JPS6399484A - Cereal grain drying control system of cereal grain drier - Google Patents

Cereal grain drying control system of cereal grain drier

Info

Publication number
JPS6399484A
JPS6399484A JP24595886A JP24595886A JPS6399484A JP S6399484 A JPS6399484 A JP S6399484A JP 24595886 A JP24595886 A JP 24595886A JP 24595886 A JP24595886 A JP 24595886A JP S6399484 A JPS6399484 A JP S6399484A
Authority
JP
Japan
Prior art keywords
hot air
temperature
grain
detected
air temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24595886A
Other languages
Japanese (ja)
Inventor
仁志 上路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iseki and Co Ltd
Iseki Agricultural Machinery Mfg Co Ltd
Original Assignee
Iseki and Co Ltd
Iseki Agricultural Machinery Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iseki and Co Ltd, Iseki Agricultural Machinery Mfg Co Ltd filed Critical Iseki and Co Ltd
Priority to JP24595886A priority Critical patent/JPS6399484A/en
Publication of JPS6399484A publication Critical patent/JPS6399484A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Solid Materials (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、穀粒乾燥機の穀粒乾燥制御方式に関する。[Detailed description of the invention] Industrial applications The present invention relates to a grain drying control method for a grain dryer.

従来の技術 従来は、拡散装置により貯留室内へ供給されて収容した
穀粒は、この貯留室から複数個の乾燥室内を流下中に、
バーナから発生する熱風が複数個の熱風室から該各乾燥
室を通風し複数個の排風室を経て排風機で吸引排風され
、この熱風に晒されて乾燥され、複数個の該熱風室には
熱風温度を検出する熱風温度センサーを各々に設け、複
数個の該排風室には排風温度を検出する排風温度センサ
ーを各々に設け、これら各熱風温度センサーが検出する
検出熱風温度の平均値と各排風温度センサーが検出する
検出排風温度の平均値とによって、乾燥中の穀粒の穀温
を算出し、この算出によって得た算出穀温によって、該
バーナから発生する熱風温度を制御して穀粒を乾燥する
方式であった。
2. Description of the Related Art Conventionally, grains supplied to and housed in a storage chamber by a diffusion device, while flowing down from the storage chamber through a plurality of drying chambers,
The hot air generated from the burner is passed through the plurality of hot air chambers to each of the drying chambers, passes through the plurality of exhaust chambers, is sucked and exhausted by an exhaust fan, is exposed to the hot air, and is dried. A hot air temperature sensor that detects the hot air temperature is provided in each of the exhaust chambers, and an exhaust air temperature sensor that detects the exhaust air temperature is installed in each of the plurality of exhaust chambers, and the detected hot air temperature detected by each of these hot air temperature sensors is The grain temperature of the grains during drying is calculated from the average value of the detected exhaust air temperature detected by each exhaust air temperature sensor, and the calculated grain temperature obtained by this calculation determines the temperature of the hot air generated from the burner. It was a method of drying grains by controlling the temperature.

発明が解決しようとする問題点 拡散装置により貯留室内へ拡散供給されて収容した穀粒
は、この貯留室から複数個の乾燥室内を流下中に、バー
ナから発生する熱風が複数個の熱風室から該各乾燥室を
通風し複数個の排風室を経て排風機で吸引排風されるこ
とにより、この熱風に晒されて乾燥され、複数個の該熱
風室に設けた各熱風温度センサーが熱風温度を検出し、
複数個の該排風室に設けた各排風温度センサーが排風温
度を検出し、これら検出熱風温度の平均値と検出排風温
度の平均値とによって、乾燥中の穀粒の穀温が算出され
、この算出によって得た算出穀温と設定穀温とを比較し
、算出穀温が設定穀温以上にならないように、該バーナ
から発生する熱風温度を制御して、穀粒を乾燥する形態
の乾燥機では、該拡散装置によって該貯留室内へ拡散供
給する穀粒量が少量であり、又一方側へ穀粒の配穀状態
が片寄ることがあると、このように一方側へ片寄った状
態になると、一方側の該乾燥室上部に穀粒がなくなって
空胴となり、この穀粒のない空胴の個所を該バーナから
発生する熱風が多く通風することになり、この空胴側の
該排風室内の排風温度が高温度となり、この高温度を該
排風温度センサーが検出し、この高温度の検出排風温度
と他方側の検出排風温度とによる平均値と検出熱風温度
の平均値とで乾燥中の穀温を算出すると、実際の穀温よ
り高い穀温を算出することになり、この算出によって得
た穀温が高穀温であることにより、該バーナから発生す
る熱風温度を低温度に制御することになり、このため穀
粒は所定時間内に乾燥が終了しなくなることがあった。
Problems to be Solved by the Invention While grains are diffused and supplied into a storage chamber by a diffusion device and stored therein, while flowing down from the storage chamber through a plurality of drying chambers, hot air generated from a burner is released from a plurality of hot air chambers. Each of the drying chambers is ventilated, passes through a plurality of exhaust chambers, is sucked and exhausted by an exhaust fan, and is exposed to this hot air and dried, and each hot air temperature sensor installed in the plurality of hot air chambers Detects temperature,
Each exhaust air temperature sensor installed in the plurality of exhaust air chambers detects the exhaust air temperature, and the average value of these detected hot air temperatures and the average value of the detected exhaust air temperature determines the grain temperature of the grains being dried. The calculated grain temperature obtained by this calculation is compared with the set grain temperature, and the temperature of the hot air generated from the burner is controlled to dry the grains so that the calculated grain temperature does not exceed the set grain temperature. In this type of dryer, if the amount of grains that are diffused and supplied into the storage chamber by the diffusion device is small, and the distribution of the grains is biased toward one side, the distribution of grains may be biased toward one side. When this happens, there are no grains in the upper part of the drying chamber on one side, creating a cavity, and a large amount of hot air generated from the burner passes through the cavity where there are no grains, and the drying chamber on this side becomes dry. The exhaust air temperature in the exhaust chamber becomes high, this high temperature is detected by the exhaust air temperature sensor, and the detected hot air temperature is the average value of the detected exhaust air temperature of this high temperature and the detected exhaust air temperature on the other side. If the grain temperature during drying is calculated using the average value of As a result, the grains may not be completely dried within a predetermined time.

問題点を解決するための手段 この発明は、乾燥室(5)を流下する穀粒をバーナ(3
)から発生せる熱風で通風乾燥するときの熱風温度と排
風温度とによってこの乾燥穀粒の穀温を算出しながら熱
風制御させる穀粒乾燥機において、該乾燥室(5)の穀
粒流下位はを異にした複数個所に、これら各個所の乾燥
穀粒の密度を検出する密度センサーを設け、これら各密
度センサーの検出値が一定の基準領域を越えてばらつく
ときは、その穀粒密度の高い側の該密度センサーによる
検出値にもとづいて熱風制御を行わせる熱風温度制御装
置を設けたことを特徴とする穀粒乾燥制御方式の構成と
する。
Means for Solving the Problems The present invention provides a method for treating grains flowing down a drying chamber (5) with a burner (3).
) In a grain dryer that controls hot air while calculating the grain temperature of dried grains based on the hot air temperature and exhaust air temperature during ventilation drying with hot air generated from the drying chamber (5), Density sensors are installed at multiple locations at different locations to detect the density of dried grains at each location, and when the detected values of these density sensors vary beyond a certain reference range, the grain density The grain drying control system is characterized in that it includes a hot air temperature control device that controls hot air based on the value detected by the higher density sensor.

発明の作用 拡散装置により貯留室内へ拡散供給されて収容した穀粒
は、この貯留室から複数個の乾燥室(5)内を流下中に
、バーナ(3)から発生する熱風が複数個の熱風室から
該各乾燥室(5)を通風し複数個の排風室を経て排風機
で吸引排風されることにより、この熱風に晒されて乾燥
され、この乾燥作業中は複数個の該熱風室内に設けた各
熱風温度センサーが熱風温度を検出し、各密度センサー
が該乾燥室(5)内を流下中の穀粒の密度を検出し、複
数個の該排風室内に設けた各排風温度センサーが排風温
度を検出し、該各密度センサーが検出した検出密度が一
定の基準領域内のときには、該与熱風温度センサーが検
出した検出熱風温度の平均値と該6排風温度センサーが
検出した検出排風温度の平均f4とによって、乾燥中の
穀粒の穀温を算出し、この算出によって得た算出穀温と
設定した設定穀温とを比較し、算出穀温が設定穀温以上
であると、算出穀温が設定穀温以下になるように、該バ
ーナ(3)から発生する熱風温度を所定温度低温度に変
更し、この低温度の熱風で穀粒を乾燥する。
The grains diffused and supplied into the storage chamber by the action-diffusion device of the invention and stored therein are flowing down from the storage chamber into the plurality of drying chambers (5), while the hot air generated from the burner (3) blows into the plurality of hot air. Ventilation is passed through each drying chamber (5) from the drying chamber, passed through a plurality of ventilation chambers, and sucked and exhausted by an exhaust fan, thereby drying the product by exposing it to this hot air. Each hot air temperature sensor installed indoors detects the hot air temperature, each density sensor detects the density of grain flowing down inside the drying chamber (5), and each exhaust The wind temperature sensor detects the exhaust air temperature, and when the detected density detected by each density sensor is within a certain reference range, the average value of the detected hot air temperature detected by the heated air temperature sensor and the six exhaust air temperature sensors The grain temperature of the grains during drying is calculated based on the average f4 of the detected exhaust air temperature detected by If the temperature is higher than that, the temperature of the hot air generated from the burner (3) is changed to a predetermined low temperature so that the calculated grain temperature becomes below the set grain temperature, and the grains are dried with this low temperature hot air.

又該各密度センサーが検出する検出穀粒密度が、一定の
基準領域を越えてばらついているときは、この密度セン
サーが検出したその検出穀粒密度の高い側は、該バーナ
(3)から発生する熱風が該乾燥室(5)を吹抜けてい
ないと検出し、この検出により検出穀粒密度の高い側の
該熱風温度センサーが検出した検出熱風温度と該排風温
度センサーが検出した検出排風温度とによって乾燥中の
穀粒の穀温を算出し、この算出によって得た算出穀温と
設定した設定穀温とを比較し、算出穀温が設定穀温以上
であると、′H出穀温が設定穀温以下になるように、該
バーナ(3)から発生する熱風温度を所定温度低温度に
変更し、この低温度の熱風で穀粒を乾燥する。
In addition, when the detected grain density detected by each density sensor varies beyond a certain reference range, the side with the higher detected grain density detected by this density sensor is the one that is generated from the burner (3). It is detected that the hot air is not blowing through the drying chamber (5), and by this detection, the detected hot air temperature detected by the hot air temperature sensor on the side with higher detected grain density and the detected exhaust air detected by the exhaust air temperature sensor are detected. Calculate the grain temperature of the grains during drying based on the temperature, compare the calculated grain temperature obtained by this calculation with the set grain temperature, and if the calculated grain temperature is higher than the set grain temperature, 'H grain temperature is The temperature of the hot air generated from the burner (3) is changed to a predetermined low temperature so that the grain temperature is below the set grain temperature, and the grains are dried with this low temperature hot air.

発明の効果 この発明により、貯留室内へ拡散供給された穀粒量が少
量で、かつ穀粒の配穀状態が悪くて一方側の乾燥室(5
)上部に穀粒がなくなり空胴になると、この空胴側の該
乾燥室(5)内の穀粒の密度と他方側の乾燥室(5)内
の穀粒が満量の穀粒の密度とが異なり、この異なった穀
粒の密度を各密度センサーが検出し、この検出した検出
穀粒密度が一定の基準領域を越えてばらつくときは、検
出穀粒密度の高い側の熱風温度センサーが検出する検出
熱風温度と排風温度センサーが検出する検出排風温度と
によって、乾燥中の穀温が算出され、この算出によって
得た算出穀温によってバーナ(3)から発生する熱風温
度が制御されることにより、該乾燥室(5)内に穀粒が
満量状態になっている側の方で該バーナ(3)から発生
する熱風温度が制御されることとなり、このため穀粒量
が少量で配穀状態が一方側へ片寄っていても、常に穀粒
を所定時間内に乾燥を終了させることができる。
Effects of the Invention According to this invention, the amount of grains diffused and supplied into the storage chamber is small, and the condition of the grain distribution is poor.
) When there are no grains in the upper part and the cavity becomes empty, the density of the grains in the drying chamber (5) on this cavity side and the density of the grains in the drying chamber (5) on the other side when the grain is full However, each density sensor detects these different grain densities, and when the detected grain densities vary beyond a certain reference range, the hot air temperature sensor on the side with higher detected grain density Grain temperature during drying is calculated based on the detected hot air temperature and the detected exhaust air temperature detected by the exhaust air temperature sensor, and the hot air temperature generated from the burner (3) is controlled by the calculated grain temperature obtained by this calculation. By doing so, the temperature of the hot air generated from the burner (3) is controlled on the side where the drying chamber (5) is full of grains, so that the amount of grains is small. Even if the grain distribution is biased to one side, drying of the grains can always be completed within a predetermined time.

実施例 なお、図例において、乾燥機(11)の機壁(12)は
平面視前後方向に長い長方形状で、前後壁板及び左右壁
板よりなり、この前壁板にはこの乾燥機(11)を始動
及び停止等の制御を行なう操作装置(13)及びバーナ
(3)を内装したバーナケース(14)を設け、該後壁
板には排風機(7)を設けた構成である。
Embodiment In the illustrated example, the machine wall (12) of the dryer (11) has a rectangular shape that is long in the front-rear direction when viewed from above, and is made up of front and rear wall plates and left and right wall plates. A burner case (14) containing a burner (3) and an operating device (13) for controlling start and stop of the burner (11) are provided, and an exhaust fan (7) is provided on the rear wall plate.

該機壁(12)内下部の中央部には前後方向に亘る間に
、移送螺旋を内装した集穀樋(15)を設け、この集穀
樋(15)上側には下部に繰出バルブ(!8)を軸支し
た乾燥室(5)を4条並設して連通させ、この外側の乾
燥室(5)と内側の乾燥室(5)との間には各熱風室(
4)を形成して、この各熱風室(4)と該バーナ(3)
とは連通させ、この各熱風室(4)には熱風温度を検出
する熱風温度センサー(8)及び穀粒の密度を検出する
ための該各熱風室(4)内の風圧を検出する圧力センサ
ー(9)を設け、内側の該乾燥室(5)、(5)間と外
側の該乾燥室(5)外側とには各排風室(6)を形成し
て、該排風機(7)と連通させ、外側の該排風室(6)
、(6)には排風温度を検出する排風温度センサー(1
o)を設けた構成であり、該後壁板下部にはモータ(1
7)を設け、このモータ(17)で該移送螺旋、該各緑
出バルブ(1B)及び該排風機(7)等を回転駆動する
構成である。
A grain collection gutter (15) equipped with a transfer spiral is provided in the center of the lower part of the machine wall (12) in the front-rear direction, and on the upper side of this grain collection gutter (15) there is a delivery valve (! Four drying chambers (5) each having a rotary shaft supported thereon are arranged in parallel and communicated with each other, and between the outer drying chamber (5) and the inner drying chamber (5) there is a hot air chamber (
4), each hot air chamber (4) and the burner (3)
Each hot air chamber (4) has a hot air temperature sensor (8) for detecting the hot air temperature and a pressure sensor for detecting the wind pressure in each hot air chamber (4) for detecting the density of grains. (9), and air exhaust chambers (6) are formed between the drying chambers (5) on the inside (5) and on the outside of the drying chamber (5) on the outside. and communicate with the outside ventilation chamber (6).
, (6) is equipped with an exhaust air temperature sensor (1) that detects the exhaust air temperature.
o), and a motor (1) is installed at the bottom of the rear wall plate.
7), and this motor (17) rotates the transfer spiral, each of the green outlet valves (1B), the exhaust fan (7), etc.

前記バーナケース(10下板外側には燃料バルブを有す
る燃料ポンプ(18)を設け、この燃料バルブの開閉に
より、該燃料ポンプ(18)で燃料タンク(18)から
燃料を吸入して前記バーナ(3)内へ燃料を供給する構
成であり、上板外側には送風機(20)及びモータ(2
1)を設け、このモータ(21)で該送風機(20)を
回転駆動して、この送風機(20)で燃焼用空気を該バ
ーナ(3)内へ供給する構成である。
A fuel pump (18) having a fuel valve is provided on the outer side of the lower plate of the burner case (10), and by opening and closing this fuel valve, the fuel pump (18) sucks fuel from the fuel tank (18) and supplies the burner ( 3) It is configured to supply fuel into the inside, and a blower (20) and a motor (2) are installed on the outside of the upper plate.
1), the motor (21) rotates the blower (20), and the blower (20) supplies combustion air into the burner (3).

前記各乾燥室(5)上側には貯留室(2)を形成し、こ
の貯留室(2)上側には天井板(22)及び移送螺旋を
内装した移送樋(23)を設け、この移送樋(23)中
央部には移送穀粒をこの貯留室(2)内へ供給する供給
口を設け、この供給口下側には該貯留室(2)内へ穀粒
を拡散還元する拡散装置(1)を設けた構成であり、こ
の貯留室(2)を形成する前記前壁板には、この貯留室
(2)内へ収容した穀粒を目視する窓(24)を設け、
この窓(20横側には収容量を表示する数値を設けた構
成である。
A storage chamber (2) is formed above each of the drying chambers (5), and a ceiling plate (22) and a transfer gutter (23) equipped with a transfer spiral are provided above the storage chamber (2). (23) A supply port for supplying the transferred grains into the storage chamber (2) is provided in the center, and a diffusion device ( 1), the front wall plate forming this storage chamber (2) is provided with a window (24) for visually observing the grains stored in this storage chamber (2),
On the side of this window (20), there is a numerical value that displays the storage capacity.

前記前壁板前方部には昇穀機(25)を設け、内部には
パケットコンベアー(26)ベルトを上下プーリ間に張
設し、上端部と該移送樋(23)始端部との間には投出
筒(27)を設けて連通させ、下端部と前記集穀樋(1
5)終端部との間には供給樋(28)を設けて連通させ
、該昇穀機(25)上部にはモータ(29)を設け、こ
のモータ(28)で該パケットコンベアー(28)ベル
ト、該移送m (23) 内の該移送螺旋及び該拡散装
置(1)等を回転駆動する構成であり、又上下方向はぼ
中央部には該パケットコンベアー(2B)で上部へ搬送
中に落下する穀粒を受けて、この穀粒の水分値を検出す
る水分センサー(30)を設け、この水分センサー(3
0)は前記操作装置(13)から所定時間間隔で発註さ
れる電気的測定信号の発信により、該水分センサー(3
0)内に設けたモータ(31)が回転し、このモータ(
31)の回転によりこの水分センサー(30)の各部が
作動して穀粒水分値を検出する構成である。
A grain hoist (25) is provided in front of the front wall plate, and a packet conveyor (26) belt is stretched between the upper and lower pulleys inside, and a packet conveyor (26) belt is provided between the upper end and the starting end of the transfer gutter (23). A discharging tube (27) is provided to communicate with the lower end and the grain collection gutter (1).
5) A supply gutter (28) is provided to communicate with the terminal end, a motor (29) is provided on the top of the grain hoist (25), and the motor (28) moves the packet conveyor (28) belt. , the transfer spiral and the spreading device (1) in the transfer m (23) are rotatably driven, and the packet conveyor (2B) has a structure in which the packets falling while being conveyed to the upper part are located at approximately the center in the vertical direction. A moisture sensor (30) is provided for receiving grains and detecting the moisture value of the grains.
0) is operated by the moisture sensor (3) by transmitting an electrical measurement signal from the operating device (13) at predetermined time intervals.
The motor (31) installed inside the motor (31) rotates, and this motor (
31), each part of the moisture sensor (30) is activated to detect the grain moisture value.

前記操作袋m(+3)は箱形状で、この箱体の表面板に
は前記乾燥機(11)を始動及び停止等の操作を行なう
始動スイッチ(32) 、停止スイッチ(33)、仕上
目標水分値を設定する目標水分設定機み(34) 、熱
風温度を設定する熱風温度設定機み(35)及び前記水
分センサー(30)が検出する検出水分値と前記熱風温
度センサー(8)が検出する検出熱風温度とを交互に表
示する表示窓(3B)を設け、内部には制御袋a (3
7)及び熱風温度制御装置(38)を設けた構成であり
、該各設定孤み(34)、(35)はロータリースイッ
チ方式であり、該設定機み(34)は該表面板に表示し
た仕上目標とする数値の位置へ操作すると仕上目標水分
値が設定され、又該設定機み(35)は前記貯留室(2
)内へ収容した穀粒量の前記前壁板の前記窓(24)の
数値と同じ位置へ操作すると、前記バーナ(3)から発
生する熱風温度が設定される構成である。
The operation bag m(+3) has a box shape, and the surface plate of the box includes a start switch (32) for starting and stopping the dryer (11), a stop switch (33), and a target finish moisture content. A target moisture setting device (34) for setting a value, a hot air temperature setting device (35) for setting a hot air temperature, and a detected moisture value detected by the moisture sensor (30) and the hot air temperature sensor (8). A display window (3B) is provided that alternately displays the detected hot air temperature, and a control bag a (3B) is provided inside.
7) and a hot air temperature control device (38), each setting device (34), (35) is a rotary switch type, and the setting device (34) is displayed on the surface plate. When the operation is performed to the position of the finishing target value, the finishing target moisture value is set, and the setting machine (35) is operated to the position of the finishing target value.
) The temperature of the hot air generated from the burner (3) is set by operating the window (24) on the front wall plate to the same position as the amount of grain stored in the window (24).

該熱風温度制御装置(3B)は前記各センサー(8)、
(9)、(10)が検出する検出値がA−D変換される
A−D変換器(39) 、このA−D変換器(39)で
変換された変換値が入力される入力回路(40) 、該
設定機み(35)の操作が入力される入力回路(41)
 、これら各入力回路(40)、(41)から入力され
る各種入力値を算術論理演算及び比較演算等を行なうC
PU (42) 、このCPU(42)から指令される
各種指令を受けて出力する出力回路(43)を設けた構
成である。
The hot air temperature control device (3B) includes each of the sensors (8),
(9), an A-D converter (39) to which the detection values detected by (10) are A-D converted; and an input circuit (to which the converted value converted by this A-D converter (39) is input) 40), an input circuit (41) into which the operation of the setting machine (35) is input;
, C which performs arithmetic and logical operations, comparison operations, etc. on various input values input from these input circuits (40) and (41).
The configuration includes a PU (42) and an output circuit (43) that receives and outputs various commands from the CPU (42).

該制御袋2t (3?)は前記水分センサー(30)が
検出する検出値がA−D変換されるA−D変換器(44
) 、このA−D変換器(40で変換された変換値が入
力される入力回路(45) 、前記各スイッチ(32)
 、  (33)及び前記設定機み(34)の操作が入
力される入力回路(4111) 、これら各入力回路(
45)、(46)から入力される各種入力値を算術論理
演算及び比較演算等を行なう該CPU(42)、このC
PU(42)から指令される各種指令を受けて出力する
出力回路(47)を設けた構成である。
The control bag 2t (3?) is equipped with an A-D converter (44) that converts the detection value detected by the moisture sensor (30) into A-D.
), an input circuit (45) into which the converted value converted in this A-D converter (40) is input, and each of the switches (32).
, (33) and an input circuit (4111) into which the operation of the setting machine (34) is input, each of these input circuits (
This CPU (42) performs arithmetic and logical operations, comparison operations, etc. on various input values input from 45) and (46).
The configuration includes an output circuit (47) that receives and outputs various commands from the PU (42).

前記熱風温度制御装置(3日)は前記制御装置(37)
へ前記始動スイッチ(32)及び前記設定機み(34)
の操作が入力され、この熱風温度制御装置(38)へ前
記設定機み(35)の操作が入力されると、前記バーナ
(3)から発生する熱風温度が設定され、前記乾燥41
ff(11)が始動すると同時に、該バーナ(3)から
設定熱風温度が発生し、前記各熱風温度センサー(8)
がこの熱風を検出し、この検出熱風温度が入力されて平
均値が算出され、この算出によって得た算出熱風温度の
平均値と該設定機み(35)を操作して設定した設定熱
風温度とが比較され、相違していると同じになるよう、
前記燃料ポンプ(18)の前記燃料バルブの開閉回数を
変更し、この燃料ポンプ(18)で吸入する燃料量を変
更する構成であり、又この乾燥中は前記各圧力センサー
(9)が検出する検出圧力が両者共に、例えば、前記C
PU(42)に設定して記憶させた圧力5m■aq以下
であると、該6熱風温度センサー(8)が検出する検出
熱風温度の平均値を算出し、この算出によって得た算出
熱風温度の平均値と、該各排風温度センサー(10)が
検出する検出排風温度の平均値を算出し、この算出によ
って得た算出排風温度の平均値とによって、該CPU(
42)に設定して記憶させた計算式で乾燥中の穀温を算
出し、この算出によって得た算出穀温と、例えば、該C
PU(42)に設定して記憶させた穀温38度と比較し
、この算出穀温が40度であれば設定穀温の38度以下
になるように、この時の設定熱風温度が、例えば、50
度であれば5度低温になるように、前記燃料ポンプ(1
8)を制御して、該バーナ(3)から発生する熱風温度
を45度にして穀粒を乾燥する構成であり、又算出穀温
が設定穀温以下であれば、設定熱風温度で穀粒を乾燥す
る構成である。
The hot air temperature control device (3 days) is the control device (37)
to the starting switch (32) and the setting device (34).
When the operation of the setting machine (35) is input to the hot air temperature control device (38), the temperature of the hot air generated from the burner (3) is set, and the temperature of the hot air generated from the burner (3) is set.
At the same time as the ff (11) starts, the set hot air temperature is generated from the burner (3), and each of the hot air temperature sensors (8)
detects this hot air, this detected hot air temperature is input and an average value is calculated, and the average value of the calculated hot air temperature obtained by this calculation and the set hot air temperature set by operating the setting machine (35). are compared, and if they differ, they will be the same.
It is configured to change the number of times the fuel valve of the fuel pump (18) is opened and closed to change the amount of fuel sucked in by the fuel pump (18), and during this drying, the pressure sensors (9) detect If the detected pressure is both, for example, C
If the pressure is less than 5 m aq set and stored in the PU (42), the average value of the detected hot air temperatures detected by the six hot air temperature sensors (8) is calculated, and the calculated hot air temperature obtained by this calculation is calculated. The CPU (
Calculate the grain temperature during drying using the calculation formula set and stored in 42), and compare the calculated grain temperature obtained by this calculation with, for example, the C
Compared with the grain temperature of 38 degrees set and stored in the PU (42), if this calculated grain temperature is 40 degrees, the set hot air temperature at this time is set, for example, so that it is below the set grain temperature of 38 degrees. , 50
If the temperature is 5 degrees, the fuel pump (1
8), the temperature of the hot air generated from the burner (3) is set to 45 degrees to dry the grains, and if the calculated grain temperature is below the set grain temperature, the grains are dried at the set hot air temperature. It is configured to dry.

又前記各氏力センサー(9)が検出する検出圧力が一方
側が設定の圧力5 mmAq以下を検出し、他方側が5
層■All!以上を検出すると、この他方側の前記乾燥
室(5)は熱風が吹抜けていると検出する構成であり、
この検出により前記穀温を算出に使用する検出熱風温度
及び検出排風温度は設定の圧力以下を検出した側を使用
して乾燥中の穀粒の穀温を算出する構成であり、この算
出によって得た算出穀温が設定穀温以上であると、前記
と同様に前記燃料ポンプ(18)を制御する構成であり
、これら6記41させた数値はテスト結果によって得た
最良の数値を記憶させた構成である。
In addition, the detected pressure detected by each of the force sensors (9) on one side is below the set pressure of 5 mmAq, and on the other side is below the set pressure of 5 mmAq.
Layer■All! When the above is detected, the drying chamber (5) on the other side is configured to detect that hot air is blowing through,
Through this detection, the detected hot air temperature and detected exhaust air temperature used to calculate the grain temperature are configured to calculate the grain temperature of the grains during drying using the side where a pressure lower than the set pressure is detected. If the obtained calculated grain temperature is equal to or higher than the set grain temperature, the fuel pump (18) is controlled in the same manner as described above, and the best values obtained from the test results are memorized. The configuration is as follows.

前記制御装置(37)は前記熱風温度制御装置(38)
へ前記設定孤み(35)の操作が入力され、この制御装
置(37)へ前記設定孤み(34)及び始動スイッチ(
32)の操作が入力されると、前記乾燥機(11)の前
記各モータ(1?) 、  (21)、(29)、  
(31)が回転し、この乾燥機(11)が始動すると同
時に、前記燃料ポンプ(18)が始動し、又前記水分セ
ンサー(30)も始動し、この水分センサー (30)
が穀粒水分値を検出しこの検出値が入力され、この水分
センサー(30)が該設定孤み(34)を操作して設定
した仕上目標水分値と同じ穀粒水分値を検出すると、こ
の制御波2l−(37)で自動制御して該乾燥機(11
)を自動停止する構成である。
The control device (37) is the hot air temperature control device (38).
The operation of the setting knob (35) is inputted to the controller (37), and the setting knob (34) and the start switch (
32), each of the motors (1?), (21), (29), of the dryer (11),
(31) rotates and at the same time this dryer (11) starts, the fuel pump (18) starts and the moisture sensor (30) also starts.
detects the grain moisture value, this detected value is input, and when this moisture sensor (30) detects the same grain moisture value as the finishing target moisture value set by operating the setting knob (34), this The dryer (11) is automatically controlled by the control wave 2l-(37).
) is configured to automatically stop.

なお、前記圧力センサー(9)に変えて、前記乾燥室(
5)内の穀粒の密度を直接検出する密度センサーを設け
た構成とするもよく、又前記熱風室(4)及び前記排風
室(6)の上下端部に前記熱風温度センサー(8)及び
前記排風温度センサー(10)を設け、この各温度セン
サー(8)、(10)が検出する検出温度によって温度
差を算出し、この算出によって得た上下端の算出温度差
によって、該乾燥室(5)を前記バーナ(3)から発生
する熱風が吹抜けているか否かを検出する構成とするも
よく、又該排風室(6)に風速を検出する風速センサー
を設け、この風速センサーの検出する検出風速によって
、該乾燥室(5)を熱風が吹抜けているか否かを検出す
る構成とするもよい。
Note that instead of the pressure sensor (9), the drying chamber (
5) A density sensor may be provided to directly detect the density of grains in the hot air chamber (4) and the hot air temperature sensor (8) may be installed at the upper and lower ends of the hot air chamber (4) and the exhaust chamber (6). And the exhaust air temperature sensor (10) is provided, and the temperature difference is calculated based on the detected temperatures detected by each of the temperature sensors (8) and (10), and the drying temperature is determined based on the calculated temperature difference between the upper and lower ends obtained by this calculation. The chamber (5) may be configured to detect whether or not the hot air generated from the burner (3) is blowing through, and the exhaust chamber (6) may be provided with a wind speed sensor for detecting the wind speed. It may be configured to detect whether hot air is blowing through the drying chamber (5) based on the detected wind speed detected by the drying chamber (5).

操作装置(13)の各設定孤み(34)、(35)を所
定の位こへ操作し、始動スイッチ(32)を操作するこ
とにより、乾燥機(11)が始動すると同時に、バーナ
(3)から設定した設定温度の熱風が発生し、この熱風
が各熱風室(4)から各乾燥室(5)を通風し各排風室
(6)を経て排風機(7)で吸引排風され、該乾燥機(
11)の貯留室(2)内へ収容した穀粒は、この貯留室
(2)から該各乾燥室(5)内を流下中にこの熱風に晒
されて乾燥され、各繰出バルブ(16)で下部へと繰出
されて流下し集穀樋(15)内へ供給され、この集穀樋
(15)内の移送螺旋でこの集穀樋(15)から供給樋
(28)を経て昇穀機(25)内へ移送供給され、パケ
ットコンベアー(2B)で上部へ搬送され投出筒(27
)を経て移送樋(23)内へ供給され、この移送樋(2
3)内の移送螺旋でこの移送樋(23)を経て拡散装置
(1)上へ移送供給され、この拡散装置(1)で該貯留
室(2)内へ拡散還元され、循環乾燥され水分センサー
(30)が該設定孤み(30を操作して設定した仕上目
標水分値と同じ穀粒水分値を検出すると、該操作装置(
13)の制御装置(37)で自動制御して該乾燥機(1
1)を自動停止する。
By operating each setting knob (34), (35) of the operating device (13) to a predetermined position and operating the start switch (32), the dryer (11) is started and at the same time the burner (3 ) generates hot air at a set temperature, which is passed from each hot air chamber (4) to each drying chamber (5), passes through each ventilation chamber (6), and is sucked and exhausted by an exhaust fan (7). , the dryer (
The grains stored in the storage chamber (2) of 11) are exposed to this hot air and dried while flowing down from the storage chamber (2) into each of the drying chambers (5). The grain is fed out to the lower part, flows down, and is supplied into the grain collection gutter (15), and is sent from this grain collection gutter (15) via the supply gutter (28) by the transfer spiral in this grain collection gutter (15) to the grain hoist. (25), and is transported to the upper part by the packet conveyor (2B), and is transported to the top of the dispensing cylinder (27).
) into the transfer gutter (23), and this transfer gutter (2
3) is transferred and supplied to the diffusion device (1) via the transfer gutter (23), diffused and reduced into the storage chamber (2) by this diffusion device (1), and circulated and dried. When (30) detects a grain moisture value that is the same as the finishing target moisture value set by operating the setting point (30), the operating device (
The dryer (13) is automatically controlled by the control device (37) of the dryer (13).
1) Automatically stop.

この乾燥作業中に該6熱風室(4)内の風圧を各圧力セ
ンサー(9)が検出し、この検出圧力が両者共に設定圧
力以下のときで、該6熱風室(4)内の熱風温度を各熱
風温度センサー(8)が検出し、この各検出熱風温度よ
り得た平均値と該6排風室(6)内の排風温度を各排風
温度センサー(1G)が検出し、この各検出排風温度よ
り得た平均値とによって乾燥中の穀粒の穀温を算出し、
この算出によって得た算出穀温と設定した設定穀温とを
比較し、算出穀温が設定穀温以上であると、該バーナ(
3)から発生する設定熱風温度を所定温度低温度に変更
し、この低温度の熱風で算出穀温が設定穀温と同じにな
るようにして穀粒を乾燥する。
During this drying work, each pressure sensor (9) detects the wind pressure in the six hot air chambers (4), and when both of these detected pressures are below the set pressure, the hot air temperature in the six hot air chambers (4) Each hot air temperature sensor (8) detects the average value obtained from each detected hot air temperature and the exhaust air temperature in the six exhaust chambers (6), and each exhaust air temperature sensor (1G) detects this. Calculate the grain temperature of the grains during drying based on the average value obtained from each detected exhaust air temperature,
The calculated grain temperature obtained by this calculation is compared with the set grain temperature, and if the calculated grain temperature is equal to or higher than the set grain temperature, the burner (
The set hot air temperature generated from step 3) is changed to a predetermined low temperature, and the grains are dried using this low temperature hot air so that the calculated grain temperature becomes the same as the set grain temperature.

又該各圧カセンサー(9)が検出した検出圧力が、一方
何が設定圧力以下で他方側が設定圧力以上のときには、
この設定圧力以下を検出した側の該熱風温度センサー(
8)が検出した検出熱風温度と、該排風温度センサー(
10)が検出した検出排風温度とによって乾燥中の穀粒
の穀温を算出し、この算出によって得た算出穀温と設定
した設定穀温とを比較し、算出穀温が設定穀温以上であ
ると、前記と同様に前記バーナ(3)から発生する熱風
温度を低温度に変更し、この低温度の熱風で穀粒を乾燥
する。
Also, when the detected pressure detected by each pressure sensor (9) is below the set pressure on one side and above the set pressure on the other side,
The hot air temperature sensor on the side that detected the pressure below this set pressure (
8) and the detected hot air temperature detected by the exhaust air temperature sensor (
Calculate the grain temperature of the grains during drying based on the detected exhaust air temperature detected by 10), compare the calculated grain temperature obtained by this calculation with the set grain temperature, and check if the calculated grain temperature is higher than the set grain temperature. In this case, the temperature of the hot air generated from the burner (3) is changed to a low temperature in the same manner as described above, and the grains are dried with this low temperature hot air.

前記各熱風室(4)内の圧力を検出し、この各検出圧力
によって前記各乾燥室(5)を前記バーナ(3)から発
生する熱風が吹抜けているか否かが検出され、この検出
によって該乾燥室(5)を熱風が吹抜けていない側の前
記熱風温度センサー(8)が検出する検出熱風温度と、
前記排風温度センサー(10)が検出する検出排風温度
とによって、乾燥中の穀温が算出され、この算出によっ
て得た算出穀温によって、該バーナ(3)から発生する
熱風温度が制御されることにより、該乾燥室(5)の熱
風が吹抜けない側で、該バーナ(3)の熱風温度が制御
されることとなり、このため穀粒は常に所定時間内で乾
燥が終了する。
The pressure in each of the hot air chambers (4) is detected, and based on the detected pressure, it is detected whether or not the hot air generated from the burner (3) is blowing through each of the drying chambers (5). a detected hot air temperature detected by the hot air temperature sensor (8) on the side where the hot air is not blowing through the drying room (5);
The grain temperature during drying is calculated based on the detected exhaust air temperature detected by the exhaust air temperature sensor (10), and the temperature of the hot air generated from the burner (3) is controlled by the calculated grain temperature obtained by this calculation. By doing so, the temperature of the hot air of the burner (3) is controlled on the side of the drying chamber (5) where the hot air does not blow through, so that the drying of the grains is always completed within a predetermined time.

【図面の簡単な説明】[Brief explanation of the drawing]

図は、この発明の一実施例を示すもので、第1図はブロ
ック図、第2図はフローチャート図、第3図は一部断面
せる乾燥機の全体正面図、第4図は第3図のA−A断面
図、第5図は乾燥機の一部の拡大正面図である。 図中、符号(3)はバーナ、(5)は乾燥室を示す・
The drawings show an embodiment of the present invention; FIG. 1 is a block diagram, FIG. 2 is a flowchart, FIG. 3 is an overall front view of the dryer partially cut away, and FIG. FIG. 5 is an enlarged front view of a portion of the dryer. In the figure, code (3) indicates the burner and (5) indicates the drying chamber.

Claims (1)

【特許請求の範囲】[Claims] 乾燥室(5)を流下する穀粒をバーナ(3)から発生せ
る熱風で通風乾燥するときの熱風温度と排風温度とによ
ってこの乾燥穀粒の穀温を算出しながら熱風制御させる
穀粒乾燥機において、該乾燥室(5)の穀粒流下位置を
異にした複数個所に、これら各個所の乾燥穀粒の密度を
検出する密度センサーを設け、これら各密度センサーの
検出値が一定の基準領域を越えてばらつくときは、その
穀粒密度の高い側の該密度センサーによる検出値にもと
づいて熱風制御を行わせる熱風温度制御装置を設けたこ
とを特徴とする穀粒乾燥制御方式。
Grain drying that controls the hot air while calculating the grain temperature of the dried grains based on the hot air temperature and the exhaust air temperature when the grains flowing down the drying room (5) are ventilated with hot air generated from the burner (3). In the drying machine, density sensors are installed at different locations in the drying chamber (5) to detect the density of dried grains at each location, and the detected values of each density sensor are set to a certain standard. A grain drying control system characterized by being provided with a hot air temperature control device that performs hot air temperature control based on the value detected by the density sensor on the side where the grain density is higher when the grain density varies across regions.
JP24595886A 1986-10-15 1986-10-15 Cereal grain drying control system of cereal grain drier Pending JPS6399484A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24595886A JPS6399484A (en) 1986-10-15 1986-10-15 Cereal grain drying control system of cereal grain drier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24595886A JPS6399484A (en) 1986-10-15 1986-10-15 Cereal grain drying control system of cereal grain drier

Publications (1)

Publication Number Publication Date
JPS6399484A true JPS6399484A (en) 1988-04-30

Family

ID=17141377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24595886A Pending JPS6399484A (en) 1986-10-15 1986-10-15 Cereal grain drying control system of cereal grain drier

Country Status (1)

Country Link
JP (1) JPS6399484A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013244223A (en) * 2012-05-25 2013-12-09 Fujifilm Corp Ultrasonic diagnostic equipment, sound velocity derivation method, and program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013244223A (en) * 2012-05-25 2013-12-09 Fujifilm Corp Ultrasonic diagnostic equipment, sound velocity derivation method, and program

Similar Documents

Publication Publication Date Title
JPS6399484A (en) Cereal grain drying control system of cereal grain drier
JPS61213481A (en) Cereal grain drying controller for cereal grain drier
JPS63101689A (en) Cereal grain drying control system of cereal graing drier
JPH03271690A (en) Control system for drying in grain drier
JPS6219677A (en) Drying control system of cereal grain of cereal grain drier
JPS61268975A (en) Cereal-grain drying control system of cereal grain drier
JPH02143083A (en) Drying control system for grain drier
JPS6287783A (en) Setter for drying time of cereal grain for cereal grain drier
JPS6391480A (en) Burner-direction regulator for cereal grain drier
JPS63282478A (en) Cereal-grain drying control system of cereal grain drier
JPH01219492A (en) Drying control device for cereals grain drier
JPS6390750A (en) Moisture measuring system for grain drying machine
JPS6361875A (en) Cereal-grain drying control system of cereal grain drier
JPH03236591A (en) Control system for drying in grain drying machine
JPH01219491A (en) Control system for cereals grain drier
JPS61282783A (en) Control system of drying of cereal grain of cereal grain drier
JPH02165044A (en) Dry control system for grain particle drying machine
JPH03113282A (en) Dry control system for grain dryer
JPS6399485A (en) Cereal grain drying control system of cereal grain drier
JPS63318482A (en) Cereal-grain drying control system of cereal grain drier
JPS63306386A (en) Cereal grain drying control system of cereal grain drier
JPS62178878A (en) Cereal grain drying control system of cereal grain drier
JPS625077A (en) Control system of drying of cereal grain of cereal grain drier
JPS62245081A (en) Cereal-grain drying control system of cereal grain drier
JPH02219976A (en) Dry control system for grain drier