送螺
旋を内装した移送樋(至)を設け、この移送樋j中央部
には移送穀粒をこの貯留室2+1内へ供給する供給口を
設け、この供給口の下側にはこの貯留室Q1)へ穀粒を
均等に拡散還元する拡散盤1241を設けた構成である
A storage chamber (211) is formed on the upper side of the drying chamber (1) and communicated with the storage chamber (211), and a transfer gutter (end) equipped with a ceiling plate Qδ and a transfer spiral is provided on the upper side of this storage chamber 21. A supply port for supplying the transferred grains into the storage chamber 2+1 is provided in the storage chamber 2+1, and a diffusion plate 1241 is provided below the supply port to uniformly diffuse and return the grains to the storage chamber Q1). be.

昇穀機−は、前記前壁板前方部に設け、内部にはパケッ
トコンベアQeベルトを上下プーリ間に張設し、上端部
と該移送樋■始端部との間には投出筒(5)を設けて連
通させ、下端部と前記集穀樋(171終端部との間には
供給樋(21を設けて連通させた構成であり、この昇穀
機シ9上部には昇穀機モータt2勅を設け、この昇穀機
モータ(ハ)で該パケットコンベア126ベルト、該移
送樋□□□内の該移送螺旋、該拡散盤Q41及び該パケ
ットコンベア126ベルトを介して該集穀樋(l9内の
前記移送螺旋を回転駆動する構成であり、又上下方向は
ぼ中央部には該パケットコンベアc!eで上部へ搬送中
に落下する穀粒を受け、この穀粒を挟圧粉砕すると同時
に、この粉砕穀粒の水分を検出する水分センサ(2)を
設け、この水分センサ(2)の各部は前記操作装置(5
)からの電気的測定信号の発信により、この水分センサ
(2)内の水分モータO1が回転してこの水分センサ(
2)を回転駆動する構成である。
The grain raising machine is installed in the front part of the front wall plate, and a packet conveyor Qe belt is stretched between the upper and lower pulleys inside, and a dumping cylinder (5 ) is provided for communication, and a supply gutter (21) is provided and communicated between the lower end and the terminal end of the grain hoist (171), and a grain hoist motor is installed at the top of this hoist 9. A grain raising machine motor (c) moves the grain through the packet conveyor 126 belt, the transfer spiral in the transfer gutter □□□, the spreading plate Q41, and the packet conveyor 126 belt into the grain collection gutter ( The transfer spiral in l9 is rotatably driven, and in the center in the vertical direction, grains falling while being conveyed to the upper part by the packet conveyor c!e are received, and the grains are crushed under pressure. At the same time, a moisture sensor (2) for detecting moisture in the crushed grains is provided, and each part of this moisture sensor (2) is connected to the operating device (5).
), the moisture motor O1 in this moisture sensor (2) rotates, causing the moisture sensor (2) to rotate.
2) is configured to rotate.

前記操作装置(5)は、箱形状でこの箱体の表面板には
、前記乾燥機(3)を張込、乾燥及び排出の各作業別に
始動操作する各始動スイッチ(311、停止操作する停
止スイッチ(支)、前記バーナ(6)から発生する熱風
温度が操作位置によって設定される各温度設定猟み口1
、穀粒の仕上目標水分が操作位置によって設定される水
分設定猟み(ロ)、該水分センサ(2)が検出する穀粒
水分、前記熱風温度センサ(]9が検出する熱風温度、
乾燥残時間等を表示する表示窓09及びモニター表示等
を設けた構成であり、内部には乾燥制御装置OQ及び燃
焼制御装置(5)を設けた構成であり、該各設定猟みC
11,C33,(至)はロータリスイッチであり、操作
位置によって所定の数値が設定される構成である。
The operating device (5) is box-shaped, and the front panel of the box includes a start switch (311) for starting the dryer (3), a start switch (311) for starting the drying machine, and a stop switch (311) for stopping the dryer (3) for each of drying and discharging operations. Switch (support), each temperature setting opening 1 in which the temperature of the hot air generated from the burner (6) is set depending on the operating position
, Moisture setting setting in which the grain finishing target moisture is set by the operating position (b), the grain moisture detected by the moisture sensor (2), the hot air temperature detected by the hot air temperature sensor (9),
The configuration includes a display window 09 and a monitor display for displaying the remaining drying time, etc., and a drying control device OQ and a combustion control device (5) are installed inside, and each setting
11, C33, (to) is a rotary switch, and is configured to set a predetermined numerical value depending on the operating position.

該乾燥制御装置((Qは、前記水分センサ(2)が検出
する検出値をA−D変換するA−D変換器(至)、この
A−D変換器(至)で変換された変換値が入力される入
力回路(至)、前記各スイッチ0υ、(至)及び前記水
分設定猟み(ロ)の操作が入力される入力回路MO1こ
れら各入力回路(至)、6Gから入力される各種入力値
を算術論理演算及び比較演算等を行なうCP U 14
11、このCPUIυから指令される各種指令を受けて
出力する出力回路142)を設けた構成である。
The drying control device ((Q) is an A-D converter (to) that converts the detection value detected by the moisture sensor (2) from A to D, and a conversion value converted by this A-D converter (to). The input circuit (to) to which is inputted, the input circuit to which the operation of each of the switches 0υ, (to) and the moisture setting setting (b) are inputted, the various inputs from these input circuits (to), 6G CPU 14 that performs arithmetic and logical operations, comparison operations, etc. on input values.
11. The configuration includes an output circuit 142) that receives and outputs various commands from the CPU Iυ.

前記燃焼制御装置−は、前記熱風温度センサ(19及び
外気温度センサ消が検出する検出値をA−D変換するA
−D変換器uしこのA−D変換器H3で変換された変換
値が入力される入力回路に)、前記各温度設定猟み03
の操作が入力される入力回路(ト)、これら各入力回路
■、(へ)から入力される各種入力値を算術論理演算及
び比較演算等を行なう該cptJf411、このCPU
14υから指令される各種指令を受けて出力する出力回
路heを設けた構成である6耐記乾燥制御装置oeによ
る乾燥制御、穀粒の流下循環量制御及び風量制御は下記
の如く行なわれる構成であり、前記水分センサ(2)が
検出した穀粒水分が前記CP U Hへ入力され、この
入力された検出穀粒水分と前記水分設定猟み−を操作す
ると、この操作で設定されてこのCP U f411へ
入力された設定仕上目標水分とが比較され、検出穀粒水
分が設定仕上目標水分と同じになると、この乾燥制御装
置GQで自動制御して該乾燥機(3)を自動停止する構
成であり、この水分センサ(2)が検出する穀粒の初期
水分から初期穀粒水分のばらつきが、第2図の(イ)、
又は(ロ)の如く検出されて該CPU←υへ入力され、
この入力された検出初期水分のばらつき(イ)、又は(
ロ)と該CP U @11へ設定して記憶させた標準的
な穀粒水分ばらつき(ハ)とが比較され、(イ)−(ハ
)= (A)、又は(ロ)−(ハ)= (B)とばらつ
き量が検出され、この検出された(A)、又は(B)と
該cpu各1)へ設定して記憶させた(C)との差が検
出され、検出されたこの(A)、又は(B)が設定記憶
の(C)より大きい値であると検出されると、前記乾燥
室(1)を通風する乾燥風量と穀粒の流下循環する穀粒
の流下循環量とが下記の如く増加制御される構成であり
、上記とは逆に小さい値であると検出されると、乾燥風
量及び流下循環量共に変更されない構成である。
The combustion control device is configured to convert the detected values detected by the hot air temperature sensor (19 and the outside air temperature sensor) into analog to digital.
- to the input circuit into which the converted value converted by the A-D converter H3 is input), and each of the temperature settings 03
The input circuit (g) into which the operation of is input, the cptJf411 which performs arithmetic and logical operations and comparison operations on various input values input from these input circuits (g), and this CPU.
Drying control, control of the flow rate of grain circulation, and air volume control are carried out by the 6-hour drying control device OE, which has an output circuit he that receives and outputs various commands from the 14υ, and is configured as follows. Yes, the grain moisture detected by the moisture sensor (2) is input to the CPU H, and when this input detected grain moisture and the moisture setting setting are operated, the CP is set by this operation. A configuration in which the drying control device GQ automatically controls and automatically stops the dryer (3) when the detected grain moisture content is compared with the set finishing target moisture input to the U f411 and becomes the same as the setting finishing target moisture content. The variation in initial grain moisture detected by this moisture sensor (2) is as shown in (a) in Figure 2.
Or it is detected as in (b) and input to the CPU←υ,
This input variation in the detected initial moisture content (a) or (
b) and the standard grain moisture variation (c) set and stored in the CPU @11 are compared, and (b) - (c) = (A) or (b) - (c) = (B) and the amount of variation are detected, and the difference between this detected (A), or (B) and (C) set and stored in each CPU 1) is detected, and the detected amount is When (A) or (B) is detected to be a larger value than (C) in the setting memory, the amount of drying air flowing through the drying chamber (1) and the amount of grain flowing down and circulating. is controlled to increase as described below, and contrary to the above, when a small value is detected, neither the drying air volume nor the downstream circulation volume is changed.

設定記憶の(C)値のときの乾燥風量0.55m/se
cが、第3図の如く、ばらつき量(A)、又は(B)個
別に前記CP U Hへ設定して記憶させた風量が、(
A)値であれば、0.7m/seeと選定され、(B)
値であれば0.6m/secと選定され、これらの乾燥
風量になるように前記排風機モータ(11)の回転数が
、該CP U f411へ設定して記憶させた所定回転
数が増速回転制御され、前記排風機(1δで吸引排風す
る吸入乾燥風量が増加制御される構成であると同時に、
又設定記憶の(C)値のときの穀粒の流下循環量4.5
t/hrが、第4図の如く、ばらつき量(A)、又は(
B)個別に前記CPU@υへ設定しして記憶させた流下
循環量が(A)値であれば5t/hrと選定され、(B
)値であれば5,7/hrと選定され、これらの流下循
環量になるように前記バルブモータ(1eの回転数が、
該CPUf411へ設定して記憶させた所定回転数が増
速回転制御され、前記繰出バルブ04で繰出し流下循環
する流下循環量がこの乾燥制御装[09で増加、制御さ
れる構成であり、ばらつき量による穀粒量の流下循環量
は。
Drying air flow rate at (C) value in setting memory: 0.55 m/se
As shown in Fig. 3, c is the variation amount (A) or (B) the air volume individually set and stored in the CPU U H (
A) If the value is 0.7m/see, then (B)
If the value is 0.6 m/sec, then the rotation speed of the exhaust fan motor (11) is increased to a predetermined rotation speed set and stored in the CPU f411 so that these dry air volumes are achieved. At the same time, the rotation of the exhaust fan is controlled and the amount of suction drying air sucked and exhausted at 1δ is controlled to increase.
Also, the amount of grain circulation at the (C) value in the setting memory is 4.5.
As shown in Fig. 4, t/hr is the variation amount (A) or (
B) If the downstream circulation amount individually set and stored in the CPU@υ is the value (A), it is selected as 5t/hr, and (B
) value, 5.7/hr is selected, and the rotation speed of the valve motor (1e) is selected to achieve these downstream circulation amounts.
The predetermined rotation speed set and stored in the CPUf411 is controlled to increase the rotation speed, and the amount of downstream circulation fed out by the feeding valve 04 is increased and controlled by the drying control device [09, and the amount of variation is The amount of grain flowing down the circulation is .

第4図の如く、3段階に変化するように設定記憶させた
構成である。
As shown in FIG. 4, the configuration is such that settings are stored so as to change in three stages.

前記燃焼制御装置−による燃焼制御は下記の如く行なわ
れる構成であり、前記熱風温度センサ(19が検出した
熱風温度が前記CPU1411へ入力され、この入力さ
れた検出熱風温度と前記各温度設定猟み03を操作する
と、この操作で設定されてこのCPUll11へ入力さ
れた設定熱風温度とが比較され、相違していると設定熱
風温度と同じ温度になるように、前記燃料バルブの開閉
回数が制御され、前記燃料ポンプ(8)で吸入する燃料
量が、この燃焼制御装置的で制御される構成であり、又
設定記憶の(C)値より(A)、又は(B)が大きい値
であると上記と同じように検出されたときであると、上
記の乾燥風量及び流下循環量増加制御と同時に、前記乾
燥室(1)内を流下する穀粒に与える乾燥熱(T)をほ
ぼ同じにするための制御が下記の如く行なわれる構成で
あり、例えば、穀粒水分ばらつきが(A)値であれば、
乾燥風量は0.7m/seeであり、流下循環量は5.
Ot/hrであり、これらにより乾燥熱(T)は該CP
 U Mllへ設定して記憶させた下記式(1)により
、前記バーナ(6)から発生する熱風温度の加温度が2
6℃であると算出される構成であり、 乾燥熱(T)=加温度(TA) X風量(Q) X空気
の比熱(H)X空気の比重量(W)・・・(1) この空気の比熱(H)と空気の比重量(W)は−定であ
るとみなしてαとすると、 乾燥熱(T)=加温度(TA) X風量(Q)×α・・
・(2) このときの前記水分センサ(2)が検出した穀粒水分が
25%であったとすると、第5図の如く、穀粒水分別に
設定して記憶させた乾燥熱(T)が18αと選定され、
上記式(2)式より加温度(TA)が26℃であると演
算される構成であり、 18α=加温度(TA) X O,7Xαα湿温度TA
) =1810.7=25.7今26℃ この加温度(丁A) 26℃と前記外気温度センサ(1
)が検出した外気温度が20℃であると、前記バーナ(
6)から発生する熱風温度は46℃になるように、この
燃焼制御装置(5)で該燃料バルブ及び該燃料ポンプ(
8)が制御され、穀粒に与える乾燥熱(T)は、穀粒水
分ばらつき(C)値のときの乾燥風量0.55m/se
cと流下循環量4.5t/hrのときの乾燥熱(T)と
ほぼ同じになるように制御されて穀粒は乾燥される構成
であり、上記と逆に小さい値であると検出されると、乾
燥熱(T)は変更されない構成である。
Combustion control by the combustion control device is performed as follows. The hot air temperature detected by the hot air temperature sensor (19) is input to the CPU 1411, and the input detected hot air temperature and each of the temperature setting settings are input to the CPU 1411. When 03 is operated, the set hot air temperature set by this operation and inputted to this CPUll11 is compared, and if there is a difference, the number of opening and closing times of the fuel valve is controlled so that the temperature becomes the same as the set hot air temperature. , the amount of fuel sucked by the fuel pump (8) is controlled by this combustion control device, and the value (A) or (B) is larger than the value (C) in the setting memory. When detected in the same way as above, at the same time as controlling the increase in the drying air volume and downstream circulation volume, the drying heat (T) applied to the grains flowing down in the drying chamber (1) is set to be approximately the same. For example, if the grain moisture variation is (A) value,
The drying air volume is 0.7 m/see, and the downstream circulation volume is 5.
Ot/hr, and from these the drying heat (T) is
According to the following formula (1) set and stored in U Mll, the heating temperature of the hot air generated from the burner (6) is 2.
The configuration is calculated to be 6℃, and drying heat (T) = heating temperature (TA) x air volume (Q) x specific heat of air (H) x specific weight of air (W)... (1) This Assuming that the specific heat (H) of air and the specific weight (W) of air are -constant and let α be, then drying heat (T) = heating temperature (TA) x air volume (Q) x α...
・(2) If the grain moisture detected by the moisture sensor (2) at this time is 25%, the drying heat (T) set and stored for each grain moisture is 18α as shown in Figure 5. was selected,
This is a configuration in which the heating temperature (TA) is calculated to be 26°C from the above formula (2), 18α=heating temperature (TA) X O, 7Xαα humidity temperature TA
) =1810.7=25.7 Now 26℃ This heating temperature (Cho A) 26℃ and the outside air temperature sensor (1
) is 20°C, the burner (
This combustion control device (5) controls the fuel valve and the fuel pump (6) so that the temperature of the hot air generated from the
8) is controlled, and the drying heat (T) given to the grains is controlled by the drying air flow rate of 0.55 m/sec when the grain moisture variation (C) value is
The structure is such that the grains are dried by controlling c to be almost the same as the drying heat (T) when the downstream circulation rate is 4.5 t/hr, and contrary to the above, a small value is detected. , the drying heat (T) remains unchanged.

以下、上記実施例の作用について説明する。Hereinafter, the operation of the above embodiment will be explained.

操作装置(5)の各設定猟み(至)、(至)、(ロ)を
所定の位置へ操作し、乾燥作業を開始する始動スイッチ
(illを操作することにより、穀粒乾燥機(3)の各
部、バーナ(6)及び水分センサ(2)等が始動し、こ
のバーナ(6)から熱風が発生しこの熱風が熱風室oa
から乾燥室(1)を通風し、排風室(社)を経て排風機
(121で吸引排風されることにより、この乾燥機(3
)の貯留室I21)内へ収容された穀粒は、この貯留室
C211から該乾燥室(1)内を流下中にこの熱風に晒
されて乾燥され、繰出バルブ(141で下部へと繰出さ
れて流下し集穀樋(m内へ供給され、この集穀樋(■か
ら供給樋fflを経て昇穀機+25+内へ下部の移送螺
旋で移送供給され、パケットコンベアQeで上部へ搬送
され投出筒(5)を経て移送樋(至)内へ供給され、こ
の移送@(至)から拡散盤+241上へ上部の移送螺旋
で移送供給され、この拡散盤C24で該貯留室(21)
内へ均等に拡散還元され、循環乾燥されて該水分センサ
(2)が該水分設定猟み(ロ)を操作して設定した仕上
目標水分と同じ穀粒水分を検出すると、該操作装置(5
)の乾燥制御装置OQで自動制御して該乾燥機(3)を
自動停止して穀粒の乾燥が停止される。
The grain dryer (3) is started by operating each setting of the operating device (5) to the predetermined position (to), (to), (b) and by operating the start switch (ill) to start drying work. ), the burner (6), the moisture sensor (2), etc. start, and hot air is generated from the burner (6) and this hot air flows into the hot air chamber oa.
This dryer (3
The grains stored in the storage chamber I21) of the storage chamber C211 are exposed to the hot air and dried while flowing down the drying chamber (1) from the storage chamber C211, and are fed out to the lower part by the feeding valve (141). The grains flow down and are supplied into the grain collecting gutter (m), and from this grain collecting gutter (■), they are transferred and supplied into the grain raising machine +25+ by the lower transfer spiral through the feeding gutter ffl, and then transported to the upper part by the packet conveyor Qe and thrown out. It is supplied into the transfer gutter (to) through the cylinder (5), and from this transfer @ (to), it is transferred and supplied onto the diffusion plate +241 by the upper transfer spiral, and in this diffusion plate C24, the storage chamber (21) is supplied.
When the moisture sensor (2) detects the same grain moisture as the finishing target moisture set by operating the moisture setting controller (b), the operating device (5)
) is automatically controlled by the drying control device OQ to automatically stop the dryer (3), thereby stopping the drying of the grains.

この乾燥作業開始のときに、該水分センサ(2)が検出
する穀粒水分から穀粒の水分ばらつきが検出され、この
検出穀粒水分ばらつきが所定値以上であると検出される
と、該繰出バルブ(14で該乾燥室111を繰出し流下
循環させる循環量が所定量増加制御され、該乾燥室(1
)を通風する熱風の乾燥風量が所定風量増加制御される
と同時に、穀粒に与える乾燥熱が流下循環量と通風量と
を増加制御する前とほぼ同じになるように、該バーナ(
6)から発生する熱風温度が所定温度上昇制御されて穀
粒は乾燥される。
At the start of this drying work, moisture variation in the grain is detected from the grain moisture detected by the moisture sensor (2), and if this detected grain moisture variation is detected to be greater than a predetermined value, the feeding A valve (14) controls a predetermined amount of increase in the amount of circulation in which the drying chamber 111 is fed and circulated, and the drying chamber (14)
The drying air volume of the hot air passing through the burner (
The temperature of the hot air generated from step 6) is controlled to rise to a predetermined temperature, and the grains are dried.

【図面の簡単な説明】[Brief explanation of drawings]

図は、この発明の一実施例を示すもので、第1図はブロ
ック図、第2図は穀粒水分と度数との関係図、第3図は
穀粒のばらつき量の差と乾燥風量との関係図、第4図は
穀粒水分ばらつき量の差と穀粒流下循環量との関係図、
第5図は穀粒水分と乾燥熱との関係図、第6図は一部破
断せる穀粒乾燥機の全体側面図、第7図は第6図のA−
A断面図、第8図は穀粒乾燥機の一部の背面図、第9図
は穀粒乾燥機の一部の一部破断せる拡大正面図である。 図中、符号(1)は乾燥室、(2)は水分センサを示す
The figures show one embodiment of the present invention. Fig. 1 is a block diagram, Fig. 2 is a relation between grain moisture and frequency, and Fig. 3 is a relation between the difference in grain dispersion and drying air volume. Figure 4 is a diagram showing the relationship between the difference in grain moisture variation and the amount of grain downstream circulation.
Fig. 5 is a diagram of the relationship between grain moisture and drying heat, Fig. 6 is an overall side view of the grain dryer that can be partially cut away, and Fig. 7 is A-A in Fig. 6.
A sectional view, FIG. 8 is a rear view of a part of the grain dryer, and FIG. 9 is an enlarged front view, partially cut away, of a part of the grain dryer. In the figure, symbol (1) indicates a drying chamber, and symbol (2) indicates a moisture sensor.

Claims (1)

【特許請求の範囲】[Claims] 乾燥室(1)に穀粒を循環移送させながら熱風を通風し
て乾燥する穀粒乾燥機において、水分センサ(2)が検
出するこの移送中の穀粒の初期水分のばらつきにもとづ
いて、該乾燥室(1)の穀粒の流下量とこの乾燥室(1
)を通風する風量とを増減制御すると共に、該移送中の
穀粒に与える乾燥熱をほぼ同じにするように該熱風温度
を制御して乾燥することを特徴とする乾燥制御方式。
In a grain dryer that circulates and transfers grains to a drying chamber (1) and dries them by blowing hot air, the moisture sensor (2) detects the initial moisture content of the grains during transport. The flow rate of grains in the drying chamber (1) and this drying chamber (1)
) A drying control method characterized by increasing or decreasing the amount of air flowing through the grains, and controlling the temperature of the hot air so that the drying heat imparted to the grains being transferred is approximately the same.
JP14713789A 1989-06-09 1989-06-09 Control system of drying of grain drier Pending JPH0313783A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14713789A JPH0313783A (en) 1989-06-09 1989-06-09 Control system of drying of grain drier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14713789A JPH0313783A (en) 1989-06-09 1989-06-09 Control system of drying of grain drier

Publications (1)

Publication Number Publication Date
JPH0313783A true JPH0313783A (en) 1991-01-22

Family

ID=15423410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14713789A Pending JPH0313783A (en) 1989-06-09 1989-06-09 Control system of drying of grain drier

Country Status (1)

Country Link
JP (1) JPH0313783A (en)

Similar Documents

Publication Publication Date Title
JPH0313783A (en) Control system of drying of grain drier
JPH01219491A (en) Control system for cereals grain drier
JPH03113284A (en) Dry control system for grain dryer
JPH03113282A (en) Dry control system for grain dryer
JPS6219677A (en) Drying control system of cereal grain of cereal grain drier
JPH03236591A (en) Control system for drying in grain drying machine
JPH03113279A (en) Dry control system for grain dryer
JPS6380187A (en) Cereal grain drying control system of cereal grain drier
JPS6233275A (en) Control system of drying of cereal grain of cereal grain drier
JPH02302579A (en) Drier for grain drying machine
JPH03230083A (en) Drying control apparatus of grain dryer
JPH0313786A (en) Control system of drying of grain drier
JPH02219976A (en) Dry control system for grain drier
JPH0350485A (en) Control system for grain drier
JPS62788A (en) Control system of drying of cereal grain of cereal grain drier
JPH02143083A (en) Drying control system for grain drier
JPS61246581A (en) Cereal grain drier
JPS6233278A (en) Abnormality detector for cereal grain drier
JPH0428994A (en) Drying control system for cereals drier
JPS62178880A (en) Cereal grain drying control system of cereal grain drier
JPH04263781A (en) Control method of fuel supply for grain drier or the like
JPH0325284A (en) Dry control system in grain drier
JPS62108990A (en) Cereal grain drying control system of cereal grain drier
JPS63306385A (en) Cereal grain drying control system of cereal grain drier
JPS62178878A (en) Cereal grain drying control system of cereal grain drier