JPH02301133A - Forming method for back side electrode of semiconductor device - Google Patents

Forming method for back side electrode of semiconductor device

Info

Publication number
JPH02301133A
JPH02301133A JP12118089A JP12118089A JPH02301133A JP H02301133 A JPH02301133 A JP H02301133A JP 12118089 A JP12118089 A JP 12118089A JP 12118089 A JP12118089 A JP 12118089A JP H02301133 A JPH02301133 A JP H02301133A
Authority
JP
Japan
Prior art keywords
film
back side
electrode
etching
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12118089A
Other languages
Japanese (ja)
Inventor
Hiroaki Matsuda
松田 裕昭
Masanori Inuta
乾田 昌功
Koji Yoshida
浩二 吉田
Takashi Wakasugi
若杉 隆司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyoda Automatic Loom Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Automatic Loom Works Ltd filed Critical Toyoda Automatic Loom Works Ltd
Priority to JP12118089A priority Critical patent/JPH02301133A/en
Publication of JPH02301133A publication Critical patent/JPH02301133A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To remarkably increase the adhesive strength of a back side electrode by forming roughness amplified to the fine uneven part of the surface of a polycrystalline film on the back side of a semiconductor substrate, and forming an electrode on the back side increased in its surface area (adhesive face). CONSTITUTION:A polysilicon film 12 having approx. 3000Angstrom is first grown on the rear face 11a of a silicon substrate 11. Then, the front side of the film 12 is heat-treated in an oxidative atmosphere, or wet oxidized with acid thereby to thinly form a silicon oxide film (SiO2) 13. Thereafter, the whole surface is dry etched under the conditions of sufficiently large etching selection ratio of the film 12 to the film 13. Then, an electrode material is deposited on the rough back side 11a of the substrate 11 by a vacuum depositing method or a sputtering method to form a back side electrode 14. The electrode 14 can be, for example, formed of a three-layer structure of chromium, nickel and gold sequentially from the back side 11a.

Description

【発明の詳細な説明】 (概  要〕 本発明は、各種半導体装置の裏面電極を形成する方法に
関し、半導体基板に対する裏面電極の接着強度を高める
ため、半導体基板の裏面に多結晶膜を形成し、その表面
を酸化した後、これらを十分に大きな選択比でエツチン
グすることにより、上記半導体基板の裏面に上記多結晶
膜表面の粒状の凹凸に対応して増幅された荒れを生じさ
せ、このように荒れて表面積(接着面)の大きくなった
裏面に電極を形成することにより、接着強度の増大を図
ったものである。
[Detailed Description of the Invention] (Summary) The present invention relates to a method for forming a back electrode of various semiconductor devices, in which a polycrystalline film is formed on the back surface of a semiconductor substrate in order to increase the adhesive strength of the back electrode to the semiconductor substrate. After oxidizing the surface, etching them with a sufficiently large selection ratio produces amplified roughness on the back surface of the semiconductor substrate corresponding to the granular irregularities on the surface of the polycrystalline film. By forming electrodes on the back surface, which has become rough and has a large surface area (adhesive surface), the adhesive strength is increased.

〔産業上の利用分野〕[Industrial application field]

本発明は、例えばパワー用トランジスタ等のような裏面
電極を有する半導体装置の製造工程におCする、裏面電
極の形成方法に関する。
The present invention relates to a method for forming a back electrode, which is used in the manufacturing process of a semiconductor device having a back electrode, such as a power transistor.

〔従来の技術〕[Conventional technology]

従来は、第2図に示すように、単にシリコン基板lの裏
面la上に、電極材料を真空蒸着法やスパッタ法により
堆積させて、裏面電極2を形成していた。
Conventionally, as shown in FIG. 2, the back electrode 2 has been formed by simply depositing an electrode material on the back surface la of a silicon substrate l by vacuum evaporation or sputtering.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記のよう、にして裏面電極2が形成され、素子が完成
すると、今度は素子全体が上記裏面電極2を介してモリ
ブデン板等にハンダ等でダイホンディングされる。
After the back electrode 2 is formed as described above and the device is completed, the entire device is die-bonded to a molybdenum plate or the like using solder or the like via the back electrode 2.

ところが、上記のようにして形成された裏面電極2は、
シリコン基板lの裏面1aとの接着強度が弱いため、温
度サイクルに基づくシリコン基板lと上記モリブデン板
との熱膨張率の違い等により、シリコン基板lの裏面1
aから剥がれてしまい易いという問題があった。
However, the back electrode 2 formed as described above is
Since the adhesive strength with the back side 1a of the silicon substrate l is weak, the back side 1 of the silicon substrate l is
There was a problem that it was easy to peel off from a.

本発明は、上記従来の問題点に鑑みてなされたものであ
り、その目的は、半導体基板に対する裏面電極の接着強
度を高めて、温度サイクル等による剥がれを防止するこ
とのできる裏面電極形成方法を提供することにある。
The present invention has been made in view of the above-mentioned conventional problems, and its purpose is to provide a method for forming a back electrode that can increase the adhesive strength of the back electrode to a semiconductor substrate and prevent it from peeling off due to temperature cycles, etc. It is about providing.

(課題を解決するための手段) 本発明の裏面電極形成方法は、半導体基板の裏面に多結
晶膜を形成する工程と、該多結晶膜の表面を酸化して酸
化膜を形成する工程と、該酸化膜に対する前記多結晶膜
のエツチング選択比が十分に大きい条件で、前記酸化膜
及び多結晶膜にエツチングを施して除去する工程と、該
エツチングによって露出された前記半導体基板の裏面に
電極材料を堆積させて裏面電極を形成する工程とを備え
たことを特徴とする。
(Means for Solving the Problems) The method for forming a backside electrode of the present invention includes a step of forming a polycrystalline film on the backside of a semiconductor substrate, a step of oxidizing the surface of the polycrystalline film to form an oxide film, etching and removing the oxide film and the polycrystalline film under conditions where the etching selectivity of the polycrystalline film to the oxide film is sufficiently large; and applying an electrode material to the back surface of the semiconductor substrate exposed by the etching. and forming a back electrode by depositing.

〔作   用〕[For production]

半導体基板の裏面に形成された上記多結晶膜は多数の単
結晶粒の集まりであり、その表面には微細な粒状の凹凸
ができている。そのため、この多結晶膜の表面を酸化し
てできた酸化膜は、上記凹凸の状態に応じて、膜厚にむ
らが生じる。そこで、上記のように酸化膜に対する多結
晶膜のエツチング選択比が十分に大きい条件でエツチン
グを行うと、酸化膜の膜厚の薄い部分では厚い部分より
も短時間で除去されるので、その時間差に応じて、酸化
膜直下の多結晶膜におけるエツチングの進行度合に大き
な差が生じ、このエツチングの差がそのまま半導体基板
の裏面に影響を及ぼす。すなわち、上記多結晶膜表面の
凹凸に応じて生じた酸化膜の膜厚むらが増幅されて、半
導体基板の裏面に荒れとなって生じる。
The polycrystalline film formed on the back surface of the semiconductor substrate is a collection of many single crystal grains, and its surface has fine granular irregularities. Therefore, the oxide film formed by oxidizing the surface of this polycrystalline film has unevenness in film thickness depending on the state of the unevenness. Therefore, if etching is performed under conditions where the etching selectivity of the polycrystalline film to the oxide film is sufficiently large as described above, the thinner parts of the oxide film will be removed in a shorter time than the thicker parts, and the time difference will increase. Depending on the degree of etching, a large difference occurs in the degree of progress of etching in the polycrystalline film immediately below the oxide film, and this difference in etching directly affects the back surface of the semiconductor substrate. That is, the unevenness in the thickness of the oxide film caused by the unevenness on the surface of the polycrystalline film is amplified and becomes rough on the back surface of the semiconductor substrate.

これにより、半導体基板の裏面の表面積、すなわち裏面
電極との接着面が増大し、よって非常に大きな接着力が
得られる。
This increases the surface area of the back surface of the semiconductor substrate, that is, the bonding surface with the back electrode, and thus provides a very large adhesive force.

[実  施  例] 以下、本発明の実施例について、図面を参照しながら説
明する。
[Examples] Examples of the present invention will be described below with reference to the drawings.

第1図は、本発明の裏面電極形成方法の一実施例を示す
製造工程図である。
FIG. 1 is a manufacturing process diagram showing an embodiment of the back electrode forming method of the present invention.

まず第1図(a)に示すように、シリコン基板11の裏
面11a上に、厚さ3000人程度0ポリシリコン膜1
2を成長させる。ここで11図面上ではわからないが、
ポリシリコン膜12は直径100〜200人程度または
それ以下の微細な単結晶粒が多数集まってできており、
その表面には上記単結晶粒による微細な粒状の凹凸がで
きている。
First of all, as shown in FIG.
Grow 2. 11 Although it is not clear on the drawing,
The polysilicon film 12 is made up of a large number of fine single crystal grains with a diameter of about 100 to 200 grains or less,
The surface has fine granular irregularities formed by the single crystal grains.

続いて、第1図(b)に示すように、上記ポリシリコン
膜12の表面を酸化性雰囲気中で熱処理するか、或いは
酸によりウェット酸化することにより、シリコン酸化膜
(SiO□)13を薄く形成する。
Subsequently, as shown in FIG. 1(b), the surface of the polysilicon film 12 is heat-treated in an oxidizing atmosphere or wet-oxidized with acid to thin the silicon oxide film (SiO□) 13. Form.

この際、シリコン酸化膜13は図面上では均一な膜厚に
描かれているが、実際は均一な膜厚にならず、ポリシリ
コン膜12表面にできている上記凹凸の状態に応じて、
膜厚にむらが生じる。上記の酸化は、シリコン酸化膜1
3の膜厚が、厚い所で例えば100〜150人程度にな
るまで行う。
At this time, although the silicon oxide film 13 is drawn to have a uniform thickness in the drawing, in reality it is not uniform in thickness, and varies depending on the unevenness formed on the surface of the polysilicon film 12.
The film thickness becomes uneven. The above oxidation is performed on silicon oxide film 1
The process is continued until the film thickness in step 3 reaches about 100 to 150 people in thick places.

次に、シリコン酸化膜13に対するポリシリコン膜12
のエツチング選択比が十分に大きい条件で、全面にドラ
イエツチングを施す。例えば、シリコン酸化膜13のエ
ツチング速度を1とした場合、ポリシリコン膜12のエ
ツチング速度が10〜20程度となるような条件を選ぶ
。このような選択比を得るためのエツチングガスとして
は、例えばCFa 、CCl2F2 、CCl4等を使
用できる。
Next, the polysilicon film 12 is applied to the silicon oxide film 13.
Dry etching is applied to the entire surface under conditions where the etching selection ratio is sufficiently large. For example, if the etching rate of silicon oxide film 13 is 1, conditions are selected such that the etching rate of polysilicon film 12 is about 10 to 20. As an etching gas for obtaining such a selectivity, for example, CFa, CCl2F2, CCl4, etc. can be used.

このエツチングは、ポリシリコン膜12が全て除去され
て、シリコン基板11の裏面11aが完全に露出するま
で行う。
This etching is performed until all of the polysilicon film 12 is removed and the back surface 11a of the silicon substrate 11 is completely exposed.

上記のエツチングでは、シリコン酸化膜13の膜厚の薄
い部分では厚い部分よりも短時間で除去されるので、そ
の時間差に応じて、シリコン酸化膜13直下のポリシリ
コン膜12におけるエソチ−ングの進行度合に大きな差
が生じ、このエッチングの差がそのままシリコン基板1
1の裏面11aに影響を及ぼす。すなわち、このエツチ
ングにより、シリコン酸化膜13の膜厚むらが上記エツ
チング選択比に等しい10〜20倍に増幅されて、第1
図(C)に示すようにシリコン基板11の裏面llaの
荒れとなって生じる。エツチング後の裏面11aからは
、その表面粗さにして、例えば厚さ方向に1000〜2
000人程度、かつ面内方向に300〜500人程度の
非常に微細な荒れを得ることができる。
In the above etching, the thinner parts of the silicon oxide film 13 are removed in a shorter time than the thicker parts, so the progress of etho-etching in the polysilicon film 12 directly under the silicon oxide film 13 depends on the time difference. A large difference occurs in the degree of etching, and this difference in etching is directly reflected in the silicon substrate 1.
This affects the back surface 11a of 1. That is, by this etching, the film thickness unevenness of the silicon oxide film 13 is amplified by a factor of 10 to 20, which is equal to the etching selectivity, and the first
As shown in Figure (C), the back surface lla of the silicon substrate 11 becomes rough. The surface roughness of the back surface 11a after etching is, for example, 1000 to 2 in the thickness direction.
It is possible to obtain very fine roughness of about 300 to 500 in the in-plane direction.

その後、シリコン基板11の荒れた裏面11a上に、真
空蒸着法やスパッタ法で電極材料を堆積させることによ
り、第1図(d)に示すように裏面電極14を形成する
。この裏面電極14としては、裏面11a側から順に、
例えばクロム、ニッケル、金からなる3層構造とするこ
とができる。
Thereafter, an electrode material is deposited on the rough back surface 11a of the silicon substrate 11 by vacuum evaporation or sputtering to form a back electrode 14 as shown in FIG. 1(d). This back electrode 14 includes, in order from the back surface 11a side:
For example, it can have a three-layer structure consisting of chromium, nickel, and gold.

本実施例によれば、上述したようにシリコン基板llの
裏面11aにオングストロームオーダの非常に微細な荒
れを得ることができるので、裏面11aの表面積が大き
くなり、すなわち裏面電極14との接着面が大きくなり
、よって裏面電極14と裏面11aとの間で非常に大き
な接着力を得ることができる。これにより、前述したグ
イボンディング後においても、裏面電極14が裏面ll
a上からたやすく剥がれるようなことはなくなる。
According to this embodiment, as described above, it is possible to obtain extremely fine roughness on the order of angstroms on the back surface 11a of the silicon substrate 11, so that the surface area of the back surface 11a is increased, that is, the adhesive surface with the back electrode 14 is Therefore, a very large adhesive force can be obtained between the back electrode 14 and the back surface 11a. As a result, even after the above-mentioned Gui bonding, the back electrode 14 is
It will no longer be easily peeled off from above.

なお、上記実施例におけるポリシリコン膜12及びシリ
コン酸化膜13の厚さはほんの一例であり、これに限定
されることはない。
Note that the thicknesses of the polysilicon film 12 and silicon oxide film 13 in the above embodiments are just examples, and are not limited thereto.

また、シリコン基板11の裏面11aの表面粗さは、主
には、上述したエツチング選択比によって決定されるが
、この選択比も上述した値に限定されることはなく、裏
面1aに荒れを生じさせることのできる程度に十分に大
きな値であればよい。
Further, the surface roughness of the back surface 11a of the silicon substrate 11 is mainly determined by the etching selection ratio described above, but this selection ratio is not limited to the above-mentioned value, and may cause roughness on the back surface 1a. It is sufficient if the value is sufficiently large to the extent that it can be used.

更に、ポリシリコン膜12の代わりに、他の多結晶膜を
使用してもよい。ただし、この場合、その多結晶膜表面
に形成される酸化膜に対して十分なエツチング選択比を
とりうるものを選ぶ必要がある。
Furthermore, other polycrystalline films may be used instead of polysilicon film 12. However, in this case, it is necessary to select a material that can provide a sufficient etching selectivity with respect to the oxide film formed on the surface of the polycrystalline film.

また、裏面電極14の構造は上述したような3層構造で
ある必要は全くなく、その他の構造であっても本発明の
効果に何ら変わりはない。
Further, the structure of the back electrode 14 does not need to be the three-layer structure as described above, and the effects of the present invention will not change in any way even if other structures are used.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、半導体基板の裏面に多結晶膜表面の微
細な凹凸に対応して増幅された荒れを生じさせ、このよ
うに荒れて表面積(接着面)の大きくなった裏面に電極
を形成するようにしたので、裏面電極の接着力を著しく
増大させることができる。
According to the present invention, amplified roughness corresponding to minute irregularities on the surface of a polycrystalline film is generated on the back surface of a semiconductor substrate, and electrodes are formed on the back surface where the surface area (adhesion surface) is increased due to the roughness. By doing so, the adhesive force of the back electrode can be significantly increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(d)は本発明の裏面電極形成方法の一
実施例を示す製造工程図、 第2図(a)及び(ロ)は従来の裏面電極形°成力法の
一例を示す製造工程図である。 11・・・シリコン基板、 11a・・・裏面、 12・・・ポリシリコン膜、 13・・・シリコン酸化膜、 14・・・裏面電極。 特許出願人  株式会社豊田自動織機製作所(Q) 第1図
Figures 1 (a) to (d) are manufacturing process diagrams showing one embodiment of the back electrode forming method of the present invention, and Figures 2 (a) and (b) are examples of the conventional back electrode forming method. FIG. DESCRIPTION OF SYMBOLS 11...Silicon substrate, 11a...Back surface, 12...Polysilicon film, 13...Silicon oxide film, 14...Back surface electrode. Patent applicant: Toyota Industries Corporation (Q) Figure 1

Claims (1)

【特許請求の範囲】 半導体基板(11)の裏面(11a)に多結晶膜(12
)を形成する工程と、 該多結晶膜の表面を酸化して酸化膜(13)を形成する
工程と、 該酸化膜に対する前記多結晶膜のエッチング選択比が十
分に大きい条件で、前記酸化膜及び多結晶膜にエッチン
グを施して除去する工程と、該エッチングによって露出
された前記半導体基板の裏面に電極材料を堆積させて裏
面電極(14)を形成する工程とを備えたことを特徴と
する半導体装置の裏面電極形成方法。
[Claims] A polycrystalline film (12) is formed on the back surface (11a) of the semiconductor substrate (11).
), a step of oxidizing the surface of the polycrystalline film to form an oxide film (13), and etching the oxide film under conditions where the etching selectivity of the polycrystalline film to the oxide film is sufficiently large. and a step of etching and removing the polycrystalline film, and a step of depositing an electrode material on the back surface of the semiconductor substrate exposed by the etching to form a back electrode (14). A method for forming a backside electrode of a semiconductor device.
JP12118089A 1989-05-15 1989-05-15 Forming method for back side electrode of semiconductor device Pending JPH02301133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12118089A JPH02301133A (en) 1989-05-15 1989-05-15 Forming method for back side electrode of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12118089A JPH02301133A (en) 1989-05-15 1989-05-15 Forming method for back side electrode of semiconductor device

Publications (1)

Publication Number Publication Date
JPH02301133A true JPH02301133A (en) 1990-12-13

Family

ID=14804832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12118089A Pending JPH02301133A (en) 1989-05-15 1989-05-15 Forming method for back side electrode of semiconductor device

Country Status (1)

Country Link
JP (1) JPH02301133A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003063200A3 (en) * 2002-01-16 2005-01-27 Sputtered Films Inc Method for improving the adhesion of a coating

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003063200A3 (en) * 2002-01-16 2005-01-27 Sputtered Films Inc Method for improving the adhesion of a coating

Similar Documents

Publication Publication Date Title
US3886578A (en) Low ohmic resistance platinum contacts for vanadium oxide thin film devices
EP0856876A3 (en) Method of manufacturing a bonding substrate
JPH098124A (en) Insulation separation substrate and its manufacture
JPH02301133A (en) Forming method for back side electrode of semiconductor device
JPH03109731A (en) Manufacture of semiconductor substrate
JPS6377122A (en) Manufacture of semiconductor device
US6702637B2 (en) Method of forming a small gap and its application to the fabrication of a lateral FED
JP2857456B2 (en) Method for manufacturing semiconductor film
JPH01226166A (en) Manufacture of semiconductor device substrate
JPH06221945A (en) Semiconductor pressure sensor and manufacture thereof
JPS6258541B2 (en)
JPH02205339A (en) Manufacture of semiconductor device
JP2570729B2 (en) Method for manufacturing semiconductor device
KR100213759B1 (en) Fabricating method of micro-beam for semiconductor sensor
JPH05226307A (en) Manufacture of semiconductor substrate
JPH01224671A (en) Manufacture of semiconductor acceleration sensor
JPS62283679A (en) Manufacture of semiconductor pressure sensor
JPS6257114B2 (en)
JPS5823929B2 (en) Manufacturing method of semiconductor device
JPH06104680A (en) Surface acoustic wave element
JP2580612B2 (en) Method for manufacturing semiconductor device
JPH0233974A (en) Manufacture of pressure converter
JPH01259555A (en) Semiconductor device and manufacture thereof
JPS6337652A (en) Adhesion method of substrate for semiconductor device
JPH0290560A (en) Manufacture of capacitor insulating film