JPH0476384A - Drying control system for grain dryer - Google Patents

Drying control system for grain dryer

Info

Publication number
JPH0476384A
JPH0476384A JP18664290A JP18664290A JPH0476384A JP H0476384 A JPH0476384 A JP H0476384A JP 18664290 A JP18664290 A JP 18664290A JP 18664290 A JP18664290 A JP 18664290A JP H0476384 A JPH0476384 A JP H0476384A
Authority
JP
Japan
Prior art keywords
drying
grains
chamber
moisture
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18664290A
Other languages
Japanese (ja)
Inventor
Reiji Kojiyou
小條 れい二
Shoichi Fukumoto
福本 彰一
Masaki Korehisa
正喜 是久
Hitoshi Ueji
仁志 上路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iseki and Co Ltd
Iseki Agricultural Machinery Mfg Co Ltd
Original Assignee
Iseki and Co Ltd
Iseki Agricultural Machinery Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iseki and Co Ltd, Iseki Agricultural Machinery Mfg Co Ltd filed Critical Iseki and Co Ltd
Priority to JP18664290A priority Critical patent/JPH0476384A/en
Publication of JPH0476384A publication Critical patent/JPH0476384A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Solid Materials (AREA)

Abstract

PURPOSE:To prevent the overdrying of grains and estimate the finishing time of the drying of the grains by a method wherein the grains are dried by operating respective detecting moistures in a ventilating chamber and an air discharging chamber, the initial moisture of the grains, a finishing target moisture and a time required until the drying of the grains is finished. CONSTITUTION:In a drying control device 47, the change of the value of grain moisture, detected by a moisture sensor 7, is compared with the change of the value of grain moisture, set and stored in a CPU 45, as well as the change of moisture difference operated from the values of moistures detected by respective moisture sensors 34, 35. When an abnormal value is detected in either one of them, a drying machine 8 is stopped automatically by the control device, in which a normal value is detected. The drying time of the grains is operated in parallel. A hot air moisture MO in a ventialting chamber 4 and a discharging air moisture MO in an air discharging chamber are inputted into the CPU 45 and when a timer 48 operates the elapse of one hour, a discharging air moisture M1 and a discharging air moisture ME upon finishing the drying of the grains are substituted into an operating formula, set and stored into the CPU 45, whereby a time required from the initial period of drying to the finishing of the drying of the grains is operated and one hour of the elapse time until the operation is finished is subtracted from said operated time to indicate it on an indicator unit 41.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、穀粒乾燥機の乾燥制御方式に関する。[Detailed description of the invention] Industrial applications The present invention relates to a drying control method for a grain dryer.

従来の技術 従来は、上部の貯留室から下部の乾燥室へ穀粒を繰出し
流下させながら、熱風装置から発生する熱風を送風室か
ら該乾燥室を通過して排風室を経て排風機で吸引排風し
て乾燥しながら、この乾燥中の穀粒水分を水分センサで
検出させ、検出穀粒水分が仕上目標水分と同じになると
、穀粒乾燥機を停止させて穀粒の乾燥を停止する乾燥制
御方式であった。
Conventional technology Conventionally, while the grains are fed out from the upper storage chamber to the lower drying chamber and flowed down, the hot air generated from the hot air device is passed from the blower chamber through the drying chamber, passes through the exhaust chamber, and is sucked in by the exhaust fan. While drying by exhausting air, the moisture of the drying grains is detected by a moisture sensor, and when the detected grain moisture becomes the same as the finishing target moisture, the grain dryer is stopped and drying of the grains is stopped. It was a drying control method.

発明が解決しようとする課題 穀粒乾燥機の貯留室内へ収容された穀粒は、この貯留室
から乾燥室内を繰出し流下する循環が繰返されながら、
熱風装置から発生する熱風は、送風室から該乾燥室を通
過して排風室を経て排風機で吸引排風されることにより
、この乾燥室内を流下中の穀粒は、この熱風に晒されて
乾燥される。
Problems to be Solved by the Invention The grains stored in the storage chamber of the grain dryer are repeatedly circulated from the storage chamber to the drying chamber and flowed down.
The hot air generated from the hot air device passes through the drying chamber from the ventilation chamber, passes through the ventilation chamber, and is sucked and exhausted by the exhaust fan, so that the grains flowing down the drying chamber are exposed to this hot air. and dried.

この循環乾燥中の穀粒水分は水分センサで検出され、こ
の水分センサが仕上目標水分と同じ穀粒水分を検出する
と、該乾燥機は自動停止制御されて穀粒の乾燥は停止さ
れる。
The grain moisture during this circulation drying is detected by a moisture sensor, and when this moisture sensor detects the same grain moisture as the finishing target moisture, the dryer is automatically controlled to stop drying the grains.

この乾燥作業中に、該水分センサに不具合が発生すると
、乾燥中の穀粒が過乾燥になることが発生したり、又穀
粒乾燥の終了時刻を予測させて、後作業である籾摺作業
等を計画的に行なえるようにしようとするものである。
If a malfunction occurs in the moisture sensor during this drying operation, the grains being dried may become over-dry, or the end time of grain drying may be predicted, leading to the post-hulling operation. The aim is to make it possible to do things like this in a planned manner.

請求項1の発明について 課題を解決するための手段 この発明は、上部の貯留室1から下部の乾燥室2へ穀粒
を繰出し流下させながら熱風装置3から発生する熱風を
送風室4から該乾燥室2を通風して排風室5を経て排風
機6で吸引排風して乾燥しながらこの乾燥中の穀粒水分
を検出する水分センサ7を設けた穀粒乾燥機において、
該送風室4、這 及び該排風室5内の各検出画度、穀粒の初期水分、及び
仕上目標水分、乾燥開始からの所定時刻における穀粒水
分、及び所要時間、これらを所定の計算式に基づいて該
所定時刻から穀粒乾燥仕上りまでに要する時間を算出し
て乾燥することを特徴とする乾燥制御方式の構成とする
Means for Solving the Problems Regarding the Invention of Claim 1 This invention provides hot air generated from a hot air device 3 to dry the grains from a blowing chamber 4 while letting the grains flow down from an upper storage chamber 1 to a lower drying chamber 2. A grain dryer is equipped with a moisture sensor 7 that detects the moisture content of the grains during drying while drying the grains by ventilating the chamber 2, passing through the ventilation chamber 5, sucking and exhausting the air with the exhaust fan 6,
Each detection degree in the ventilation chamber 4, the ventilation chamber 5, and the exhaust chamber 5, the initial moisture content of the grain, the target finishing moisture content, the grain moisture content at a predetermined time from the start of drying, and the required time are calculated in a predetermined manner. The drying control method is characterized in that the time required from the predetermined time to the completion of drying of the grains is calculated based on a formula and the grains are dried.

発明の作用 穀粒乾燥機の貯留室1内へ収容された穀粒は、この貯留
室1から乾燥室2内を繰出し流下する循環が繰返されな
がら、熱風装置3から発生する熱風は、送風室4から該
乾燥室2を通過して排風室5を経て排風機6で吸引排風
されることにより、この乾燥室2内を流下中の穀粒は、
この熱風に晒されて乾燥される。
Effect of the Invention While the grains stored in the storage chamber 1 of the grain dryer are repeatedly circulated from the storage chamber 1 to the drying chamber 2 and flowing down, the hot air generated from the hot air device 3 is transferred to the air blowing chamber. 4, passes through the drying chamber 2, passes through the exhaust chamber 5, and is suctioned and exhausted by the exhaust fan 6, so that the grains flowing down inside the drying chamber 2 are
It is exposed to this hot air and dried.

この循環乾燥中の穀粒水分は水分センサ6で検出され、
この水分センサ6が検出する穀粒水分が仕上目標水分と
同じ穀粒水分を検出すると、該乾燥機は自動停止制御さ
れて穀粒の乾燥が停止される。
The grain moisture during this circulation drying is detected by the moisture sensor 6,
When the moisture sensor 6 detects the same grain moisture as the finishing target moisture, the dryer is automatically controlled to stop drying the grains.

この乾燥作業中は、該送風室4及び該排風室5内の検出
される各検出湿度、穀粒の初期水分及び仕上目標水分、
乾燥開始からの所定時刻における穀粒水分及び所要時間
、これらを所定の計算式に代入して、乾燥中の穀粒が該
所定時刻から仕上りまでに要する時間が算出される。こ
の算出時間を、例えば、乾燥作業者に報知すべく表示等
を行ないながら穀粒を乾燥する。
During this drying work, each detected humidity in the ventilation chamber 4 and the ventilation chamber 5, the initial moisture content of the grains and the finished target moisture content,
By substituting the grain moisture content and required time at a predetermined time from the start of drying into a predetermined calculation formula, the time required for the grains being dried to finish from the predetermined time is calculated. The grains are dried while displaying the calculated time, for example, to notify the drying operator.

発明の効果 この発明により、穀粒乾燥作業中に、穀粒の乾燥終了ま
でに要する時間が、所定時刻毎に算出されることにより
、後作業である籾摺作業等が計画的に行なえると同時に
、所定時刻毎に乾燥仕上り終了まで時間が算出されるこ
とにより、正確な仕上り終了時間を得ることができる。
Effects of the Invention According to the present invention, during grain drying work, the time required to finish drying the grains is calculated at each predetermined time, so that subsequent work such as hulling work can be carried out in a planned manner. At the same time, by calculating the time until completion of drying at each predetermined time, an accurate completion time of finishing can be obtained.

請求項2の発明について 課題を解決するための手段 この発明は、上部の貯留室lから下部の乾燥室2へ穀粒
を繰出し流下させながら熱風装置3から発生する熱風を
送風室4から該乾燥室2を通風して排風室5を経て排風
機6で吸引排風して乾燥しながらこの乾燥中の穀粒水分
を検出する水分センサ7を設けた穀粒乾燥機において、
該送風室4、及び該排風室5内の各検出湿度の湿度差の
変化と該水分センサ7が検出する穀粒水分の変化との両
者を交互に監視して乾燥させながらこの乾燥中に異常値
検出のときにはこの異常値がいずれか一方のときには他
方の正常な方で乾燥制御を行なうことを特徴とする乾燥
制御方式の構成とする。
Means for Solving the Problems Regarding the Invention of Claim 2 This invention provides hot air generated from a hot air device 3 to dry the grains from a blowing chamber 4 while letting the grains flow down from an upper storage chamber 1 to a lower drying chamber 2. A grain dryer is equipped with a moisture sensor 7 that detects the moisture content of the grains during drying while drying the grains by ventilating the chamber 2, passing through the ventilation chamber 5, sucking and exhausting the air with the exhaust fan 6,
During this drying, both the change in the humidity difference between the detected humidity in the ventilation chamber 4 and the ventilation chamber 5 and the change in grain moisture detected by the moisture sensor 7 are alternately monitored while drying. When an abnormal value is detected, the drying control method is characterized in that when the abnormal value is one of the abnormal values, drying control is performed using the other normal value.

発明の作用 穀粒乾燥機の貯留室1内へ収容された穀粒は、この貯留
室1から乾燥室2内を繰出し流下する循環が繰返されな
がら、熱風装置t3から発生する熱風は、送風室4から
該乾燥室2を通過して排風室5を経て排風機6で吸引排
風されることにより、この乾゛燥室2内を流下中の穀粒
は、この熱風に晒されて乾燥される。
Effect of the invention While the grains stored in the storage chamber 1 of the grain dryer are repeatedly circulated from the storage chamber 1 to the drying chamber 2 and flowing down, the hot air generated from the hot air device t3 is transferred to the blower chamber 2. 4, passes through the drying chamber 2, passes through the exhaust chamber 5, and is sucked and exhausted by the exhaust fan 6, so that the grains flowing down the drying chamber 2 are exposed to this hot air and dried. be done.

この循環乾燥中の穀粒水分は水分センサ7で検出され、
又該送風室4及び該排風室5内の検出される各検出湿度
から湿度差が算出され、これら検出穀粒水分と算出湿度
差の変化との両者を交互に監視しながら乾燥制御され、
検出穀粒水分が仕上目標水分に達するか、又は算出湿度
差が設定湿度差に達するか、これらいずれか早く到達し
たほうで該乾燥機は自動停止制御されて穀粒の乾燥は停
止される。
The grain moisture during this circulation drying is detected by the moisture sensor 7,
Further, a humidity difference is calculated from each detected humidity detected in the ventilation chamber 4 and the ventilation chamber 5, and drying is controlled while alternately monitoring both the detected grain moisture and the change in the calculated humidity difference,
When the detected grain moisture reaches the finishing target moisture or the calculated humidity difference reaches the set humidity difference, whichever comes first, the dryer is automatically stopped and the drying of the grains is stopped.

又この乾燥作業中に検出穀粒水分の変化と湿度差の変化
とのいずれか一方に異常値が検出されると、この異常値
が一方のときには、他方の正常値検出の方で前記乾燥機
は自動停止制御されて穀粒の乾燥が停止される。
Also, if an abnormal value is detected in either the detected grain moisture change or the humidity difference change during this drying operation, if the abnormal value is detected in one, the other normal value detected is detected in the dryer. is automatically stopped and the drying of the grains is stopped.

発明の効果 この発明により、穀粒の乾燥停止制御は、水分センサ7
が検出する穀粒水分と、送風室4及び排風室5内の各検
出湿度から算出される湿度差との両者を監視しながら行
なわれ、一方が異常値を検出すると他方の正常値の方で
停止制御することにより、穀粒は過乾燥になることがな
(なって、穀粒の品質が低下することがなくなった。
Effects of the Invention According to this invention, grain drying stop control can be performed using the moisture sensor 7.
This is done while monitoring both the grain moisture detected by the controller and the humidity difference calculated from the detected humidity in the ventilation chamber 4 and the ventilation chamber 5. When one detects an abnormal value, the difference in humidity is compared to the normal value in the other. By controlling the stoppage with , the grains do not become over-dry (and the quality of the grains does not deteriorate).

実施例 以下、本発明の一実施例を図面に基づいて説明する。Example Hereinafter, one embodiment of the present invention will be described based on the drawings.

区制は、穀粒を乾燥する循環型の穀粒乾燥機8に水分セ
ンサ7等を装着した状態を示すものである。
The ward system indicates a state in which a circulation type grain dryer 8 for drying grains is equipped with a moisture sensor 7 and the like.

この乾燥機8は、前後方向に長い長方形状で機構9上部
には、移送螺旋を回転自在に内装した移送樋lO及び天
井板11を設け、この天井板11下側には穀粒を貯留す
る貯留室lを形成している。
This dryer 8 has a rectangular shape that is long in the front and rear direction, and is provided with a transfer gutter 10 and a ceiling plate 11 in which a transfer spiral is rotatably installed in the upper part of the mechanism 9, and grains are stored below the ceiling plate 11. A storage chamber l is formed.

この貯留室1下側において、左右両側の排風室5.5と
中央部の送風室4との間には左右の乾燥室2.2を設け
た構成であり、この乾燥室2,2下部には穀粒を繰出し
流下させる繰出バルブ1212を回転自在に軸支してい
る。
On the lower side of this storage chamber 1, left and right drying chambers 2.2 are provided between the left and right ventilation chambers 5.5 and the central ventilation chamber 4. A feed-out valve 1212 that feeds out grains and causes them to flow down is rotatably supported on the shaft.

この乾燥室2.2下側には移送螺旋を回転自在に内装し
た集穀樋13を連通させた構成としている。
The lower side of the drying chamber 2.2 is configured to communicate with a grain collecting trough 13 having a rotatably built-in transfer spiral.

前記送風室4内にはこの送風室4内の熱風温度を検出す
る熱風温度センサ33及び熱風湿度を検出する熱風湿度
センサ34を設けた構成であり、前記排風室5内にはこ
の排風室5内の排風湿度を検出する排風湿度センサ35
を設けた構成であり又該送風室4人口側近傍のPin圧
力を検出する圧力センサ49を前記前側機構9外面部に
設け、この送風室4を通過する風量の有無を検出する構
成としている。
The ventilation chamber 4 is provided with a hot air temperature sensor 33 for detecting the temperature of the hot air in the ventilation chamber 4 and a hot air humidity sensor 34 for detecting the humidity of the hot air. Exhaust air humidity sensor 35 detects the exhaust air humidity in the room 5
A pressure sensor 49 for detecting the Pin pressure near the population side of the ventilation chamber 4 is provided on the outer surface of the front mechanism 9 to detect the presence or absence of air flow passing through the ventilation chamber 4.

前記機構9正面側において、前記送風室4人口側に対応
すべくこの機構9外側面には、バーナ14を内装したバ
ーナケース15等よりなる熱風装置3を着脱自在に装着
すると共に、このバーナ14、前記水分センサ7及び前
記乾燥機8等を張込、乾燥及び排出の各作業別に始動及
び停止操作する操作装置16を着脱自在に装着して設け
ている。
On the front side of the mechanism 9, a hot air device 3 consisting of a burner case 15 with a burner 14 inside is removably attached to the outer surface of the mechanism 9 in order to correspond to the population side of the ventilation chamber 4. , an operating device 16 is removably installed to start and stop the moisture sensor 7, the dryer 8, etc. for each operation of loading, drying, and discharging.

又前記機構9の背面側には左右の前記排風室55に連通
しうる排風路室17を形成し、この排風路室17中央後
部側排風胴18には排風機6及びこの排風機6を回転駆
動する排風機モータ19を設けている。
Further, on the back side of the mechanism 9, there is formed an air exhaust passage chamber 17 that can communicate with the left and right air exhaust chambers 55, and in the center rear side air exhaust body 18 of this air exhaust passage chamber 17, an exhaust fan 6 and this exhaust air passage chamber 17 are formed. An exhaust fan motor 19 for rotationally driving the wind fan 6 is provided.

20はバルブモータで前記繰出バルブ12.12を減速
機構21を介して回転駆動する構成としている。
Reference numeral 20 is a valve motor configured to rotationally drive the delivery valve 12.12 via a speed reduction mechanism 21.

前記バーナケース15下板外側には、燃料バルブを有す
る燃料ポンプ22を設け、この燃料バルブの開閉により
この燃料ポンプ22で燃料タンク23内の燃料を吸入し
て前記バーナ14へ供給する構成であり、又上板外側に
は、送風機24を変速回転駆動する変速用の送風機モー
タ25を設け、供給燃料量に見合った燃焼用空気を該バ
ーナ14へこの送風機24で送風する構成としている。
A fuel pump 22 having a fuel valve is provided on the outside of the lower plate of the burner case 15, and the fuel pump 22 sucks fuel in the fuel tank 23 and supplies it to the burner 14 by opening and closing the fuel valve. A variable speed blower motor 25 for rotating the blower 24 at variable speeds is provided on the outside of the upper plate, and the blower 24 blows combustion air commensurate with the amount of fuel to be supplied to the burner 14.

前記移送樋IO底板の前後方向中央部には、移送穀粒を
前記貯留室1内へ供給する供給口を設け、この供給口の
下側にはこの貯留室1内へ穀粒を均等に拡散還元する拡
散盤26を設けた構成としている。
A supply port for supplying the transferred grains into the storage chamber 1 is provided at the center in the front-rear direction of the transfer gutter IO bottom plate, and a port is provided below the supply port to evenly spread the grains into the storage chamber 1. The configuration includes a diffusion plate 26 for reduction.

昇穀機27は、前記機構9前外部に設けられ、内部には
バケツコンベア28付ベルトを張設してなり、上端部は
、前記移送樋10始端部との間において投出筒29を設
けて連通させ、下端部は、前記集穀樋13終端部との間
において供給樋30を設けて連通させた構成としている
The grain elevating machine 27 is provided outside in front of the mechanism 9, and has a belt with a bucket conveyor 28 stretched inside, and a discharging tube 29 is provided between the upper end and the starting end of the transfer gutter 10. A supply gutter 30 is provided between the lower end and the terminal end of the grain collection gutter 13 for communication.

31は昇穀機モータで、該パケットコンベア28付ベル
ト、前記移送樋10内の前記移送螺旋及び前記拡散盤2
6等を回転駆動する構成とし、又前記集穀樋13内の前
記移送螺旋を該パケットコンベア28付ベルトを介して
回転駆動する構成としている。
Reference numeral 31 denotes a grain raising machine motor, which connects the belt with the packet conveyor 28, the transfer spiral in the transfer gutter 10, and the spreader plate 2.
6 etc. are rotationally driven, and the transfer spiral in the grain collecting trough 13 is rotationally driven via the belt with the packet conveyor 28.

前記昇穀機27の上下方向はぼ中央部には、穀粒水分を
検出する前記水分センサ7を設けている。
The moisture sensor 7 for detecting grain moisture is provided in the vertically central portion of the grain raising machine 27.

この水分センサ7は前記操作装置16からの電気的測定
信号の発信により、水分モータ32が回転してこの水分
センサ3の各部が回転駆動される構成としている。
The moisture sensor 7 is configured such that a moisture motor 32 is rotated by the transmission of an electrical measurement signal from the operating device 16, and each part of the moisture sensor 3 is rotationally driven.

前記水分センサ7は、前記パケットコンベア28で上部
へ搬送中に落下する穀粒を受け、この穀粒を挟圧粉砕す
ると同時に、この粉砕穀粒の水分を検出する構成として
いる。
The moisture sensor 7 receives grains that fall while being transported to the upper part of the packet conveyor 28, crushes the grains under pressure, and simultaneously detects the moisture content of the crushed grains.

前記操作装置16は、箱形状でこの箱体の表面板には、
前記乾燥機8、前記熱風装置3及び前記水分センサ7等
を張込、乾燥及び排出の各作業別に始動操作する始動ス
イッチ36、停止操作する停止スイッチ37.穀粒の仕
上目標水分を操作位置によって設定する水分設定猟み3
8、熱風の温度を操作位置によって設定する穀物種類設
定猟み39及び張込量設定猟み40.検出穀粒水分、検
出乾燥温度及び乾燥残時間等を交互に表示するデジタル
表示部41及びモニター表示を設けている。
The operating device 16 is box-shaped, and the surface plate of the box has a
A start switch 36 for starting the dryer 8, the hot air device 3, the moisture sensor 7, etc. for each operation of loading, drying, and discharging, and a stop switch 37 for stopping the dryer 8, the hot air device 3, the moisture sensor 7, etc. Moisture setting method 3 to set the target moisture content of grains depending on the operating position
8. Grain type setting setting 39 and pitching amount setting setting 40, which set the temperature of hot air according to the operating position. A digital display section 41 and a monitor display are provided which alternately display detected grain moisture, detected drying temperature, remaining drying time, etc.

又内部には各検出値をA−D変換するA−D変換器42
、このA−D変換器42で変換された変換値が入力され
る入力回路43.6種検出値が入力される入力回路44
、これら入力回路43.44から入力される各種入力値
を算術論理演算及び比較演算等を行なうCPU45、こ
のCPU45から指令される各種指令を受けて出力する
出力回路46等よりなる乾燥制御装置47及びタイマー
48を内蔵する構成である。尚、設定猟み38゜39.
40はロータリースイッチ方式とし、操作位置によって
所定の数値及び種類が設定される構成としている。
Also, there is an A-D converter 42 inside that converts each detected value from A to D.
, an input circuit 43 into which the converted value converted by this A-D converter 42 is input, and an input circuit 44 into which the six types of detected values are input.
, a drying control device 47 consisting of a CPU 45 that performs arithmetic and logical operations and comparison operations on various input values input from these input circuits 43 and 44, an output circuit 46 that receives and outputs various commands issued from the CPU 45, and the like; The configuration includes a built-in timer 48. In addition, the setting is 38°39.
Reference numeral 40 is a rotary switch type, and a predetermined value and type are set depending on the operating position.

該乾燥制御装置47による穀粒の乾燥停止制御は、下記
のいずれか一方で行なわれる構成である。
The grain drying stop control by the drying control device 47 is configured to be performed in one of the following ways.

即ち、一方は、前記水分設定扼み38の操作内容が該C
PU45へ入力され、この人力によって穀粒の仕上目標
水分が設定される。一方前記水分センサ7が検出する穀
粒水分も該CP[J45へ入力され、これら入力された
検出穀粒水分と設定仕上目標水分とが比較され、検出穀
粒水分が仕上目標水分に達したと検出されると、前記乾
燥機8運転各部を自動停止して穀粒の乾燥が終了したと
検出する構成である。
That is, on the one hand, the operation content of the moisture setting controller 38 is
This is input to the PU 45, and the finishing target moisture content of the grain is set by this manual effort. On the other hand, the grain moisture detected by the moisture sensor 7 is also input to the CP[J45, and the input detected grain moisture and the set finishing target moisture are compared, and it is determined that the detected grain moisture has reached the finishing target moisture. When detected, each operating part of the dryer 8 is automatically stopped to detect that drying of the grains has been completed.

又他方は、前記送風室4内の熱風湿度が前記熱風湿度セ
ンサ34で検出され、前記排風室5内の排風湿度が前記
排風湿度センサ35で検出され、これら検出熱風湿度と
検出排風湿度とが該CPU45へ入力され、このCPU
45で湿度差が算出され、この算出湿度差と該CP U
 45へ設定して記憶させた湿度差とが比較され、この
算出湿度差が設定湿度差と同じになると、該乾燥機8運
転各部を自動停止して穀粒の乾燥が終了したと検出する
構成である。これら二通りの内のいずれか早く到達した
方で自動停止制御される構成としている。
On the other hand, the hot air humidity in the ventilation chamber 4 is detected by the hot air humidity sensor 34, and the exhaust air humidity in the ventilation chamber 5 is detected by the exhaust air humidity sensor 35. The wind and humidity are input to the CPU 45, and this CPU
The humidity difference is calculated in step 45, and this calculated humidity difference and the CPU
45 and stored, and when this calculated humidity difference becomes the same as the set humidity difference, each operating part of the dryer 8 is automatically stopped and it is detected that drying of the grains is completed. It is. The configuration is such that automatic stop control is performed depending on which of these two methods is reached earlier.

前記水分センサ7が検出する穀粒水分値の変化と、前記
CPU45へ設定記憶の穀粒水分値の変化とが比較され
、又前記各湿度センサ34,35が検出する各湿度値か
ら算出される算出湿度差の変化と、このCPU45へ設
定記憶の湿度差の変化とが比較され、これらを交互に監
視しながら乾燥制御して、この乾燥制御中に、検出穀粒
水分値の変化と算出湿度差の変化とのいずれか一方に異
常値が検出されると不具合が発生したと検出され、この
異常値が一方のときには、他方の正常値検出の方で前記
と同じように前記乾燥機8運転各部を自動停止制御する
構成としている。
The change in the grain moisture value detected by the moisture sensor 7 is compared with the change in the grain moisture value stored in the setting memory in the CPU 45, and is calculated from each humidity value detected by the humidity sensors 34 and 35. The change in the calculated humidity difference is compared with the change in the humidity difference stored in the setting memory of this CPU 45, and drying control is performed while monitoring these alternately.During this drying control, the change in the detected grain moisture value and the calculated humidity are compared. If an abnormal value is detected in either one of the changes in the difference, it is detected that a malfunction has occurred, and when this abnormal value is detected in one, the dryer 8 is operated in the same way as above when the other normal value is detected. It is configured to automatically stop each part.

併せて前記乾燥制御装置47は次の機能を有する。即ち
、前記CPU45には、穀粒の初期水分別と仕上目標水
分別とによって、穀粒の仕上りの時の前記送風室4内の
熱風湿度と前記排風室5内の排風湿度との湿度差を設定
して記憶させた構成であり、例えば、初期水分25%で
仕上目標水分15%であれば、熱風湿度と排風湿度との
湿度差は14%であると記憶させた構成である。
Additionally, the drying control device 47 has the following functions. That is, the CPU 45 calculates the humidity between the hot air humidity in the ventilation chamber 4 and the exhaust air humidity in the ventilation chamber 5 when grains are finished, depending on the initial moisture content of the grains and the target finishing moisture content. This is a configuration in which a difference is set and stored. For example, if the initial moisture content is 25% and the target finished moisture content is 15%, the humidity difference between the hot air humidity and the exhaust air humidity is 14%. .

穀粒の乾燥時間の算出は下記の如(行なわれる構成であ
る。即ち、前記送風室4内の熱風湿度(MO’ )が前
記熱風湿度センサ34で検出され、又前記排風室5内の
排風湿度(MO)が前記排風湿度センサ35で検出され
、例えば、これら各検出湿度(MO’)、40%、(M
O)、70%とがCPU45へ入力され、前記タイマー
48が乾燥を開始してから、1時間(T1)経過を検出
すると、この時の該排風湿度センサ35が検出した排風
湿度(Ml)、68%が該CPU45へ入力され、又前
記水分センサ7が検出して該CPU45へ入力された初
期穀粒水分と、前記水分設定猟み40の操作内容とが該
CPU45へ入力され、この入力によって設定された仕
上目標水分とから、穀粒仕上りのときの排風湿度(ME
)、54%が選定されて設定される構成としている。
The drying time of the grains is calculated as follows (the configuration is carried out). That is, the hot air humidity (MO') in the ventilation chamber 4 is detected by the hot air humidity sensor 34, and the humidity in the ventilation chamber 5 is detected. The exhaust air humidity (MO) is detected by the exhaust air humidity sensor 35, and for example, each detected humidity (MO'), 40%, (M
O), 70% are input to the CPU 45, and when the timer 48 detects that one hour (T1) has elapsed since drying started, the exhaust air humidity detected by the exhaust air humidity sensor 35 at this time (Ml ), 68% is input to the CPU 45, and the initial grain moisture detected by the moisture sensor 7 and input to the CPU 45, and the operation details of the moisture setting controller 40 are input to the CPU 45. From the finishing target moisture set by the input, the exhaust air humidity (ME
), 54% are selected and set.

上記の各数値が前記CPU45へ設定記憶させた下記計
算式へ代入されて、乾燥初期から穀粒乾燥仕上りまでに
要する時間である8時間がこのCPU45で算出され、
この算出時間8時間から算出までの経過時間(T1)の
1時間が減算されて7時間が算出され、この7時間が前
記表示部41へ表示される構成であり、又この算出は前
記タイマー48が1時間経過を検出毎に算出される構成
としている。
Each of the above numerical values is substituted into the following calculation formula set and stored in the CPU 45, and the CPU 45 calculates 8 hours, which is the time required from the initial stage of drying to the finished grain drying.
One hour of the elapsed time (T1) until the calculation is subtracted from this calculation time of 8 hours to calculate 7 hours, and this 7 hours is displayed on the display section 41, and this calculation is performed on the timer 48. is calculated every time one hour passes.

TE=  ((MO−MO′ )−(ME−MO′ )
/  (MO−Ml)’t  X  (Tl−To)=
  ((70−40)−(54−40)/  (70−
68))  X  (1)=  ((30−14)/2
)  xt=8時間 前記圧力センサ49が検出する圧力(P i n)が前
記CPU45へ入力され、この入力された検出圧力(P
 i n)が、第8図の如く、変動幅が少ないときは、
この圧力センサ49の検出時間(時定数)を、例えば、
2秒間と短か(制御され、第9図の如く、変動幅が大き
いときは、この圧力センサ49の検出時間(時定数)を
、4秒間と長(制御する構成として横風及び突風等によ
る影響を少な(する構成としている。
TE= ((MO-MO')-(ME-MO')
/ (MO-Ml)'t X (Tl-To)=
((70-40)-(54-40)/(70-
68)) X (1)= ((30-14)/2
) xt=8 hours The pressure (P in) detected by the pressure sensor 49 is input to the CPU 45, and the input detected pressure (P in)
When i n) has a small fluctuation range as shown in Figure 8,
The detection time (time constant) of this pressure sensor 49 is, for example,
The detection time (time constant) of this pressure sensor 49 may be as short as 2 seconds (when the pressure sensor 49 is controlled and the fluctuation range is large as shown in Figure 9), the detection time (time constant) of this pressure sensor 49 may be as long as 4 seconds (the configuration to be controlled may be affected by crosswinds, gusts, etc.). It is configured to have a small number of

前記穀物種類設定扼み39及び前記張込量設定猟み40
の操作内容が前記CPU45へ入力されこの人力によっ
て前記バーナ14から発生する熱風温度が選定されて設
定される。又一方前記熱風温度センサ33が検出する前
記送風室4内の熱風温度も該CPU45へ入力され、こ
れら入力された検出熱風温度と設定熱風温度とが比較さ
れ。
The grain type setting setting 39 and the setting amount setting 40
The operation contents are input to the CPU 45, and the temperature of the hot air generated from the burner 14 is selected and set by this manual power. On the other hand, the hot air temperature in the blowing chamber 4 detected by the hot air temperature sensor 33 is also input to the CPU 45, and the input detected hot air temperature and the set hot air temperature are compared.

相違していると設定熱風温度と同じになるように、前記
バーナ14へ供給する燃料量と燃焼用空気量とを制御す
る前記燃料ポンプ22と前記送風機モータ25とを制御
する熱風温度制御構成としている。
A hot air temperature control configuration that controls the fuel pump 22 and the blower motor 25 to control the amount of fuel supplied to the burner 14 and the amount of combustion air so that the hot air temperature becomes the same as the set hot air temperature if they are different. There is.

以下、上記実施例の作用について説明する。Hereinafter, the operation of the above embodiment will be explained.

操作装置16の各設定猟み38,39.40を所定位置
へ操作し、乾燥を開始する始動スイッチ36を操作する
ことにより、穀粒乾燥機8の各部、バーナ14及び水分
センサ7等が始動し、該バーナ14から発生する熱風の
温度が選定されて設定される。
Each part of the grain dryer 8, the burner 14, the moisture sensor 7, etc. is started by operating each setting switch 38, 39, 40 of the operating device 16 to a predetermined position and operating the start switch 36 that starts drying. Then, the temperature of the hot air generated from the burner 14 is selected and set.

この設定された熱風が該バーナ14から発生し、この熱
風は送風室4から乾燥室2.2を通過して排風室5.5
及び排風路室17を経て該排風機6で吸引排風されるこ
とにより、貯留室1内へ収容された穀粒は、この貯留室
1から該乾燥室2゜2内を流下中にこの熱風に晒されて
乾燥され、繰出バルブ12.12で下部へと繰出されて
流下して集穀樋13から供給樋30を経て昇穀機27内
へ下部の移送螺旋で移送供給され、パケットコンベア2
8で上部へ搬送されて投出筒29を経て移送樋lO内へ
供給され、この移送樋10から拡散盤26上へ上部の移
送螺旋で移送供給され、この拡散盤26で該貯留室1内
へ均等に拡散還元され、循環乾燥されて該水分センサ7
が該水分設定猟み38を操作して設定した仕上目標水分
と同じ穀粒水分を検出するか、又は熱風湿度センサ34
が検出する該送風室4の熱風湿度と排風湿度センサ35
が検出する該排風室5の排風湿度とによって湿度差が算
出され、この算出湿度差が設定湿度差と同じになるか、
これらいずれか早く到達した方で、前記操作装置16の
乾燥制御装置47で自動制御して該乾燥機8を自動停止
して穀粒の乾燥が停止される。
This set hot air is generated from the burner 14, and this hot air passes through the drying chamber 2.2 from the ventilation chamber 4 to the exhaust chamber 5.5.
The grains stored in the storage chamber 1 are sucked and exhausted by the exhaust fan 6 through the air exhaust duct chamber 17, and the grains are absorbed while flowing from the storage chamber 1 into the drying chamber 2. The grain is dried by being exposed to hot air, and is fed out to the lower part by the feed valve 12.12, flows down, is transferred from the collection gutter 13, through the feed gutter 30, into the grain raising machine 27 by the lower transfer spiral, and is fed to the packet conveyor. 2
8, the liquid is transported to the upper part through the dispensing tube 29 and supplied into the transfer gutter 10, and from this transfer gutter 10, it is transferred and supplied onto the diffusion plate 26 by the upper transfer spiral, and by this diffusion plate 26, the inside of the storage chamber 1 is supplied. The moisture sensor 7 is evenly diffused and reduced, and is circulated and dried.
detects the same grain moisture as the finishing target moisture set by operating the moisture setting sensor 38, or the hot air humidity sensor 34
The hot air humidity of the ventilation chamber 4 detected by the exhaust air humidity sensor 35
A humidity difference is calculated based on the exhaust air humidity of the ventilation chamber 5 detected by the controller, and whether this calculated humidity difference is the same as the set humidity difference,
Whichever of these reaches earlier, the dryer 8 is automatically stopped under automatic control by the drying control device 47 of the operating device 16, and the drying of the grains is stopped.

この乾燥作業中は、前記送風室4及び前記排風室5の各
検出湿度、前記水分センサ7が検出する穀粒の初期水分
及び前記水分設定猟み38の操作で設定した仕上目標水
分、乾燥を開始してからの順次所定時刻における該水分
センサ7が検出する穀粒水分及び所要時間、これらが所
定の計算式に代入されて、順次所定時刻から穀粒乾燥仕
上りまでに要する時間が算出され、この算出乾燥時間を
前記操作装置16の表示部41へ順次表示しながら穀粒
は乾燥される。
During this drying work, the humidity detected in the ventilation chamber 4 and the ventilation chamber 5, the initial moisture of the grain detected by the moisture sensor 7, the target moisture content set by the operation of the moisture setting switch 38, and the drying The grain moisture detected by the moisture sensor 7 and the required time at predetermined times after starting are substituted into a predetermined calculation formula, and the time required from the predetermined time to the finished grain drying is calculated in sequence. The grains are dried while sequentially displaying the calculated drying time on the display section 41 of the operating device 16.

【図面の簡単な説明】[Brief explanation of drawings]

図は、この発明の一実施例を示すもので、第1図はブロ
ック図、第2図は排風湿度及び熱風湿度と乾燥時間との
関係図、第3図は穀粒水分及び湿度差と乾燥時間との関
係図、第4図は穀粒乾燥機の一部破断せる全体側面図、
第5図は第4図のA−A断面図、第6図は穀粒乾燥機の
一部の背面図、第7図は穀粒乾燥機の一部の一部破断せ
る拡大正面図、第8図、及び第9図はPin圧力と乾燥
時間との関係図である。 符号の説明 1 貯留室     2 乾燥室 3 熱風装置    4 送風室 5 排風室     6 排風機 7 水分センサ
The figures show one embodiment of the present invention. Fig. 1 is a block diagram, Fig. 2 is a relationship diagram between exhaust air humidity, hot air humidity, and drying time, and Fig. 3 is a relationship between grain moisture and humidity difference. Relationship diagram with drying time, Figure 4 is a partially cutaway overall side view of the grain dryer,
Fig. 5 is a sectional view taken along line A-A in Fig. 4, Fig. 6 is a rear view of a part of the grain dryer, Fig. 7 is an enlarged partially cutaway front view of a part of the grain dryer, and Fig. 8 and 9 are relationship diagrams between Pin pressure and drying time. Explanation of symbols 1 Storage chamber 2 Drying chamber 3 Hot air device 4 Ventilation chamber 5 Ventilation chamber 6 Ventilation fan 7 Moisture sensor

Claims (1)

【特許請求の範囲】 1 上部の貯留室1から下部の乾燥室2へ穀粒を繰出し
流下させながら熱風装置3から発生する熱風を送風室4
から該乾燥室2を通風して排風室5を経て排風機6で吸
引排風して乾燥しながらこの乾燥中の穀粒水分を検出す
る水分センサ7を設けた穀粒乾燥機において、該送風室
4、及び該排風室5内の各検出湿度、穀粒の初期水分、
及び仕上目標水分、乾燥開始からの所定時刻における穀
粒水分、及び所要時間、これらを所定の計算式に基づい
て該所定時刻から穀粒乾燥仕上りまでに要する時間を算
出して乾燥することを特徴とする乾燥制御方式。 2 上部の貯留室1から下部の乾燥室2へ穀粒を繰出し
流下させながら熱風装置3から発生する熱風を送風室4
から該乾燥室2を通風して排風室5を経て排風機6で吸
引排風して乾燥しながらこの乾燥中の穀粒水分を検出す
る水分センサ7を設けた穀粒乾燥機において、該送風室
4、及び該排風室5内の各検出湿度の湿度差の変化と該
水分センサ7が検出する穀粒水分の変化との両者を交互
に監視して乾燥させながらこの乾燥中に異常値検出のと
きにはこの異常値がいずれか一方のときには他方の正常
な方で乾燥制御を行なうことを特徴とする乾燥制御方式
[Claims] 1. Hot air generated from a hot air device 3 is sent to a blowing chamber 4 while the grains are fed out and flowed down from an upper storage chamber 1 to a lower drying chamber 2.
A grain dryer is provided with a moisture sensor 7 for detecting the moisture content of the drying grains while drying the drying chamber 2 by passing air through the exhaust chamber 5, sucking and exhausting the air by the exhaust fan 6, and drying the grains. Each detected humidity in the ventilation chamber 4 and the ventilation chamber 5, the initial moisture content of the grains,
and finishing target moisture content, grain moisture content at a predetermined time from the start of drying, and required time, and drying is performed by calculating the time required from the predetermined time to the finished grain drying based on a predetermined calculation formula. Drying control method. 2 The hot air generated from the hot air device 3 is sent to the blower chamber 4 while the grains are fed out and flowed down from the upper storage chamber 1 to the lower drying chamber 2.
A grain dryer is provided with a moisture sensor 7 for detecting the moisture content of the drying grains while drying the drying chamber 2 by passing air through the exhaust chamber 5, sucking and exhausting the air by the exhaust fan 6, and drying the grains. While drying is performed by alternately monitoring changes in the humidity difference between the detected humidity levels in the ventilation chamber 4 and the ventilation chamber 5 and changes in grain moisture detected by the moisture sensor 7, there is no abnormality detected during drying. A drying control method characterized in that when detecting a value, if one of the abnormal values is present, drying control is performed using the other normal value.
JP18664290A 1990-07-13 1990-07-13 Drying control system for grain dryer Pending JPH0476384A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18664290A JPH0476384A (en) 1990-07-13 1990-07-13 Drying control system for grain dryer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18664290A JPH0476384A (en) 1990-07-13 1990-07-13 Drying control system for grain dryer

Publications (1)

Publication Number Publication Date
JPH0476384A true JPH0476384A (en) 1992-03-11

Family

ID=16192163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18664290A Pending JPH0476384A (en) 1990-07-13 1990-07-13 Drying control system for grain dryer

Country Status (1)

Country Link
JP (1) JPH0476384A (en)

Similar Documents

Publication Publication Date Title
JPH0476384A (en) Drying control system for grain dryer
JPH02236436A (en) Detection of impurity in grain drier and drying control system
JP3526465B2 (en) Display of scheduled drying time of grain dryer
JP3168734B2 (en) Hot air / exhaust air temperature sensor mounting device for grain dryer
JPH0428994A (en) Drying control system for cereals drier
JPH0712463A (en) Under abnormal condition of moisture sensor thereof handling system for operation of grain dryer
JPH0658667A (en) Operation control system for crop particle drying machine
JPH07146071A (en) Cereal moisture detection controller for cereal dryer
JP2973537B2 (en) Fuel supply control system such as grain dryer
JPH0476386A (en) Drying control system for grain dryer
JPH0350485A (en) Control system for grain drier
JP3178057B2 (en) Display method of grain moisture detected by grain dryer
JP3743045B2 (en) Grain dryer
JPH05256578A (en) Displaying system for grain drying time of grain drier
JPH0545058A (en) Dry control system for cereals dryer
JP2000346556A (en) Grain dryer
JPH03271690A (en) Control system for drying in grain drier
JPH04302989A (en) Dry control system for cereals drier
JPH0350486A (en) Malfunction position detecting system for grain drier
JPH0814754A (en) Device for setting grain drying time for grain dryer
JPS62178878A (en) Cereal grain drying control system of cereal grain drier
JPH01219493A (en) Drying control device for cereals grain drier
JPH07146068A (en) Cereal dryer driver for cereal dryer
JPH05196354A (en) Charged grain amount detector for grain drier
JPH04121579A (en) Drying control system in crops particle drying machine