JPH0350486A - Malfunction position detecting system for grain drier - Google Patents

Malfunction position detecting system for grain drier

Info

Publication number
JPH0350486A
JPH0350486A JP18517989A JP18517989A JPH0350486A JP H0350486 A JPH0350486 A JP H0350486A JP 18517989 A JP18517989 A JP 18517989A JP 18517989 A JP18517989 A JP 18517989A JP H0350486 A JPH0350486 A JP H0350486A
Authority
JP
Japan
Prior art keywords
temperature
exhaust air
moisture
detected
air temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18517989A
Other languages
Japanese (ja)
Inventor
Eiji Nishino
栄治 西野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iseki and Co Ltd
Iseki Agricultural Machinery Mfg Co Ltd
Original Assignee
Iseki and Co Ltd
Iseki Agricultural Machinery Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iseki and Co Ltd, Iseki Agricultural Machinery Mfg Co Ltd filed Critical Iseki and Co Ltd
Priority to JP18517989A priority Critical patent/JPH0350486A/en
Publication of JPH0350486A publication Critical patent/JPH0350486A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent delay of dry finishing time of cereals and body cracks due to overdrying by calculating differences between theoretical temperature, moisture of discharging air and temperature, moisture detected at present of the discharging air based on detected moisture value of the cereals, and controlling to determine a predetermined malfunction position based on the difference. CONSTITUTION:Theoretical temperature, moisture of discharging air are calculated according to set temperature of hot blast set by the operations of temperature setting knobs 34 and moisture of cereals detected by a moisture sensor 6 during drying operation, differences between the theoretical temperature, moisture of the discharging air and the temperature of the air detected by a discharging air temperature sensor 4 and the moisture of the air detected by a discharging air moisture sensor 5 are calculated, and if a malfunction occurs at a cover 17 of a scavenging port, a stop of circulation of cereals, temperature sensors 3, 4, the sensor 5 and an operation unit 9, etc. the malfunction position is determined based on the calculated differences.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、穀粒乾燥機の異常個所検出方式に関する。[Detailed description of the invention] Industrial applications The present invention relates to a method for detecting abnormalities in a grain dryer.

従来の技術 従来は,乾燥室内を流下中の穀粒は、バーナから発生す
る熱風がこの乾燥室を通風して機外へ排風されることに
より、この熱風に晒されて乾燥され、水分センサが仕上
目標水分と同じ穀粒木分を検出すると乾燥が停止制御さ
れるが、この乾燥中は熱風温度は熱風温度センサで,又
排風温度は排風温度センサで検出されて、これら熱風温
度及び排風温度の検出結果にもとづいて乾燥制御が行な
われるが,所定の異常個所の判定制御は行なわれない方
式であった. 発明が解快しようとする課題 乾燥室内を流下循環が繰返される穀粒は.バーナがら発
生する熱風がこの乾燥室を通風して機外へ排風されるこ
とにより、この熱風に晒されて乾燥され、水分センサが
仕上目標水分と同じ穀粒水分を検出すると穀粒の乾燥が
停止制御されるが、この乾燥中は熱風温度は熱風温度セ
ンサで検出され、この検出熱風温度が設定熱風温度と同
じ温度になるように熱風温度が制御され、又排風温度は
搏風温度センサで検出され、これら検出排風温度と検出
熱風温度とにもとづいて乾燥中の′穀粒の温度が算出さ
れ,この算出穀粒温度が設定穀粒温度以上に上昇しない
ように熱風温度が制御されなから穀粒は乾燥されるが、
この乾燥作業中に、例えば,乾燥機内を清掃するための
掃除口のカバーの締め忘れや、又は流下循環中の穀粒に
循環停止状態が発生すると、これらの異常個所を判定制
御させようとするものである. 課題を解快するための手段 この発明は,穀粒を流下させながらバーナ(1)による
熱風を通風させて乾燥する乾燥室(2)へ通風するこの
熱風の温度を検出する熱風温度センサ(3),この乾燥
室(2)から機外へ排風される排風の温度と湿度とを検
出する排風温度センサ(4)、排X湿度センサ(5)、
及び乾燥中のf2粒水分を検出する水分センサ(6)を
設けた穀粒乾燥機において、穀粒の検出水分値のもとに
おける理論上の排風温度,及び排風湿度と、現在検出に
よる排風温度、及び排風湿度との差を演算しこの差にも
とづいて所定の異常個所を゛Y4定;り1御することを
特徴とする異常個所検出方式の構戊とする. 発明の作用 乾燥室(2)内を流下循環が繰ぶされる穀粒はバーナ(
1)から発生する熱風がこの乾燥室(2)を通風して機
外へ排風されることにより,この熱風に晒されて乾燥さ
れ,木分センサ(6)が仕,L11標水分と同じ穀粒水
分を検出すると穀粒の乾燥が停止制御されるが、この乾
燥中の熱風温度は熱風温度センサ(3)で検出され,こ
の検出熱風温度が設定熱風温度と同じ温度になるように
熱風温度が制御され、排風温度は排風温度センサ(4)
で検出され,又排風湿度は排風湿度センサ(5)で検出
され,これら検出排風温度と検出熱風温度とにもとづい
て乾燥中の穀粒の温度が算出され,この算出穀粒温度が
設定毅粒温度以上iこE昇しないように熱風温度が制御
されなから穀粒は乾燥され、又設定熱風温度と検出穀粒
水分とにもとづいて、理論上の排風温度及び排風湿度が
算出され,この算出された理論排風温度及び理論排風湿
度と検出した排風温度及び排風湿度との差が@算され.
この演算差にもとづいて,例えば、掃除口のカバーの締
め忘れであるとか、又は穀粒の流下循環状態に停止状態
が発生しているとか判断されこれらの異常個所が判定さ
れる. 発明の効果 この発明により,理論上の排風温度及び排風湿度が算出
され,この算出の理論排風温度及び理論排風湿度と排風
温度センサ(4)で検出する排風温度及び排風湿度セン
サ(5)で検出する排風湿度との差が演算され,この算
出差にもとづいて、穀粒乾燥機に発生する所定の異常個
所.例えば、掃除口のカバーの締め忘れや、又は毅粒の
ms停出等の判定ができることにより、穀粒の乾燥仕上
の侍間が遅延したり、又は穀粒が過乾燥になって147
1が発生することなどもなくなった.実施例 なお、図例において,(7)は穀粒乾燥機であり、この
乾燥機(7)の機壁(8)は前後方向にkい長方形状で
.前後壁板及び左右壁板よりなりこの前壁板にはこの乾
燥機(7)を始動及び停止操作する操作装it (9)
及びバーナ(1)を内装したバーナケース(lO)を設
け、このバーナケース(lO)下板外側には燃料バルブ
をイfする燃料ポンプ(11)を設け、この燃料バルブ
の開閉によりこの燃料ポンプ(11)で燃料タンク(1
2)内の燃料を吸入して該バーナ(1)へ供給する構成
であり、上板外側には送風機(13)及び変速モータ(
10を設け、この変速モータ(14)の回転で該送風a
(13)を回転駆動して供給燃料量に見合った燃焼用空
気を該バーナ(1)へ供給する構或であり,該後壁板に
は排風m(15)及びモータ(18)を設けた構戊であ
り、該左右壁板には掃除口を設け、この袖除口にはカバ
ー(17)を設けた構或である. 該機壁(8)内下部の中央部には前後方向に亘り移送螺
旋を内装した集殼樋(1日)を設け、この集穀樋(l8
)上側には通気網間に形威した乾燥室(2)を並設して
連通させ、この乾燥室(2)下部には回転により穀粒を
繰出し流下させる繰出バルブ(18)を軸装し、これら
各乾燥室(2)内側間には熱風室(20)を形成し,こ
の熱風室(2o)内にはこの熱風室(20)内の熱風温
度を検出する熱風温度センサ(3)を設け、この熱風室
(20)と該バーナ(1)とは連通させた構戊であり、
該各乾燥室(2)外側には排風室(2l)を形威し,こ
の排風室(2l)内には排風温度を検出する排風温度セ
ンサ(4)及び排風湿度を検出する排風湿度センサ(5
)を設け、この各搏風室(2l)と該排風II(15)
とは連通させた構成であり、該モータ(l6)で該集穀
樋(l8)内の移送螺旋、該各繰出バルブ(19)及び
該排風機(l5)等を回転駆動する構成である. 該各乾燥室(2)上側には貯留室(22)を形成して連
通させ、この貯留室(22)上側には天井板(23)及
び移送螺旋を内装した移送樋(20を設け、この移送樋
(20中央部には移送穀粒をこの貯留室(22)内へ供
給する供給「1を設け、この供給口の下側には該貯留室
(22)内へ穀粒を均等に拡散還元する拡散W (25
)を設けた構成である。
Conventional technology In the past, grains flowing down a drying chamber were exposed to hot air and dried by the hot air generated from a burner passing through the drying chamber and being discharged outside the machine. When the drying is detected to have the same grain content as the finishing target moisture content, the drying is controlled to stop. During this drying, the hot air temperature is detected by the hot air temperature sensor, and the exhaust air temperature is detected by the exhaust air temperature sensor. Drying control is carried out based on the detected results of air temperature and exhaust air temperature, but this method does not perform control to determine specific abnormalities. The problem that the invention aims to solve is that grains are repeatedly circulated downward in the drying chamber. The hot air generated from the burner passes through this drying chamber and is discharged outside the machine, where it is exposed to the hot air and dried, and when the moisture sensor detects the same grain moisture as the finishing target moisture, the grains are dried. During this drying, the hot air temperature is detected by a hot air temperature sensor, and the hot air temperature is controlled so that the detected hot air temperature is the same as the set hot air temperature, and the exhaust air temperature is The temperature of the grains being dried is calculated based on the detected exhaust air temperature and the detected hot air temperature, and the hot air temperature is controlled so that this calculated grain temperature does not rise above the set grain temperature. The grain is then dried,
During this drying process, for example, if you forget to close the cover of the cleaning port for cleaning the inside of the dryer, or if a circulation stoppage occurs in the grains that are being circulated downstream, these abnormalities will be identified and controlled. It is something. Means for Solving the Problems This invention provides a hot air temperature sensor (3) that detects the temperature of hot air that is passed through a drying chamber (2) in which hot air is passed through a burner (1) and dried while the grains are flowing down. ), an exhaust air temperature sensor (4) that detects the temperature and humidity of the exhaust air discharged from the drying room (2) to the outside of the machine, an exhaust air humidity sensor (5),
In a grain dryer equipped with a moisture sensor (6) that detects the moisture content of f2 grains during drying, the theoretical exhaust air temperature and exhaust air humidity based on the detected moisture value of the grains and the currently detected The structure of the abnormal point detection method is characterized in that the difference between the exhaust air temperature and the exhaust air humidity is calculated, and a predetermined abnormal point is controlled based on this difference. Effect of the invention The grains, which are repeatedly circulated in the drying chamber (2), are passed through the burner (
The hot air generated from 1) is passed through this drying chamber (2) and exhausted to the outside of the machine, where it is exposed to the hot air and dried, and the wood fraction sensor (6) is activated. When grain moisture is detected, the drying of the grains is controlled to stop, but the hot air temperature during this drying is detected by the hot air temperature sensor (3), and the hot air is adjusted so that the detected hot air temperature becomes the same as the set hot air temperature. The temperature is controlled and the exhaust air temperature is measured by the exhaust air temperature sensor (4)
The exhaust air humidity is detected by the exhaust air humidity sensor (5), and the temperature of the grains being dried is calculated based on the detected exhaust air temperature and the detected hot air temperature, and this calculated grain temperature is The grains are dried because the hot air temperature is controlled so as not to rise above the set grain temperature, and the theoretical exhaust air temperature and exhaust air humidity are determined based on the set hot air temperature and the detected grain moisture. The difference between the calculated theoretical exhaust air temperature and theoretical exhaust air humidity and the detected exhaust air temperature and exhaust air humidity is calculated.
Based on this calculation difference, it is determined, for example, that the cover of the cleaning port has been forgotten to be tightened, or that there is a stoppage in the flow-down circulation of grains, and these abnormalities are determined. Effects of the Invention According to this invention, the theoretical exhaust air temperature and exhaust air humidity are calculated, and the calculated theoretical exhaust air temperature and theoretical exhaust air humidity are combined with the exhaust air temperature and exhaust air detected by the exhaust air temperature sensor (4). The difference between the humidity and the exhaust air humidity detected by the humidity sensor (5) is calculated, and based on this calculated difference, a predetermined abnormality occurring in the grain dryer is detected. For example, by being able to determine if you have forgotten to close the cover of the cleaning port, or if the grains have stopped running, it may be possible to delay the drying of the grains, or cause the grains to become over-dried.
1 no longer occurs. Embodiment In the illustrated example, (7) is a grain dryer, and the wall (8) of this dryer (7) is rectangular in shape in the front and back direction. Consisting of front and rear wall plates and left and right wall plates, this front wall plate has an operating device (9) for starting and stopping the dryer (7).
A burner case (lO) with a burner (1) inside is provided, and a fuel pump (11) for operating a fuel valve is provided on the outer side of the lower plate of the burner case (lO). (11) at the fuel tank (1
2) and supplies it to the burner (1), and a blower (13) and a variable speed motor (
10 is provided, and the rotation of this variable speed motor (14) causes the air blow a to be
(13) is rotatably driven to supply combustion air commensurate with the amount of supplied fuel to the burner (1), and an exhaust air m (15) and a motor (18) are provided on the rear wall plate. The left and right wall panels are provided with cleaning holes, and the sleeve openings are provided with a cover (17). At the center of the lower part of the machine wall (8), there is a grain collection trough (1 day) equipped with a transfer spiral in the front and back direction, and this grain collection trough (l8
) On the upper side, a formal drying chamber (2) is arranged in parallel between the ventilation networks and communicated with each other, and at the bottom of this drying chamber (2), a feeding valve (18) that feeds out the grains by rotation and flows down is mounted on a shaft. A hot air chamber (20) is formed between the inner sides of each of these drying chambers (2), and a hot air temperature sensor (3) for detecting the hot air temperature in this hot air chamber (20) is installed in this hot air chamber (2o). The hot air chamber (20) and the burner (1) are connected to each other,
Each drying room (2) has an air exhaust chamber (2l) on the outside, and inside this air exhaust chamber (2l) there is an exhaust air temperature sensor (4) that detects the exhaust air temperature and an exhaust air temperature sensor (4) that detects the exhaust air humidity. Exhaust air humidity sensor (5
), and each ventilation chamber (2l) and the ventilation II (15) are provided.
The motor (16) is configured to rotationally drive the transfer spiral in the grain collection gutter (18), each of the delivery valves (19), the exhaust fan (15), etc. A storage chamber (22) is formed above each of the drying chambers (2) and communicated with each other, and a ceiling plate (23) and a transfer gutter (20) equipped with a transfer spiral are provided above the storage chamber (22). A transfer gutter (20) is provided with a supply "1" in the center for supplying the transferred grains into this storage chamber (22), and a supply "1" is provided at the bottom of this supply port for distributing the grains evenly into the storage chamber (22). Reducing diffusion W (25
).

昇穀機(2B)は,前記前壁板前方部に設け、内部には
パケットコンベア(27)ベルトを上下プーリ間に張設
し、上端部と該移送抛(20始端部との間に投出筒(2
8)を設けて連通させ,下端部と前記集穀樋(18)終
f2部との間には供給樋(28)を設けて連通させた構
成であり、この昇穀機(26)上部にはモータ(30)
を設け、このモータ(30)テ該パケットコンベア(2
7)ベルト、該移送樋(20内の該移送螺旋及び該拡散
ffl (25)等を回転駆動する構成であり、又上下
方向ほぼ中央部には該パケットコンベア(27)で上部
へ搬送中に落下する穀粒を受け,この穀粒を挟圧粉砕す
ると同時に、この粉砕穀粒の水分を検出する水公センサ
(6)を設け、この水分センサ(6)の各部は内装した
モータ(31)で回転駆動する構成である.前記操作装
置(9)は,箱形状でこの箱休の表面板には、前記乾燥
a(7)を張込、乾燥及び排出の各作業別に始動操作す
る始動スイッチ(32)、停止操作する停止スイッチ(
33) ,前記パーナ(1)から発生する熱風温度を穀
物種類及び張込昂の操作位置によって設定する各温度設
定撒み(34)、仕上目標水分を設定する水分設定孤み
(35)、検出熱風温度、検出穀粒水分及び乾燥残時間
1を交互に表示する表示窓(3B)及びモニター表示等
を設けた構成であり、内部には乾燥制御装置(37)及
び燃焼制御装置(38)を設けた構成であり、該各設定
諷み(35)、(3B)はロータリスイッチ方式であり
、操作位置によって所定の数値が設定される構成である
. 該乾燥制御装置(37)は、前記水分センサ(6)が検
出する検出値をA−D変換するA−D変換器(39) 
,このA−D変換器(39)で変換された変換値が入力
される入力回路(40) ,該各スイッチ(32)、(
33)及び該水分設定孤み(35)の操作が入力される
入力回路(4−1),これら各入力回路(40) . 
 (41)から人力される各種入カ値を算術論理@算及
び比較rA算等を行なうCPU(42)このCPU(4
2)から指令される各種指令を受けて出力する出力回路
(43)を設けた構成である.前記燃焼制御装置(38
)は、前記各温度センサ(3).(4)及び前記排風湿
度センサ(5)が検出する検出値をA−D変換するA−
D変換器(0)、このA−D変換器(44)で変換され
た変換値が入力される入力回路(45) ,前記各温度
設定撒み(30、(30の操作が入力される入力回路(
4B) ,これら各入力回路(45)、(4B)から入
力される各種入力値を算術論理演算及び比較演算等を行
ナウ該C PU (42) , .:(7)C PU 
(42) カら指令される各種指令を受けて出力する該
出力回路(43)を設けたMA或である. 前記乾燥制御装21 (37)による乾燥制御及び異常
個所の判定制御は、前記水分設定弧み(35)を操作し
て設定した仕上目標水分と回じ穀粒水分を前記水分セン
ナ(6)が検出して前記CPU(42)へ入力されると
,この乾燥制御装1 (37)で自動制御して前記乾燥
m (7)を自動停止制御する構成であり、異常個所判
定制御は、前記各温度設定餓み(34)を操作して設定
した熱風温度が訣cPU(42)へ人力されると、この
設定した熱NL温度と検出した穀粒水分とによって、第
2図,第3図の如く、該CPU(42)へ設定して記憶
させた変動係数(A)及び変動係数CB)が選定され,
これら変動係数(A)、(B)と設定熱風温度とが、該
CPU(42)へ設定して記憶させた下記式(イ)及び
(ロ)へ代入されて理論上の排風温度( TE)と理論
上の排風湿度(VE)とが算出される構威であり,例え
ば、設定熱風温度( TA)が50℃であり、検出穀粒
水分(89)が17%であると第2図から変動係数(A
)は0.84と選定され、又第3図から変動係数(B)
は1.6と選定される構成であり、これにより理論排風
温度(TE)は32℃と演算する構成であり、 理論排風温度(TE) =設定熱風温度(T^)×変動
係数(A)・・・(イ) ノ/=50X(L84 〃      =32℃ 又理論排風湿度( VE)は80%と演算する構或であ
り、 理論排風湿度(VE) =設定熱風温度(TA) X変
動係数(B)・・・(口) tt             =50Xl.El〃 
         =80% これら算出の理論上の排風温度(TE)32℃及び理論
上の排風湿度(VE)80%と前記排風温度センサ(4
)が検出した排風温度( τB)及び前記排風湿度セン
サ(5)が検出した排風湿度(VB)とが比較される構
成であり、検出排風温度( TB)が40℃であり,検
出排風湿度(VB)が75%であると、下記式(ハ)か
ら排風温度差(T)が8℃と演算する構成であり, 排風温度差(T)=検出排風溢度(TB) −理論排風
温度( T!)・・・(ハ) /l      = 4 0 − 3 2〃     
=8℃ 又下記式(二)から排風湿度差(V)が5%と演算する
構成であり、 排風湿度差(V)=検出排風湿度(ve) −理論排風
湿度( VE)・・・(二) //      = 7 5 − 8 0〃     
    = 5% これら算出された排風温度差(T)8℃及び算出された
排風湿度差(v)5%と、該CPU(42)へ設定して
記憶させた排風温度差(T)5℃及び設定して記憶させ
た排風湿度(V)7%とを比較する構戒であり,この比
較結果の領域によって下記の如く異常個所を判定制御す
る構成である.比較結果排風温度差は設定記憶の5℃の
範囲外であり、排風湿度差は設定記憶の7%の範囲内に
あることから、前記排風室(2l)内へ外気が直接吸入
されているためであり,前記掃除口の前記カバー(l7
)が完全に締付けられていないか、又は締め忘れている
異常と判定される構威であり、上記とは逆に排風温度差
は設定記憶の5℃の範囲内にあり,排風湿度差は設定記
憶の7%の範囲外であるとすると、前記乾燥室(2)内
を穀粒が流下@環していない異常と判定する構成であり
、理論排風温度差及び理論排風湿度差共に設定記憶の5
℃及び7%の範囲内であれば、前記乾燥機(7)に異常
個所がないと判定する構威であり、又理論排風溢度差及
び理論排風湿度差共に設定記憶の5℃及び7%の範囲外
であれば、前記排風温度センサ(4),前記排風湿度セ
ンサ(5)及び前記操作装!! (9)等に異常が発生
したと前記乾燥制御装L?(37)で判定制御する構成
である.前記燃焼制御装置(38)による燃焼制御は,
前記熱風温度センサ(3)が検出する熱風温度が前記C
PU(42)へ入力され、この入力値と、前記各温度設
定振み(30を操作して設定した熱風温度が該CPU(
42)へ入力され,この入力値とが比較され、相違して
いると設定熱風温度と同じ温度になるように、前記燃料
バルブの開閉回数が制御され、前記燃料ポンプ(l1)
で吸入される燃料量が制御される構成であり、又該熱風
温度センサ(3)が検出する熱風温度と、前記排風温度
センサ(4)が検出する排風溢度とが該CPU(42)
へ人力され、これら入力値によって乾燥中の穀粒の温度
がこのCPU(42)で算出され,この算出穀粒温度と
該CPU(42)へ設定して記憶させた穀粒温度,例え
ば,43℃と比較してこの設定穀粒温度43゜C以上に
算出穀粒温度が上昇しないように熱風温度を制御する構
威である. 以下,上記実施例の作用について説明する.操作装置(
9)の各設定孤み(34)、(34)、(35)を所定
位置へ操作し,乾燥作業を開始する始動スイッチ(32
)を操作することにより,穀粒乾燥4m (7)の各部
、バーナ(1)及び水分センサ(6)等が始動し、この
バーナ(1)から熱風が発生し、この熱風が熱風室(2
0)から乾燥室(2)を横断通風し.1風室(2l)を
経て排風機(15)で吸引排風されることにより、この
乾燥機(7)の貯留室(22)内へ収容した穀粒は,こ
の貯留室(22)から該乾燥室(2)内を流下中にこの
熱風に晒されて乾燥され、繰出バルプ(13)で下部へ
と繰出されて流下し,集穀樋(l8)内から供給樋(2
9)を経て昇穀機(20内へ下部の移送螺旋で移送供給
され,パケットコンベア(27)で上部へ搬送され投出
筒(28)を経て移送樋(20内へ供給され、この移送
樋(20から拡散盤(25)上へ上部の移送螺旋で移送
供給され,この拡散盤(25)で該貯留室(22)内へ
均等に拡散還元され,循環乾燥されて該水分センサ(6
)が該水分設定孤み(35)を操作して設定した仕上口
標水分と同じ穀粒水分を検出すると,該操作装置(9)
の乾燥制御装W1(37)で自動制御して該乾燥機(7
)を自動停止する. この乾燥作業中は、該各温度設定孤み(30の操作で設
定した設定熱風温度と該水分センサ(6)が検出する穀
粒水分とによって、理論上の排風湿度及び排風湿度が算
出され、この理論排風温度及び排風湿度と排風温度セン
サ(4)で検出する排風温度及び排風湿度センサ(5)
で検出する排風湿度との差が演算され、この演算差にも
とづいて、掃除口のカバー(17),穀粒の循環の停止
,該各温度センサ(3).(4).該排風湿度センサ(
5)及び該操作装置(9)等に異常が発生すると、この
異常個所が判定される.
The grain raising machine (2B) is installed in front of the front wall plate, and inside thereof, a packet conveyor (27) belt is stretched between the upper and lower pulleys, and a belt is inserted between the upper end and the starting end of the transfer rod (20). Canister (2)
8) for communication, and a supply gutter (28) is provided between the lower end and the end f2 section of the grain collecting gutter (18) for communication. is the motor (30)
The motor (30) is connected to the packet conveyor (2).
7) The belt, the transfer gutter (the transfer spiral in 20, the diffusion ffl (25), etc.) are rotatably driven, and the packet conveyor (27) has a structure in which the packet conveyor (27) is conveying the packet to the upper part. A water sensor (6) is installed to receive the falling grains, crush the grains under pressure, and at the same time detect moisture in the crushed grains. Each part of the moisture sensor (6) is connected to an internal motor (31). The operating device (9) is box-shaped and has a start switch on the surface plate of the box for starting the drying a (7) for each operation of loading, drying, and discharging. (32), stop switch for stopping operation (
33) , each temperature setting soaker (34) that sets the temperature of the hot air generated from the parna (1) according to the grain type and the operation position of the staking machine, a moisture setting knob (35) that sets the finishing target moisture, and a detection The structure is equipped with a display window (3B) and a monitor display that alternately display hot air temperature, detected grain moisture content, and remaining drying time 1, and a drying control device (37) and a combustion control device (38) are installed inside. Each of the settings (35) and (3B) is a rotary switch type, and a predetermined value is set depending on the operating position. The drying control device (37) includes an A-D converter (39) that converts the detection value detected by the moisture sensor (6) from A to D.
, an input circuit (40) into which the converted value converted by this A-D converter (39) is input, each switch (32), (
33), an input circuit (4-1) into which the operation of the moisture setting knob (35) is input, and each of these input circuits (40).
CPU (42) This CPU (42) performs arithmetic logic @ calculation, comparison rA calculation, etc. on various input values input manually from (41).
The configuration includes an output circuit (43) that receives and outputs various commands issued from 2). The combustion control device (38
) are each temperature sensor (3). (4) and A- to A-D converting the detection value detected by the exhaust air humidity sensor (5);
D converter (0), an input circuit (45) into which the converted value converted by this A-D converter (44) is input, an input circuit (45) into which the operation of each temperature setting switch (30, (30) is input circuit(
4B), these CPUs (42), . :(7) CPU
(42) This MA is equipped with an output circuit (43) that receives and outputs various commands from the machine. The drying control and the determination control of abnormal areas by the drying control device 21 (37) are carried out by the moisture sensor (6) adjusting the finishing target moisture and grain moisture set by operating the moisture setting arc (35). When detected and input to the CPU (42), the drying control device 1 (37) automatically controls the drying m (7) to automatically stop the abnormality location determination control. When the hot air temperature set by operating the temperature setting (34) is manually input to the CPU (42), the set heat NL temperature and the detected grain moisture are used to achieve the values shown in Figures 2 and 3. As such, the coefficient of variation (A) and coefficient of variation CB) set and stored in the CPU (42) are selected,
These coefficients of variation (A), (B) and the set hot air temperature are substituted into the following equations (a) and (b) set and stored in the CPU (42) to calculate the theoretical exhaust air temperature (TE ) and the theoretical exhaust air humidity (VE) are calculated. For example, if the set hot air temperature (TA) is 50°C and the detected grain moisture (89) is 17%, the second From the figure, the coefficient of variation (A
) was selected as 0.84, and from Figure 3 the coefficient of variation (B)
is selected as 1.6, and the theoretical exhaust air temperature (TE) is calculated as 32℃. Theoretical exhaust air temperature (TE) = Set hot air temperature (T^) x Coefficient of variation ( A)...(B) ノ/=50 ) X variation coefficient (B)...(mouth) tt =50Xl.El〃
= 80% These calculated theoretical exhaust air temperature (TE) 32°C and theoretical exhaust air humidity (VE) 80% and the exhaust air temperature sensor (4
) The exhaust air temperature (τB) detected by the exhaust air humidity sensor (5) is compared with the exhaust air humidity (VB) detected by the exhaust air humidity sensor (5), and the detected exhaust air temperature (TB) is 40 ° C. When the detected exhaust air humidity (VB) is 75%, the exhaust air temperature difference (T) is calculated as 8°C from the following formula (c), and the exhaust air temperature difference (T) = detected exhaust air overflow degree. (TB) - Theoretical exhaust air temperature (T!)... (c) /l = 4 0 - 3 2〃
= 8℃ Also, the exhaust air humidity difference (V) is calculated as 5% from the following formula (2), and the exhaust air humidity difference (V) = detected exhaust air humidity (ve) - theoretical exhaust air humidity (VE) ...(2) // = 7 5 - 8 0〃
= 5% The calculated exhaust air temperature difference (T) 8°C and the calculated exhaust air humidity difference (v) 5%, and the exhaust air temperature difference (T) set and stored in the CPU (42). The system is designed to compare 5°C and the set and memorized exhaust air humidity (V) of 7%, and based on the area of this comparison result, abnormalities are determined and controlled as shown below. As a result of the comparison, the exhaust air temperature difference is outside the 5°C range of the set memory, and the exhaust air humidity difference is within the 7% range of the set memory, so outside air is directly drawn into the exhaust chamber (2L). This is because the cover (17) of the cleaning port
) is not completely tightened or has been forgotten.Contrary to the above, the exhaust air temperature difference is within the 5℃ range of the setting memory, and the exhaust air humidity difference is determined to be abnormal. is outside the range of 7% of the setting memory, it is configured to determine that there is an abnormality in which grains are not flowing down in the drying chamber (2), and the theoretical exhaust air temperature difference and theoretical exhaust air humidity difference 5 of setting memory together
℃ and within the range of 7%, it is determined that there is no abnormality in the dryer (7), and the theoretical exhaust air overflow difference and theoretical exhaust air humidity difference are both 5°C and 7% in the setting memory. If it is outside the range of 7%, the exhaust air temperature sensor (4), the exhaust air humidity sensor (5), and the operation device! ! (9) If an abnormality occurs in the drying control device L? This is a configuration that performs judgment control using (37). Combustion control by the combustion control device (38) includes:
The hot air temperature detected by the hot air temperature sensor (3) is the C
This input value and the hot air temperature set by operating each temperature setting switch (30) are input to the CPU (42).
42), this input value is compared, and if there is a difference, the number of times the fuel valve is opened and closed is controlled so that the temperature becomes the same as the set hot air temperature, and the fuel pump (l1)
The hot air temperature detected by the hot air temperature sensor (3) and the exhaust air overflow level detected by the exhaust air temperature sensor (4) are controlled by the CPU (42). )
The temperature of the grain being dried is calculated by this CPU (42) based on these input values, and this calculated grain temperature and the grain temperature set and stored in the CPU (42), for example, 43 The system is designed to control the hot air temperature so that the calculated grain temperature does not rise above the set grain temperature of 43°C. The operation of the above embodiment will be explained below. Operating device (
9) to the respective setting positions (34), (34), and (35), and turn the start switch (32) to start the drying work.
), various parts of the grain drying 4m (7), burner (1), moisture sensor (6), etc. are started, hot air is generated from this burner (1), and this hot air is sent to the hot air chamber (2).
0) cross-ventilates the drying room (2). The grains stored in the storage chamber (22) of this dryer (7) are removed from the storage chamber (22) by being suctioned and exhausted by the exhaust fan (15) through the 1-air chamber (2L). While flowing down inside the drying chamber (2), the grain is exposed to the hot air and dried, and the grain is fed out to the lower part by the feeding valve (13) and flows down, from inside the collection gutter (18) to the supply gutter (2).
9), the grains are transferred into the hoisting machine (20) by the lower transfer spiral, are transported to the upper part by the packet conveyor (27), are fed through the dispensing tube (28), and are fed into the transfer gutter (20). (from 20 to the diffusion plate (25) by the upper transfer spiral, and in this diffusion plate (25) it is evenly diffused and reduced into the storage chamber (22), circulated and dried, and the moisture sensor (6)
) detects the same grain moisture as the finishing standard moisture set by operating the moisture setting knob (35), the operating device (9)
The dryer (7) is automatically controlled by the drying control device W1 (37) of the dryer (7).
) will automatically stop. During this drying work, the theoretical exhaust air humidity and exhaust air humidity are calculated based on the set hot air temperature set in step 30 and the grain moisture detected by the moisture sensor (6). The exhaust air temperature and exhaust air humidity sensor (5) detects this theoretical exhaust air temperature and exhaust air humidity with the exhaust air temperature sensor (4).
The difference between the humidity and the exhaust air humidity detected by the temperature sensor (3) is calculated, and based on this calculation difference, the cleaning port cover (17), the stoppage of grain circulation, and the respective temperature sensors (3) are installed. (4). The exhaust air humidity sensor (
5), the operating device (9), etc., the location of the abnormality is determined.

【図面の簡単な説明】[Brief explanation of drawings]

図は、この発明の一実施例を示すもので、第1図はブロ
ック図、第2図は設定熱風温度、穀粒木分と変動係数(
A)との関係図,第3図は設定熱風温度、穀粒水分と変
動係数(B)との関係図、第4図は一部破断せる穀粒乾
燥機の全体側面図、第5図は第4図のA−A断面図、第
6図は第4図のB−B%面図,第7図は穀粒乾燥機の一
部の一部破断せる正面図である. 図中、符号(1)はバーナ,(2)は乾燥室,(3)は
熱風温度センサ、(4)は排風巴度センサ,(5)は排
風湿度センサ、(6)は水分センサを示す.
The figures show one embodiment of the present invention. Fig. 1 is a block diagram, and Fig. 2 shows set hot air temperature, grain wood fraction, and coefficient of variation (
Figure 3 is a diagram showing the relationship between set hot air temperature, grain moisture and coefficient of variation (B), Figure 4 is an overall side view of the grain dryer that can be partially cut away, and Figure 5 is a diagram showing the relationship between A) and Figure 3. FIG. 4 is a sectional view taken along line A-A in FIG. 4, FIG. 6 is a sectional view taken along line B-B in FIG. 4, and FIG. 7 is a partially cutaway front view of a part of the grain dryer. In the figure, (1) is the burner, (2) is the drying chamber, (3) is the hot air temperature sensor, (4) is the exhaust air velocity sensor, (5) is the exhaust air humidity sensor, and (6) is the moisture sensor. is shown.

Claims (1)

【特許請求の範囲】[Claims] 穀粒を流下させながらバーナ(1)による熱風を通風さ
せて乾燥する乾燥室(2)へ通風するこの熱風の温度を
検出する熱風温度センサ(3)、この乾燥室(2)から
機外へ排風される排風の温度と湿度とを検出する排風温
度センサ(4)、排風湿度センサ(5)、及び乾燥中の
穀粒水分を検出する水分センサ(6)を設けた穀粒乾燥
機において、穀粒の検出水分値のもとにおける理論上の
排風温度、及び排風湿度と、現在検出による排風温度、
及び排風湿度との差を演算し、この差にもとづいて所定
の異常個所を判定制御することを特徴とする異常個所検
出方式。
A hot air temperature sensor (3) detects the temperature of the hot air that is passed through the drying chamber (2) where the hot air is passed through the burner (1) and dried while the grains are flowing down, and from this drying chamber (2) to the outside of the machine. Grain provided with an exhaust air temperature sensor (4) that detects the temperature and humidity of the exhaust air, an exhaust air humidity sensor (5), and a moisture sensor (6) that detects grain moisture during drying. In the dryer, the theoretical exhaust air temperature and exhaust air humidity based on the detected moisture value of the grain, and the currently detected exhaust air temperature,
and exhaust air humidity, and based on this difference, a predetermined abnormal location is determined and controlled.
JP18517989A 1989-07-17 1989-07-17 Malfunction position detecting system for grain drier Pending JPH0350486A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18517989A JPH0350486A (en) 1989-07-17 1989-07-17 Malfunction position detecting system for grain drier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18517989A JPH0350486A (en) 1989-07-17 1989-07-17 Malfunction position detecting system for grain drier

Publications (1)

Publication Number Publication Date
JPH0350486A true JPH0350486A (en) 1991-03-05

Family

ID=16166224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18517989A Pending JPH0350486A (en) 1989-07-17 1989-07-17 Malfunction position detecting system for grain drier

Country Status (1)

Country Link
JP (1) JPH0350486A (en)

Similar Documents

Publication Publication Date Title
JPH0350486A (en) Malfunction position detecting system for grain drier
JPH02236436A (en) Detection of impurity in grain drier and drying control system
JP2973537B2 (en) Fuel supply control system such as grain dryer
JPH02219976A (en) Dry control system for grain drier
JPS6287783A (en) Setter for drying time of cereal grain for cereal grain drier
JPH03271690A (en) Control system for drying in grain drier
JPH0476384A (en) Drying control system for grain dryer
JPH04121579A (en) Drying control system in crops particle drying machine
JPH01221617A (en) Grain flow rate detecting device
JPH0462386A (en) Drying process control method of grain dryer
JPS6380187A (en) Cereal grain drying control system of cereal grain drier
JPH03113282A (en) Dry control system for grain dryer
JPH0428994A (en) Drying control system for cereals drier
JPH04302989A (en) Dry control system for cereals drier
JPS62178880A (en) Cereal grain drying control system of cereal grain drier
JPH0712463A (en) Under abnormal condition of moisture sensor thereof handling system for operation of grain dryer
JPH01219491A (en) Control system for cereals grain drier
JPS62245081A (en) Cereal-grain drying control system of cereal grain drier
JPH03113279A (en) Dry control system for grain dryer
JPH03230082A (en) Drying control apparatus of grain dryer
JPH0350485A (en) Control system for grain drier
JPS6233275A (en) Control system of drying of cereal grain of cereal grain drier
JPH0476383A (en) Operation control device for grain dryer
JPH02236443A (en) Detection of grain moisture in grain drier
JPH02143083A (en) Drying control system for grain drier