JPH03271690A - Control system for drying in grain drier - Google Patents

Control system for drying in grain drier

Info

Publication number
JPH03271690A
JPH03271690A JP7085590A JP7085590A JPH03271690A JP H03271690 A JPH03271690 A JP H03271690A JP 7085590 A JP7085590 A JP 7085590A JP 7085590 A JP7085590 A JP 7085590A JP H03271690 A JPH03271690 A JP H03271690A
Authority
JP
Japan
Prior art keywords
temperature
grain
hot air
drying
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7085590A
Other languages
Japanese (ja)
Inventor
Eiji Nishino
栄治 西野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iseki and Co Ltd
Iseki Agricultural Machinery Mfg Co Ltd
Original Assignee
Iseki and Co Ltd
Iseki Agricultural Machinery Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iseki and Co Ltd, Iseki Agricultural Machinery Mfg Co Ltd filed Critical Iseki and Co Ltd
Priority to JP7085590A priority Critical patent/JPH03271690A/en
Publication of JPH03271690A publication Critical patent/JPH03271690A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Solid Materials (AREA)

Abstract

PURPOSE:To obtain good dried grain by a method wherein a grain temperature is obtained from the moisture of grain, which is detected by a moisture sensor, or a coefficient, different depending on an elapsed time from the beginning of drying, to control the temperature of hot air. CONSTITUTION:During the drying operation of grain, the temperature of hot air generated from a burner 1 is detected by a hot air temperature sensor 3, the temperature of discharging air passed through a drying chamber 2 is detected by a discharging air temperature sensor 4, a coefficient, set and stored by the detected hot air temperature and the discharging air temperature as well as a grain moisture detected by a moisture sensor 5, is selected and the temperature of grain during drying is operated by the selected coefficient. The operated grain temperature is compared with a set grain temperature and the grain is dried while controlling the temperature of hot air, generated from the burner 1, so that the operated grain temperature is never increased to a temperature higher than the set grain temperature. On the other hand, a coefficient, set and stored by the elapsed time of drying from the beginning of the drying, is selected instead of the moisture of the grain, which is detected by the moisture sensor 5, and the temperature of grain during drying can be obtained by the selected coefficient and the temperatures of the hot air and discharging air.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、穀粒乾燥機の乾燥制御方式に関する。[Detailed description of the invention] Industrial applications The present invention relates to a drying control method for a grain dryer.

従来の技術 従来は、乾燥室内の穀粒は、バーナから設定した所定温
度の熱風が発生し、この熱風が該乾燥室を通過すること
により、この乾燥室内を流下中の穀粒はこの熱風に晒さ
れて乾燥され、この乾燥作業中は、熱風温度は熱風温度
センサで検出され、該乾燥室を通過した排風は排風温度
センサで検出され、これら検出された熱風温度及び排風
温度と設定された一定値の係数とによって乾燥中の穀粒
の温度が算出され、この算出された穀粒温度と設定され
た穀粒温度とが比較され、算出穀粒温度が設定穀粒温度
以上に上昇しないように熱風温度を制御しなから穀粒を
乾燥する乾燥制御方式であった。
Conventional technology Conventionally, the grains in the drying chamber were exposed to hot air at a predetermined temperature from a burner, which passed through the drying chamber. During this drying process, the hot air temperature is detected by a hot air temperature sensor, and the exhaust air that has passed through the drying chamber is detected by an exhaust air temperature sensor, and the detected hot air temperature and exhaust air temperature are The temperature of the grain during drying is calculated based on the set constant value coefficient, and the calculated grain temperature is compared with the set grain temperature, and the calculated grain temperature is equal to or higher than the set grain temperature. It was a drying control method that dried the grains while controlling the hot air temperature so that it did not rise.

発明が解決しようとする課題 穀粒乾燥機の乾燥室内の穀粒は、バーナから設定した所
定温度の熱風が発生し、この熱風が該乾燥室を通過する
ことにより、この乾燥室内を流下中の穀粒はこの熱風に
晒されて乾燥され、水分センサが仕上目標水分と同じ穀
粒水分を検出すると、該乾燥機を自動停止制御して穀粒
の乾燥が停止される。
Problems to be Solved by the Invention The grains in the drying chamber of a grain dryer are heated by hot air at a predetermined temperature that is generated from a burner, and this hot air passes through the drying chamber. The grains are dried by being exposed to this hot air, and when the moisture sensor detects the same grain moisture as the finishing target moisture, the dryer is automatically stopped and the drying of the grains is stopped.

この乾燥作業中は、該バーナから発生する熱風温度は熱
風温度センサで検出され、該乾燥室を通過した排風は排
風温度センサで検出され、これら検出された熱風温度及
び排風温度と設定された一定値の係数とによって穀粒温
度が算出され、この算出された穀粒温度と設定された穀
粒温度とが比較され、算出穀粒温度が設定穀粒温度以上
に上昇しないように、該バーナから発生する熱風温度を
制御しなから穀粒は乾燥されるが、穀粒温度を算出する
算出式は穀粒水分によって異なり、乾燥初期は水分の乾
燥(表面の水分蒸発)が主であるため蒸発潜熱量として
使用するために熱風温度に受ける穀温変化が小さいが、
逆に乾燥仕上り近傍になると水分乾燥量が少なくなり、
熱風がそのまま排風されることもあり、このため排風温
度の正確さは高水分のときに比べると低くなり、このた
めこれら検出される熱風温度及び排風温度にかかる係数
を穀粒水分等によって変更して正確な穀粒温度を算出し
、熱風温度を正確に制御して良好な乾燥済穀粒を得よう
とするものである。
During this drying work, the hot air temperature generated from the burner is detected by a hot air temperature sensor, and the exhaust air that has passed through the drying chamber is detected by an exhaust air temperature sensor, and the detected hot air temperature and exhaust air temperature are set. The grain temperature is calculated based on the constant value coefficient, and the calculated grain temperature is compared with the set grain temperature, and the grain temperature is set so that the calculated grain temperature does not rise above the set grain temperature. The grains are dried without controlling the temperature of the hot air generated from the burner, but the calculation formula for calculating the grain temperature differs depending on the grain moisture, and in the early stage of drying, drying of moisture (surface moisture evaporation) is the main process. Since grain temperature is used as latent heat of vaporization, the change in grain temperature due to hot air temperature is small.
On the other hand, when the dry finish is near, the amount of moisture dried decreases,
The hot air may be discharged as it is, so the accuracy of the exhaust air temperature is lower than when the moisture content is high. Therefore, the coefficients on the detected hot air temperature and exhaust air temperature are calculated based on the grain moisture etc. The purpose is to calculate accurate grain temperature by changing the temperature and accurately control the hot air temperature to obtain good dried grain.

課題を解決するための手段 この発明は、穀粒を流下させながらバーナ1による熱風
を通風させて乾燥する乾燥室2、及びこの乾燥室2へ通
風する熱風温度を検出する熱風温度センサ3、この乾燥
室2から機外へ排風する排風温度を検出する排風温度セ
ンサ4を設けると共に、穀粒水分を検出する水分センサ
5を設け、これら熱風温度センサ3が検出する熱風温度
、排風温度センサ4が検出する排風温度、及び係数によ
って乾燥中の穀粒温度を算出してこの算出された穀粒温
度が所定温度以上に上昇しないように該熱風温度を制御
して乾燥する穀粒乾燥機において、該水分センサ5が検
出する穀粒水分、又は乾燥経過時間によって該係数の値
を変更して穀粒温度を算出することを特徴とする乾燥制
御方式の構成とする。
Means for Solving the Problems This invention provides a drying chamber 2 in which grains are dried by passing hot air from a burner 1 while flowing down, a hot air temperature sensor 3 that detects the temperature of the hot air flowing into this drying chamber 2, and An exhaust air temperature sensor 4 is provided to detect the temperature of the exhaust air discharged from the drying room 2 to the outside of the machine, and a moisture sensor 5 is provided to detect grain moisture. The grain temperature during drying is calculated based on the exhaust air temperature detected by the temperature sensor 4 and the coefficient, and the grain is dried by controlling the hot air temperature so that the calculated grain temperature does not rise above a predetermined temperature. In the dryer, the drying control method is characterized in that the grain temperature is calculated by changing the value of the coefficient depending on the grain moisture detected by the moisture sensor 5 or the elapsed drying time.

発明の作用 穀粒乾燥機の乾燥室2内の穀粒は、バーナlから設定し
た所定温度の熱風が発生し、この熱風が該乾燥室2を通
過することにより、この乾燥室2内を流下中の穀粒はこ
の熱風に晒されて乾燥され、水分センサ5が仕上目標水
分と同じ穀粒水分を検出すると、該乾燥機を自動停止制
御して穀粒の乾燥が停止される。
Effect of the Invention The grains in the drying chamber 2 of the grain dryer are caused to flow down inside the drying chamber 2 by generating hot air at a predetermined temperature from the burner 1 and passing through the drying chamber 2. The grains inside are dried by being exposed to this hot air, and when the moisture sensor 5 detects the same grain moisture as the finishing target moisture, the dryer is automatically stopped and the drying of the grains is stopped.

この穀粒乾燥作業中は、該バーナ1から発生する熱風温
度は熱風温度センサ3で検出され、該乾燥室2を通過し
た排風の排風温度は排風温度センサ4で検出され、これ
ら検出された熱風温度及び排風温度と、該水分センサ5
が検出した穀粒水分によって、設定して記憶さた係数が
選定され、この選定された係数とによって、この乾燥中
の穀粒の穀粒温度が算出され、この算出された穀粒温度
と設定された穀粒温度とが比較され、算出穀粒温度が設
定穀粒温度以上に上昇しないように、該バーナ1から発
生する熱風温度を制御しながら穀粒は乾燥される。
During this grain drying work, the temperature of the hot air generated from the burner 1 is detected by the hot air temperature sensor 3, and the temperature of the exhaust air that has passed through the drying chamber 2 is detected by the exhaust air temperature sensor 4. The hot air temperature and exhaust air temperature, and the moisture sensor 5
The set and stored coefficient is selected based on the grain moisture detected by the controller, and the grain temperature of the grain during drying is calculated using the selected coefficient. The grain temperature is compared with the calculated grain temperature, and the grains are dried while controlling the temperature of the hot air generated from the burner 1 so that the calculated grain temperature does not rise above the set grain temperature.

又前記水分センサ5が検出する穀粒水分に変えて、乾燥
開始からの乾燥経過時間によって、設定して記憶させた
係数が選定され、この選定された係数と検出された熱風
温度及び排風温度とによって、乾燥中の穀粒の穀粒温度
が算出され、この算出穀粒温度と設定穀粒温度とが比較
され、この比較結果によって上記と同じように該バーナ
1から発生する熱風温度を制御しなから穀粒は乾燥され
る。
In addition, instead of the grain moisture detected by the moisture sensor 5, a set and stored coefficient is selected based on the elapsed drying time from the start of drying, and the selected coefficient and the detected hot air temperature and exhaust air temperature are used. The grain temperature of the grains during drying is calculated, this calculated grain temperature and the set grain temperature are compared, and the temperature of the hot air generated from the burner 1 is controlled in the same manner as above based on the comparison result. The grains are then dried.

発明の効果 この発明により、穀粒温度を算出のときに使用される係
数は、従来のように一定値ではなく、水分センサ5が検
出する穀粒水分、又は乾燥開始からの経過時間によって
異なった係数が使用されて穀粒温度が算出されることに
より、正確な穀粒温度が算出されて、バーナ1から発生
する熱風温度が制御されることにより、良好な乾燥済穀
粒を得ることができる。
Effects of the Invention According to this invention, the coefficient used when calculating the grain temperature is not a constant value as in the conventional case, but varies depending on the grain moisture detected by the moisture sensor 5 or the elapsed time from the start of drying. By using the coefficient to calculate the grain temperature, an accurate grain temperature can be calculated, and the hot air temperature generated from burner 1 can be controlled to obtain good dried grains. .

実施例 なお、開側において、穀粒乾燥Ii6の櫟壁7は前後方
向Iこ長い長方形状で、この機構7上端部には、移送螺
旋を回転自在に内装した移送樋8及び天井板9を設け、
この天井板9下側には穀粒を貯留する貯留室IOを形成
し、この貯留室1o下側には左右両外側部の排風室11
と中央部の送風室12との間に各乾燥室2を設けてこの
貯留室1゜と連通させた構成であり、この各乾燥室2下
部には穀粒を繰出し流下させる繰出バルブ13を回転自
在に軸支し、この各乾燥室2下側には移送螺旋を回転自
在に内装した集穀樋14を設けて連通させた構成であり
、該送風室12内にはこの送風室12内の熱風温度を検
出する熱風温度センサ3を設け、該−大側の排風室11
内にはこの排風室11内を通過する排風温度を検出する
排風温度センサ4を設けた構成である。
Embodiment In addition, on the open side, the square wall 7 of the grain drying Ii6 has a long rectangular shape in the front and back direction, and the upper end of this mechanism 7 is equipped with a transfer gutter 8 and a ceiling plate 9 in which a transfer spiral is rotatably installed. established,
A storage chamber IO for storing grains is formed below this ceiling plate 9, and ventilation chambers 11 on both left and right outer sides are formed below this storage chamber 1o.
Each drying chamber 2 is provided between the air blowing chamber 12 in the center and communicated with this storage chamber 1°, and at the bottom of each drying chamber 2 there is a feed-out valve 13 that feeds out the grains and flows down. The structure is such that a grain collection gutter 14 is provided at the bottom of each drying chamber 2 and is connected to the grain collection gutter 14, which is rotatably equipped with a transfer spiral. A hot air temperature sensor 3 for detecting hot air temperature is provided, and the large side exhaust chamber 11
An exhaust air temperature sensor 4 is provided inside the exhaust air chamber 11 to detect the temperature of the exhaust air passing through the exhaust air chamber 11.

該前側機構7にはバーナ1及び風量センサ46を内装し
たバーナケース15及びこのバーナ1と該乾燥機6とを
張込、乾燥及び排出の各作業別に始動及び停止操作する
操作装置116を設け、このバーナ1と該送風室12と
は連通させた構成であり、該後側機構7後側には排風路
室17を形成しこの排風路室17後側には排風機18及
びこの排風機t8を変速回転駆動する変速用の排風機モ
タ19を設け、この排風機18と該各排風室11とは該
排風路室17を介して連通させた構成であり、又この後
側機構7下部には該各繰出バルブ13を減速機構20を
介して回転駆動するバルブモータ21を設けた構成であ
る。
The front mechanism 7 is provided with a burner case 15 in which the burner 1 and the air volume sensor 46 are housed, and an operating device 116 for starting and stopping the burner 1 and the dryer 6 for each operation of drying and discharging. The burner 1 and the ventilation chamber 12 are configured to communicate with each other, and an exhaust duct chamber 17 is formed behind the rear mechanism 7, and an exhaust fan 18 and the exhaust duct chamber 17 are formed behind the rear mechanism 7. A variable-speed exhaust fan motor 19 for rotating the wind fan t8 at variable speeds is provided, and the exhaust fan 18 and each of the exhaust chambers 11 are communicated with each other via the exhaust channel chamber 17. A valve motor 21 is provided at the bottom of the mechanism 7 to rotate each delivery valve 13 via a deceleration mechanism 20.

前記移送樋8底板の前後方向中央部には穀粒を前記貯留
室10内へ供給する供給口を設け、この供給口下側には
穀粒をこの貯留室10内へ均等に拡散還元する拡散盤2
2を設けた構成である。
A supply port for supplying grains into the storage chamber 10 is provided at the center in the longitudinal direction of the bottom plate of the transfer gutter 8, and a diffusion port for uniformly diffusing and returning grains into the storage chamber 10 is provided below the supply port. Board 2
This is a configuration with 2.

昇穀機23は、前記前側機構7前方部に設け。The grain raising machine 23 is provided in the front part of the front side mechanism 7.

内部にはパケットコンベア24ベルトを張設し、上端部
と前記移送樋8始端部との間には投出筒25を設けて連
通させ、下端部と前記集穀樋14終端部との間には供給
樋26を設けて連通させた構成である。
A packet conveyor 24 belt is stretched inside, a discharging cylinder 25 is provided between the upper end and the starting end of the transfer gutter 8 for communication, and a belt is provided between the lower end and the terminal end of the grain collecting gutter 14. This is a configuration in which a supply gutter 26 is provided for communication.

この昇穀1m23上部には昇穀機モータ27を設け、こ
の昇穀機モータ27で該パケットコンベア24ベルト、
前記移送樋8内の前記移送螺旋及び前記拡散盤22等を
回転駆動すると共に、前記集穀樋14内の前記移送螺旋
を該パケットコンベア24ベルトを介して回転駆動する
構成である。
A grain raising machine motor 27 is provided above the grain raising 1 m23, and this grain raising machine motor 27 drives the packet conveyor 24 belt,
The transfer spiral, the spreading plate 22, etc. in the transfer gutter 8 are rotationally driven, and the transfer spiral in the grain collection gutter 14 is rotationally driven via the packet conveyor 24 belt.

前記昇穀機23上下方向はぼ中央部には穀粒水分を検出
する水分センサ5を設け、この水分センサ5は前記操作
装置16からの電気的測定信号の発信により、この水分
センサ5に内装した水分モータ28が回転してこの水分
センサ5の各部が回転駆動される構成であり、前記パケ
ットコンベア24で上部へ搬送中に落下する穀粒を受け
、この穀粒を挟圧粉砕すると同時に、この粉砕穀粒の水
分を検出する構成である。
A moisture sensor 5 for detecting grain moisture is provided at the vertical center of the grain hoist 23, and this moisture sensor 5 is activated by transmitting an electrical measurement signal from the operating device 16. The moisture sensor 5 is configured so that each part of the moisture sensor 5 is rotationally driven by the rotation of the moisture motor 28, which receives grains that fall while being conveyed to the upper part of the packet conveyor 24, and simultaneously crushes the grains under pressure. It is configured to detect moisture in this crushed grain.

前記バーナケース15下板外側には燃料バルブを有する
燃料ポンプ29を設け、この燃料バルブの開閉により、
この燃料ポンプ29で燃料タンク30内の燃料を吸入し
て前記バーナ1へ供給する構成であり、又上板外側には
送風機31及び変速回転する送風機モータ32を設け、
この送風機モータ32の回転により、この送風機31を
回転駆動して、供給燃料量に見合った燃焼用空気を該バ
ーナ1へ供給する構成である。
A fuel pump 29 having a fuel valve is provided on the outer side of the lower plate of the burner case 15, and by opening and closing the fuel valve,
The fuel pump 29 sucks fuel in the fuel tank 30 and supplies it to the burner 1, and a blower 31 and a blower motor 32 that rotate at variable speeds are provided on the outside of the upper plate.
The blower motor 32 rotates to drive the blower 31 to supply combustion air to the burner 1 in accordance with the amount of fuel to be supplied.

前記操作装置16は、箱形状でこの箱体の前筒板には、
前記乾燥1i6及び前記バーナ1等を張込、乾燥及び排
出の各作業別に始動操作する始動スイッチ33、停止操
作する停止スイッチ34、穀粒の仕上目標水分を操作位
置によって設定する水分設定猟み35、該バーナ1から
発生する熱風温度を操作位置によって設定する穀物種類
設定猟み36、張込量設定机み37、検出穀粒水分、検
出熱風温度及び乾燥残時間等を交互に表示する表示窓3
8及びモニター表示等を設けた構成であり、内部には各
種検出値をA−D変換するA−D変換器39、このA−
D変換器39で変換された変換値が入力される入力回路
40、各種入力値が人力される入力回路41、これら各
入力回路40.41から入力される各種入力値を算術論
理演算及び比較演算を行なうCPU42、このCPU4
2から指令される各種指令を受けて出力する出力回路4
3等よりなる乾燥制御装置44及びタイマ45を設けた
構成であり、該各設定猟み35,36゜37はロータリ
スイッチ方式であり、操作位置によって所定の数値及び
種類等が設定される構成である。
The operating device 16 is box-shaped, and the front cylinder plate of the box has a
A start switch 33 for starting the drying 1i6 and the burner 1, etc. for each operation of loading, drying, and discharging, a stop switch 34 for stopping the drying 1i6 and the burner 1, etc., a moisture setting switch 35 for setting the finishing target moisture of grains according to the operating position. , a grain type setting machine 36 for setting the temperature of the hot air generated from the burner 1 depending on the operating position, a loading amount setting machine 37, and a display window that alternately displays detected grain moisture, detected hot air temperature, remaining drying time, etc. 3
8 and a monitor display, etc., and internally includes an A-D converter 39 that converts various detected values from A to D.
An input circuit 40 to which the converted value converted by the D converter 39 is input, an input circuit 41 to which various input values are input manually, and various input values input from these input circuits 40 and 41 are subjected to arithmetic and logical operations and comparison operations. This CPU42 performs
Output circuit 4 that receives various commands from 2 and outputs them.
The structure includes a drying control device 44 and a timer 45 consisting of three components, etc., and each setting switch 35, 36, 37 is a rotary switch type, and a predetermined value and type are set depending on the operating position. be.

該乾燥制御装置44による乾燥制御は下記の如く行なわ
れる構成であり、該水分設定猟み35の操作位置が該C
PU42へ入力されると、この入力によって穀粒の仕上
目標水分(MSI)が設定され、前記水分センサ5が検
出する穀粒水分(MS)がこのCPU42へ入力される
と、これら検出穀粒水分(MS)と仕上目標水分(MS
I)とが比較され、同じであると検出されるとこの乾燥
制御装置51で自動制御して前記乾燥機6を自動停止制
御して穀粒の乾燥が停止される構成である。
The drying control by the drying control device 44 is performed as follows, and the operating position of the moisture setting knob 35 is set to C.
When inputted to the PU 42, the grain finishing target moisture (MSI) is set by this input, and when the grain moisture (MS) detected by the moisture sensor 5 is inputted to the CPU 42, these detected grain moisture contents are set. (MS) and Finish Target Moisture (MS)
I), and if it is detected that they are the same, the drying control device 51 automatically controls the dryer 6 to stop drying the grains.

前記乾燥制御装置44による燃焼制御は下記の如く行な
われる構成であり、前記各設定猟み3637の操作位置
が前記CPU42へ入力されると、この入力によって前
記バーナ1から発生する熱風温度が設定され、前記送風
室12内の熱風温度が前記熱風温度センサ3で検出され
て該CPU42へ入力されると、これら検出熱風温度と
設定熱風温度とが比較され、相違していると設定熱風温
度と同じ温度になるように、該バーナ1へ燃料を供給す
る前記燃料バルブの開閉回数が増減制御され、前記燃料
ポンプ29で吸入する燃料量が増減制御されて該バーナ
1へ供給される構成である。
Combustion control by the drying control device 44 is performed as follows. When the operating position of each setting 3637 is input to the CPU 42, the temperature of the hot air generated from the burner 1 is set by this input. When the hot air temperature in the blowing chamber 12 is detected by the hot air temperature sensor 3 and input to the CPU 42, the detected hot air temperature and the set hot air temperature are compared, and if they are different, it is determined that the hot air temperature is the same as the set hot air temperature. The number of openings and closings of the fuel valve that supplies fuel to the burner 1 is controlled to increase or decrease so that the fuel temperature is maintained, and the amount of fuel sucked by the fuel pump 29 is controlled to increase or decrease and is supplied to the burner 1.

前記乾燥制御装置44による乾燥中の穀粒の穀粒温度(
TG)制御は下記の如く行なわれる構成であり、穀粒温
度(TG)の算出は前記CPU42へ設定して記憶させ
た下記計算式で算出される構成であり、 穀粒温度(TG)=係数(K)×熱風温度(TB)+ 
[(1−係数(K)×排風温度(TE)] この係数(K)は、第2図の如く、前記水分センサ5が
検出する穀粒水分(MS)で変り、第3図の如く、前記
タイマ45が検出する乾燥開始からの乾燥経過時間(T
)で変り、又第4図の如く、前記風量センサ46が検出
する風量(Q)で変る構成であり、この算出されて穀粒
温度(TG)が該CPU42へ設定して記憶させた穀粒
温度(TGl)とが比較され、例えば、算出穀粒温度(
TG)が42℃であり、設定穀粒温度(TGI)の38
℃以上であると検出されると、設定穀粒温度(TGI)
の38℃以下になるように、該バーナlへ燃料を供給す
る前記燃料バルブの開閉回数が減少制御され、前記燃料
ポンプ29で吸入する燃料量が減少制御されて前記バー
ナ1へ供給される構成であり、上記の内の検出穀粒水分
(MS)。
The grain temperature of the grains being dried by the drying control device 44 (
TG) control is performed as shown below, and grain temperature (TG) is calculated using the following formula set and stored in the CPU 42, where: Grain temperature (TG) = coefficient (K) x hot air temperature (TB) +
[(1-Coefficient (K) x Exhaust Air Temperature (TE)] This coefficient (K) changes depending on the grain moisture (MS) detected by the moisture sensor 5, as shown in Figure 2, and as shown in Figure 3. , the elapsed drying time from the start of drying detected by the timer 45 (T
), and as shown in FIG. 4, it is configured to change depending on the airflow rate (Q) detected by the airflow sensor 46, and this calculated grain temperature (TG) is set and stored in the CPU 42. Temperature (TGl) is compared, e.g. calculated grain temperature (
TG) is 42°C, and the set grain temperature (TGI) is 38°C.
If it is detected to be above ℃, the set grain temperature (TGI)
A configuration in which the number of opening and closing of the fuel valve that supplies fuel to the burner 1 is controlled to decrease, and the amount of fuel sucked by the fuel pump 29 is controlled to decrease and supplied to the burner 1 so that the temperature becomes 38° C. or less and detected grain moisture (MS) within the above.

検出乾燥時間(T)及び検出風jl (Q)いずれか該
当する項目で燃料量が制御される構成である。
The fuel amount is controlled by the detected drying time (T) or detected wind jl (Q), whichever is applicable.

穀粒温度(TG)の算出は、第2図の如く、前記水分セ
ンサ5が検出する穀粒水分(MS)が28%であり、前
記熱風温度センサ3が検出する熱風温度(TB)が50
℃であり、前記排風温度センサ4が検出する排風温度(
TE)が25℃であったとすると、穀粒温度(TG)は
27t 75℃と算出される構成であり、 TG= [(K)0.11X (TB)50] +[1
−(K) 0.IIX (TE) 25]=  27.
75℃ 又、検出穀粒水分(MS)が14%であり、検出熱風温
度(TB)が50℃であり、検出排風温度(TE)が2
8℃であったとすると、穀粒温度(TG)は31.3℃
と算出される構成であり、TG= [(K)0.15x
 (TB)50F +[l−(K)o、15X (TE
)28]= 31.3℃ これら算出穀粒温度(TG)が27.75℃、又は31
.3℃のときには、設定穀粒温度(TGI)の38℃以
下であり、供給燃料量の減少制御は行なわれない構成で
ある。
Grain temperature (TG) is calculated when the grain moisture (MS) detected by the moisture sensor 5 is 28% and the hot air temperature (TB) detected by the hot air temperature sensor 3 is 50%, as shown in FIG.
℃, and the exhaust air temperature detected by the exhaust air temperature sensor 4 (
If TE) is 25°C, the grain temperature (TG) is calculated as 27t 75°C, and TG = [(K)0.11X (TB)50] + [1
-(K) 0. IIX (TE) 25] = 27.
In addition, the detected grain moisture (MS) is 14%, the detected hot air temperature (TB) is 50°C, and the detected exhaust air temperature (TE) is 75°C.
If the temperature is 8℃, the grain temperature (TG) is 31.3℃.
The configuration is calculated as TG=[(K)0.15x
(TB)50F + [l-(K)o, 15X (TE
)28] = 31.3℃ These calculated grain temperatures (TG) are 27.75℃, or 31
.. When the temperature is 3°C, it is below the set grain temperature (TGI) of 38°C, and the fuel supply amount is not controlled to decrease.

穀粒温度(TG)の算出は、第3図の如く、前記タイマ
45が検出する乾燥時間(T)が7時間であり、前記熱
風温度センサ3が検出する熱風温度(TB)が50℃で
あり、前記排風温度センサ4が検出する排風温度(TE
)が25℃であったとすると、穀粒温度(TG)は27
.75℃と算出される構成であり、 TG= [(K)0.11x (TB)5o] +[1
−(K)0.11x  (TE)25コ=  27.7
5℃ 又、検出乾燥時間(T)が18時間であり、検出熱風温
度(TB)が50℃であり、検出排風温度(TE)が2
8℃であったとすると、穀粒温度(TG)は31.96
℃と算出される構成であり、TG= [(K)0.18
x (TB)50] +[1−(K) 0.18X (
TE) 28]= 31.96℃ これら算出穀粒温度(TG)が27.75℃、又は31
.96℃のときは、設定穀粒温度(TGI)の38℃以
下であり、供給燃料量の減少制御は行なわれない構成で
ある。
The grain temperature (TG) is calculated when the drying time (T) detected by the timer 45 is 7 hours and the hot air temperature (TB) detected by the hot air temperature sensor 3 is 50°C, as shown in FIG. Yes, the exhaust air temperature (TE
) is 25℃, the grain temperature (TG) is 27℃.
.. The configuration is calculated as 75°C, and TG = [(K)0.11x (TB)5o] + [1
-(K)0.11x (TE)25 = 27.7
5℃ Also, the detected drying time (T) is 18 hours, the detected hot air temperature (TB) is 50℃, and the detected exhaust air temperature (TE) is 2
If it is 8℃, the grain temperature (TG) is 31.96
It is a configuration calculated as °C, and TG = [(K)0.18
x (TB)50] +[1-(K) 0.18X (
TE) 28] = 31.96°C These calculated grain temperatures (TG) are 27.75°C, or 31
.. When the temperature is 96°C, it is below the set grain temperature (TGI) of 38°C, and the configuration is such that the amount of fuel supplied is not controlled to decrease.

穀粒温度(TG)の算出は、第4図の如く、前記風量セ
ンサ46が検出する風量(Q)が0.9m″/secで
あり、前記熱風温度センサ3が検出する熱風温度(TB
)が50℃であり、前記排風温度センサ4が検出する排
風温度(TE)が25℃であったとすると、穀粒温度(
TG)は28.75℃と算出される構成であり、 TG=  [(K)0.15x  (TB)50]  
+[1−(K)  0.15x  (TE)  25]
=  28.75℃ 又、検出風11. (Q)が0.4rn’/secであ
り、検出熱風温度(TB)が55℃であり、検出排風温
度(TE)が23℃であったとすると、穀粒温度(TG
)は26.2℃と算出される構成であり、TG= [(
K)0.10x (TB)55] +[1−(K) 0
.10x (TE) 23]=26.2℃ これら算出穀粒温度(TG)が28.75℃、又は26
.2℃のときは、設定穀粒温度(TGI)の38℃以下
であり、供給燃料量の減少制御は行なわれない構成であ
る。
Grain temperature (TG) is calculated based on the assumption that the air volume (Q) detected by the air volume sensor 46 is 0.9 m''/sec and the hot air temperature (TB) detected by the hot air temperature sensor 3 as shown in FIG.
) is 50°C, and the exhaust air temperature (TE) detected by the exhaust air temperature sensor 4 is 25°C, then the grain temperature (
TG) is calculated as 28.75℃, TG= [(K)0.15x (TB)50]
+[1-(K) 0.15x (TE) 25]
= 28.75℃ Also, detected wind 11. (Q) is 0.4 rn'/sec, the detected hot air temperature (TB) is 55°C, and the detected exhaust air temperature (TE) is 23°C.
) is the configuration calculated as 26.2℃, and TG=[(
K)0.10x (TB)55] +[1-(K) 0
.. 10x (TE) 23] = 26.2℃ These calculated grain temperatures (TG) are 28.75℃, or 26
.. When the temperature is 2°C, it is below the set grain temperature (TGI) of 38°C, and the structure is such that the amount of fuel supplied is not controlled to decrease.

以下、上記実施例の作用について説明する。Hereinafter, the operation of the above embodiment will be explained.

操作装置16の各設定猟み35.36.37を所定位置
へ操作し、乾燥を開始する始動スイッチ33を操作する
ことにより、穀粒乾燥機6の各部、バーナl及び水分セ
ンサ5等が始動し、このバーナ1から設定した温度の熱
風が発生し、この熱風は送風室12から乾燥室2を横断
通過して排風室11及び排風路室17を経て排風機18
で吸引排風されることにより、貯留室10内に収容され
た穀粒は、この貯留室10から該乾燥室2内を流下中に
この熱風に晒されて乾燥され、繰出バルブ13で下部へ
と繰出されて集穀樋14内へ供給され、この集穀樋14
から供給樋26を経て昇穀機23内へ下部の移送螺旋で
移送供給され、パケットコンベア24で上部へ搬送され
て投出筒25を経て移送樋8内へ供給され、この移送樋
8から拡散盤22上へ上部の移送螺旋で移送供給され、
この拡散盤22で該貯留室10内へ均等に拡散還元され
、循環乾燥されて該水分センサ5が該水分設定猟み35
を操作して設定した仕上目標水分と同じ穀粒水分を検出
すると、該操作装置16の乾燥制御装置44で自動制御
して該乾燥8!6を自動制御して穀粒の乾燥が停止され
る。
By operating each setting switch 35, 36, 37 of the operating device 16 to a predetermined position and operating the start switch 33 that starts drying, each part of the grain dryer 6, the burner l, the moisture sensor 5, etc. are started. Then, hot air at a set temperature is generated from the burner 1, and this hot air crosses the drying room 2 from the air blowing chamber 12, passes through the air exhaust chamber 11 and the air exhaust path room 17, and is sent to the air exhaust fan 18.
By suctioning and exhausting the air, the grains stored in the storage chamber 10 are exposed to the hot air and dried while flowing down from the storage chamber 10 into the drying chamber 2. The grain is fed out and supplied into the grain collection gutter 14, and this grain collection gutter 14
The grains are transferred from the grains through the supply gutter 26 into the grain hoisting machine 23 by the lower transfer spiral, transported to the upper part by the packet conveyor 24, passed through the dispensing cylinder 25, and supplied into the transfer gutter 8, where they are diffused. It is transferred and supplied onto the board 22 by the upper transfer spiral,
It is evenly diffused and returned into the storage chamber 10 by this diffusion plate 22, and is circulated and dried, so that the moisture sensor 5 can detect the moisture setting value 35.
When the moisture content of the grains is the same as the target moisture content set by operating the , the drying control device 44 of the operating device 16 automatically controls the drying 8!6 to stop the drying of the grains. .

この乾燥作業中は、該バーナ1から発生する熱風温度(
TB)は熱風温度センサ3で検出され、該乾燥室2を通
過した排風の排風温度(TE)は排風温度センサ4で検
出され、この検出された熱風温度(TB)及び排風温度
(TE)と、該水分センサ5が検出する穀粒水分(MS
)によって設定して記憶させた係数(K)が選定され、
この選定された係!a(K)とによって、この乾燥中の
穀粒の穀粒温度(TG)が算出され、この算出された穀
粒温度(TG)と設定記憶された穀粒温度(TGI)と
が比較され、算出穀粒温度(TG)は設定穀粒温度(T
GI)以上に上昇しないように、燃料バルブの開閉回数
が制御され、燃料ポンプ29で吸入する燃料量が制御さ
れて該バーナ1へ供給され、このバーナ1がら発生する
熱風温度が制御されなから穀粒は乾燥される。
During this drying work, the temperature of the hot air generated from the burner 1 (
TB) is detected by the hot air temperature sensor 3, and the exhaust air temperature (TE) of the exhaust air that has passed through the drying chamber 2 is detected by the exhaust air temperature sensor 4, and the detected hot air temperature (TB) and the exhaust air temperature (TE) and grain moisture detected by the moisture sensor 5 (MS
) is selected and the coefficient (K) set and stored is selected.
This selected person! a(K), the grain temperature (TG) of the grain during drying is calculated, and the calculated grain temperature (TG) and the stored grain temperature (TGI) are compared, The calculated grain temperature (TG) is the set grain temperature (T
The number of times the fuel valve opens and closes is controlled so that the temperature does not rise above GI), the amount of fuel sucked in by the fuel pump 29 is controlled and supplied to the burner 1, and the temperature of the hot air generated from the burner 1 is not controlled. The grains are dried.

又、上記の穀粒水分(MS)以外にタイマ45が検出す
る乾燥開始からの乾燥経過時間(T)及び風量センサ4
6が検出する風量(Q)によって設定して記憶させた係
数(K)が選定され、この選定された係数(K)によっ
て上記と同じように穀粒温度(TG)が算出され、熱風
温度(TB)が制御されなから穀粒は乾燥される。
In addition to the grain moisture (MS) described above, the elapsed drying time (T) from the start of drying detected by the timer 45 and the air volume sensor 4
The coefficient (K) set and stored is selected according to the air volume (Q) detected by the device 6, and the grain temperature (TG) is calculated in the same manner as above using this selected coefficient (K), and the hot air temperature ( Since TB) is not controlled, the grain is dried.

【図面の簡単な説明】[Brief explanation of drawings]

図は、この発明の一実施例を示すもので、第1図はブロ
ック図、第2図は穀粒水分と係数との関係図、第3図は
乾燥経過時間と係数との関係図、第4図は風量と係数と
の関係図、第5図は一部破断せる穀粒乾燥機の全体側面
図、第6図は第5図のA−A断面図、第7図は穀粒乾燥
機の一部の背面図、第8図は穀粒乾燥機の一部の一部破
断せる拡大正面図である。 符号の説明 1 バーナ     2 乾燥室 3 熱風温度センサ 4 排風温度センサ5 水分セン
The figures show one embodiment of the present invention; FIG. 1 is a block diagram, FIG. 2 is a relationship diagram between grain moisture and coefficient, FIG. 3 is a relationship diagram between elapsed drying time and coefficient, and FIG. Figure 4 is a relationship diagram between air volume and coefficient, Figure 5 is an overall side view of the grain dryer that can be partially cut away, Figure 6 is a sectional view taken along line A-A in Figure 5, and Figure 7 is the grain dryer. FIG. 8 is an enlarged partially cutaway front view of a portion of the grain dryer. Explanation of symbols 1 Burner 2 Drying chamber 3 Hot air temperature sensor 4 Exhaust air temperature sensor 5 Moisture sensor

Claims (1)

【特許請求の範囲】[Claims] 穀粒を流下させながらバーナ1による熱風を通風させて
乾燥する乾燥室2、及びこの乾燥室2へ通風する熱風温
度を検出する熱風温度センサ3、この乾燥室2から機外
へ排風する排風温度を検出する排風温度センサ4を設け
ると共に、穀粒水分を検出する水分センサ5を設け、こ
れら熱風温度センサ3が検出する熱風温度、排風温度セ
ンサ4が検出する排風温度、及び係数によって乾燥中の
穀粒温度を算出してこの算出された穀粒温度が所定温度
以上に上昇しないように該熱風温度を制御して乾燥する
穀粒乾燥機において、該水分センサ5が検出する穀粒水
分、又は乾燥経過時間によって該係数の値を変更して穀
粒温度を算出することを特徴とする乾燥制御方式。
A drying chamber 2 in which grains are dried by passing hot air from a burner 1 while flowing down, a hot air temperature sensor 3 that detects the temperature of the hot air vented to this drying chamber 2, and an exhaust gas that discharges air from this drying chamber 2 to the outside of the machine. An exhaust air temperature sensor 4 that detects wind temperature is provided, and a moisture sensor 5 that detects grain moisture is provided, and the hot air temperature detected by these hot air temperature sensors 3, the exhaust air temperature detected by the exhaust air temperature sensor 4, and In a grain dryer that calculates the grain temperature during drying using a coefficient and controls the hot air temperature to prevent the calculated grain temperature from rising above a predetermined temperature, the moisture sensor 5 detects the grain temperature. A drying control method characterized in that grain temperature is calculated by changing the value of the coefficient depending on grain moisture or elapsed drying time.
JP7085590A 1990-03-20 1990-03-20 Control system for drying in grain drier Pending JPH03271690A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7085590A JPH03271690A (en) 1990-03-20 1990-03-20 Control system for drying in grain drier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7085590A JPH03271690A (en) 1990-03-20 1990-03-20 Control system for drying in grain drier

Publications (1)

Publication Number Publication Date
JPH03271690A true JPH03271690A (en) 1991-12-03

Family

ID=13443598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7085590A Pending JPH03271690A (en) 1990-03-20 1990-03-20 Control system for drying in grain drier

Country Status (1)

Country Link
JP (1) JPH03271690A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007093058A (en) * 2005-09-27 2007-04-12 Yamamoto Co Ltd Water content calculating method for grain

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007093058A (en) * 2005-09-27 2007-04-12 Yamamoto Co Ltd Water content calculating method for grain

Similar Documents

Publication Publication Date Title
JPH03271690A (en) Control system for drying in grain drier
JPS6399484A (en) Cereal grain drying control system of cereal grain drier
JPH03230083A (en) Drying control apparatus of grain dryer
JPH03113279A (en) Dry control system for grain dryer
JPH02219976A (en) Dry control system for grain drier
JPH0313784A (en) Control system of drying of grain drier
JPH0476384A (en) Drying control system for grain dryer
JPS62178880A (en) Cereal grain drying control system of cereal grain drier
JPH0350485A (en) Control system for grain drier
JPS63282478A (en) Cereal-grain drying control system of cereal grain drier
JPS6287783A (en) Setter for drying time of cereal grain for cereal grain drier
JPH02302579A (en) Drier for grain drying machine
JPH0350486A (en) Malfunction position detecting system for grain drier
JPH03102188A (en) Dry control system for cereals drier
JPS62177439A (en) Grain water detection system for grain drying machine
JPH0428994A (en) Drying control system for cereals drier
JPH04302989A (en) Dry control system for cereals drier
JPS62178878A (en) Cereal grain drying control system of cereal grain drier
JPS6219677A (en) Drying control system of cereal grain of cereal grain drier
JPH03102187A (en) Dry control system for cereals drier
JPS62178879A (en) Cereal grain control system of cereal grain drier
JPS63306386A (en) Cereal grain drying control system of cereal grain drier
JPS6391480A (en) Burner-direction regulator for cereal grain drier
JPH02143083A (en) Drying control system for grain drier
JPH03113282A (en) Dry control system for grain dryer