JPH0229731B2 - RENZOKUSHODONRAINNIOKERUKOTAINOREIKYAKUSOCHISHUTSUGAWAITAONSEIGYOHOHO - Google Patents

RENZOKUSHODONRAINNIOKERUKOTAINOREIKYAKUSOCHISHUTSUGAWAITAONSEIGYOHOHO

Info

Publication number
JPH0229731B2
JPH0229731B2 JP13911486A JP13911486A JPH0229731B2 JP H0229731 B2 JPH0229731 B2 JP H0229731B2 JP 13911486 A JP13911486 A JP 13911486A JP 13911486 A JP13911486 A JP 13911486A JP H0229731 B2 JPH0229731 B2 JP H0229731B2
Authority
JP
Japan
Prior art keywords
cooling
steel strip
water
temperature
jacket
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13911486A
Other languages
Japanese (ja)
Other versions
JPS62297418A (en
Inventor
Makoto Arai
Kuniaki Sato
Yasuhiro Yamaguchi
Isamu Shioda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP13911486A priority Critical patent/JPH0229731B2/en
Publication of JPS62297418A publication Critical patent/JPS62297418A/en
Publication of JPH0229731B2 publication Critical patent/JPH0229731B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、連続焼鈍ラインにおける鋼帯の冷
却装置出側板温制御方法に関し、とくに鋼帯の通
板量の変動や季節的要因による供給冷却水温の変
化に拘らず、鋼帯を所定の目標温度まで効率良く
制御冷却しようとするものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a method for controlling the plate temperature at the exit side of a cooling device for steel strip in a continuous annealing line, and in particular to supply cooling due to fluctuations in the amount of steel strip passing through or seasonal factors. The objective is to efficiently control and cool the steel strip to a predetermined target temperature regardless of changes in water temperature.

(従来の技術) 一般に表面処理用原板や深絞り用鋼板などは、
冷間圧延後、所定の機械的性質を付与するため
に、加熱、均熱および冷却などの熱処理を順次に
施すいわゆる連続焼鈍が施される。
(Conventional technology) In general, original sheets for surface treatment and steel sheets for deep drawing are
After cold rolling, so-called continuous annealing is performed in which heat treatments such as heating, soaking, and cooling are sequentially performed in order to impart predetermined mechanical properties.

このような連続焼鈍処理に採用されている冷却
方法としては、ガスジエツト冷却、ロール冷却お
よび浸漬冷却などがある。このうちガスジエツト
冷却は、冷却された雰囲気ガスを鋼帯に吹付ける
ことによつて、またロール冷却は、内部に冷媒を
通したロールに鋼帯を巻付けることによつて、さ
らに浸漬冷却は、冷却水槽に鋼帯を浸漬させるこ
とによつてそれぞれ冷却するもので、冷却速度は
ガスジエツト冷却、ロール冷却ついで浸漬冷却の
順に大きくなる。
Cooling methods employed in such continuous annealing include gas jet cooling, roll cooling, and immersion cooling. Of these, gas jet cooling involves blowing cooled atmospheric gas onto the steel strip, roll cooling involves wrapping the steel strip around a roll through which a refrigerant is passed, and immersion cooling involves The steel strip is cooled by immersing it in a cooling water tank, and the cooling rate increases in the order of gas jet cooling, roll cooling, and immersion cooling.

従つて連続焼鈍ラインの冷却帯において、再結
晶温度から大気中で酸化しない温度まで冷却する
場合、高温側ではガスジエツトおよび/またはロ
ール冷却を、一方低温側では浸漬冷却を用いるの
が最も効率的であると考えられている。
Therefore, in the cooling zone of a continuous annealing line, when cooling from the recrystallization temperature to a temperature that does not oxidize in the atmosphere, it is most efficient to use gas jet and/or roll cooling on the high temperature side, while immersion cooling on the low temperature side. It is thought that there is.

かかる浸漬冷却に関しては、これまでにも種々
の方法が提案されている。たとえば、特公昭57−
11931号および同57−11933号各公報に開示の方法
は、複数の冷却水槽を用い各水槽の注水制御を行
うことによつて、またスプレー冷却やミスト冷却
と組合わせることによつて、それぞれ鋼帯を効率
よく冷却すると共に、冷却後の水温をできるだけ
高めて温水としての有効利用も併せて図つたもの
である。
Regarding such immersion cooling, various methods have been proposed so far. For example, the
The methods disclosed in Publications No. 11931 and No. 57-11933 use multiple cooling water tanks to control water injection into each tank, and in combination with spray cooling and mist cooling. In addition to efficiently cooling the belt, the temperature of the water after cooling is raised as much as possible so that it can be used effectively as hot water.

ところで浸漬冷却は通常、鋼帯中の飽和固溶炭
素量の変化量が少なくなる250〜300℃程度の温度
から大気中でテンパーカラーの発生しない温度ま
での冷却に適用される。従来、かかる浸漬処理に
よる冷却速度が速すぎると、固溶炭素による時効
性の問題が懸念されたが、最近では非時効性の材
料としてたとえばNb添加極低炭素鋼など予め第
3元素で固溶炭素を固定した素材が用いられるよ
うになつた。従つて冶金的には冷却速度をいかに
高くしてもそれほど問題にならなくなつてきてお
り、むしろ高速化、高生産能率化などの面から、
最終冷却における冷却速度の一層の向上が望まれ
ている。
By the way, immersion cooling is usually applied to cooling from a temperature of about 250 to 300°C, at which the amount of change in the amount of saturated solid solute carbon in the steel strip is small, to a temperature at which temper color does not occur in the atmosphere. In the past, if the cooling rate by such immersion treatment was too fast, there were concerns about aging problems due to solid solution carbon, but recently, non-aging materials such as Nb-added ultra-low carbon steel have been developed using solid solution with a third element in advance. Materials that fixed carbon began to be used. Therefore, from a metallurgical perspective, it is becoming less of a problem no matter how high the cooling rate is.In fact, from the standpoint of increasing speed and production efficiency,
Further improvement of the cooling rate in final cooling is desired.

しかしながら上記した如き要望に対して、従来
の浸漬冷却は、次のような問題を残していた。
However, in response to the above-mentioned demands, conventional immersion cooling still has the following problems.

(1) 冷却水の温度上昇を抑制するためには、冷却
水槽中への冷却水の補給が不可欠であるが、こ
の場合水槽内の水の流れは上層部に止まり、下
部では水の動きはほとんどないことから、高温
の鋼帯が冷却水中に浸漬される際に鋼帯表面に
は蒸気膜が発生し、この蒸気膜の除去、破壊が
困難なため、冷却効率には自ら限界があつた。
それ故、冷却処理の高速化、高能率化を図るた
めには、浸漬冷却装置の大型化が余儀なくさ
れ、建設費、設置スペースなどの面での不利が
大きかつた。さらに既設設備の改善によつて高
速化を図ることはほとんど不可能に近かつた。
(1) In order to suppress the temperature rise of the cooling water, it is essential to replenish the cooling water into the cooling water tank, but in this case, the flow of water in the tank stops in the upper part, and the water does not move in the lower part. As a result, when a high-temperature steel strip is immersed in cooling water, a vapor film is generated on the surface of the steel strip, and this vapor film is difficult to remove or destroy, so cooling efficiency has its own limits. .
Therefore, in order to increase the speed and efficiency of the cooling process, it is necessary to increase the size of the immersion cooling device, which is disadvantageous in terms of construction costs and installation space. Furthermore, it was almost impossible to increase speed by improving existing equipment.

(2) 上記のように浸漬水槽内の水の動きが不均一
であるため温度むらが生じ、鋼帯に悪影響を与
える。
(2) As mentioned above, the uneven movement of water in the immersion tank causes temperature unevenness, which adversely affects the steel strip.

(3) 浸漬冷却水槽から排出される冷却水を温水と
して再利用する場合には、浸漬槽を少なくとも
2槽としてカスケード制御を行わねばならず、
従つて装置がさらに大型化するだけでなく、複
雑な制御も必要となる。
(3) When reusing the cooling water discharged from the immersion cooling water tank as hot water, cascade control must be performed using at least two immersion tanks.
Therefore, not only the device becomes larger but also requires complicated control.

ところで発明者らは、先に上記の諸問題を有利
に解決するものとして、特願昭60−162909号明細
書において、連続焼鈍ラインの冷却ゾーンを通過
させた鋼帯を最終冷却するに際し、第3図に示し
たように鋼帯を、その表裏面から冷却水の流路を
隔てて対設した整流板をそなえる水冷ジヤケツト
で被い、この水冷ジヤケツト中を、鋼帯の走行方
向とは逆向きにしかも該鋼帯の表裏面に沿う整流
として冷却水を強制流動させることから成る連続
焼鈍処理における鋼帯の冷却方法およびその実施
に用いて好適な冷却装置を提案した。
By the way, in order to advantageously solve the above-mentioned problems, the inventors disclosed in Japanese Patent Application No. 162909/1987 that, when final cooling a steel strip passed through a cooling zone of a continuous annealing line, As shown in Figure 3, a steel strip is covered with a water-cooling jacket that has rectifying plates placed opposite each other across the cooling water flow path from the front and back sides of the steel strip, and the water cooling jacket is run in the opposite direction to the running direction of the steel strip. We have proposed a cooling method for a steel strip in continuous annealing treatment, which consists of forcing cooling water to flow in a rectifying direction along the front and back surfaces of the steel strip, and a cooling device suitable for carrying out the method.

上記の新しい冷却技術の開発により、従来に比
較して格段に高能率で鋼帯を冷却することが可能
になり、連続焼鈍処理における処理能力は大幅に
向上した。
The development of the new cooling technology described above has made it possible to cool the steel strip with much higher efficiency than before, and the processing capacity in continuous annealing treatment has been greatly improved.

(発明が解決しようとする問題点) しかしながら上記の冷却技術には、冷却水の供
給温度が例えば季節的な要因で変化したり、或い
は鋼帯の通板量が変動したりすると、冷却処理後
の鋼帯温度も変動して目標温度から外れてしまう
ところに問題を残していた。
(Problem to be solved by the invention) However, the above-mentioned cooling technology has problems when the cooling water supply temperature changes due to seasonal factors, or the amount of steel strip threaded changes. The problem remained that the temperature of the steel strip fluctuated and deviated from the target temperature.

第4図に、冷却水温度が40℃の場合における鋼
帯の通板量と冷却後の鋼帯温度との関係について
調査した結果を示したが、通板量が増加すると鋼
帯の温度も高くなつて目標温度範囲から外れる場
合がある。
Figure 4 shows the results of an investigation into the relationship between the threading amount of the steel strip and the steel strip temperature after cooling when the cooling water temperature is 40°C.As the threading amount increases, the temperature of the steel strip also increases. The temperature may become high and out of the target temperature range.

この発明は、上述した水冷ジヤケツトを用いる
冷却方法において、鋼帯の通板量や冷却水温など
通常考えられる変動要因に左右されることなく、
常に安定して鋼帯温度を所定の目標温度に冷却す
ることができる、鋼帯の冷却装置出側板温制御方
法を提案することを目的とする。
This invention provides a cooling method using the above-mentioned water-cooled jacket, which is not affected by normally considered fluctuation factors such as the amount of steel strip threaded and the temperature of the cooling water.
It is an object of the present invention to propose a method for controlling the temperature of a steel strip at the exit side of a cooling device, which can always stably cool the steel strip temperature to a predetermined target temperature.

(問題点を解決するための手段) この発明は、連続焼鈍ラインの冷却ゾーンを通
過させた鋼帯を、その表裏面から冷却水の流路を
隔てて対設した整流板をそなえる水冷ジヤケツト
内に導いて最終冷却を施すに際し、冷却水を、上
記水冷ジヤケツト内において鋼帯の走行方向とは
逆向きにしかも該鋼帯の表裏面に沿う整流として
強制流動させて鋼帯を冷却する方法において、 水冷ジヤケツト内の冷却水レベルをコントロー
ルすることにより、鋼帯の水冷ジヤケツト出側温
度を所定の目標温度に制御することを特徴とす
る、連続焼鈍ラインにおける鋼帯の冷却装置出側
板温制御方法である。
(Means for Solving the Problems) The present invention provides for a steel strip that has passed through a cooling zone of a continuous annealing line to be placed in a water-cooled jacket equipped with rectifying plates arranged oppositely across a cooling water flow path from the front and back surfaces of the steel strip. In a method of cooling a steel strip by forcing cooling water to flow in the water-cooling jacket in the opposite direction to the running direction of the steel strip and along the front and back surfaces of the steel strip when conducting final cooling. , A method for controlling outlet side plate temperature of a steel strip cooling device in a continuous annealing line, characterized in that the temperature at the outlet side of the water cooling jacket of the steel strip is controlled to a predetermined target temperature by controlling the level of cooling water in the water cooling jacket. It is.

以下この発明を具体的に説明する。 This invention will be explained in detail below.

第1図に、この発明に従う制御系を水冷ジヤケ
ツト式冷却装置と共に模式で示す。図中番号1
a,1bはそれぞれ、冷却水を鋼帯の表裏面に沿
つて整流として強制的に導くための整流板であつ
て、これらの整流板1a,1bで竪型のU字管状
構造になる水冷ジヤケツト1を構成する。2はデ
イフレクタロール、3は冷却水の供給管、4はポ
ンプ、5は冷却排水の貯蔵タンクである。
FIG. 1 schematically shows a control system according to the present invention together with a water-cooled jacket type cooling device. Number 1 in the diagram
Reference numerals a and 1b are current plates for forcibly guiding the cooling water along the front and back surfaces of the steel strip as rectification, and these current plates 1a and 1b form the water cooling jacket into a vertical U-shaped tubular structure. 1. 2 is a deflector roll, 3 is a cooling water supply pipe, 4 is a pump, and 5 is a storage tank for cooling waste water.

さて上記の如きしくみになる冷却装置におい
て、冷却水は、鋼帯Sの走行径路の下流側に設け
られた供給口から水冷ジヤケツト1内に導入さ
れ、該ジヤケツト1内を鋼帯Sの走行方向とは逆
向きに強制流動させられる間に鋼帯を効率よく冷
却したのち排出口からオーバーフローさせるわけ
であるが、この発明では、かかる水冷ジヤケツト
内の冷却水レベルを、以下のようにして調整する
ことによつて、鋼板の出側板温をコントロールす
るのである。
Now, in the cooling system constructed as described above, the cooling water is introduced into the water cooling jacket 1 from the supply port provided on the downstream side of the running path of the steel strip S, and flows through the jacket 1 in the running direction of the steel strip S. While the steel strip is forced to flow in the opposite direction, the steel strip is efficiently cooled and then overflowed from the discharge port.In this invention, the level of cooling water in the water cooling jacket is adjusted as follows. In particular, the temperature at the exit side of the steel plate is controlled.

6は整流板1aの鋼帯入側に設置された昇降板
であり、例えばシリンダー7、ロープ8、シーブ
9などからなる昇降装置10により自由に昇降で
きるしくみになつている。即ち、この昇降板6を
昇降させることによつて冷却装置1のオーバーフ
ローレベルを変化させることができるのである。
Reference numeral 6 denotes an elevating plate installed on the steel strip entry side of the rectifier plate 1a, which can be freely raised and lowered by an elevating device 10 comprising, for example, a cylinder 7, a rope 8, a sheave 9, and the like. That is, by raising and lowering this lifting plate 6, the overflow level of the cooling device 1 can be changed.

第2図に、昇降板6と整流板1aとの好適な接
合状態を示す。
FIG. 2 shows a preferred bonding state between the elevating plate 6 and the rectifying plate 1a.

なお、11は冷却処理後の鋼帯の水切りを行う
リンガーロール、12は冷却処理後の鋼帯温度を
測定するための温度計、13はオーバーフロー高
さを測定するためのレベル計である。また14は
冷却水の温度を測定する温度計、15は冷却装置
1の出側における冷却水温度を検出するための温
度計、そして16は演算装置であり、温度計1
2、レベル計13、冷却水用温度計14,15の
各検出信号及び鋼帯Sの冷却目標温度17と鋼帯
の通板量18が入力され、目標板温にするための
オーバーフローレベルが演算される。演算結果は
制御装置19に出力されて昇降装置10により、
所定のレベルになるように昇降板6が制御される
わけである。
Note that 11 is a ringer roll for draining the steel strip after cooling treatment, 12 is a thermometer for measuring the temperature of the steel strip after cooling treatment, and 13 is a level meter for measuring the overflow height. Further, 14 is a thermometer for measuring the temperature of the cooling water, 15 is a thermometer for detecting the temperature of the cooling water at the outlet side of the cooling device 1, and 16 is a calculation device.
2. The detection signals of the level meter 13, cooling water thermometers 14 and 15, the cooling target temperature 17 of the steel strip S, and the steel strip threading amount 18 are input, and the overflow level to achieve the target strip temperature is calculated. be done. The calculation results are outputted to the control device 19 and then carried out by the lifting device 10.
The elevating plate 6 is controlled so that it is at a predetermined level.

(作 用) 次に演算装置16における演算内容について説
明する。
(Function) Next, the contents of the calculation in the calculation device 16 will be explained.

いま水冷ジヤケツト1における鋼帯Sの冷却長
(冷却水と鋼帯が接触している長さ)をL(m)、
鋼帯通板量をW(Kg/h)、冷却前後の鋼帯温度を
TSI(℃)、TIO(℃)、またストリツプ幅をB(m)、
ストリツプの比熱をCP(kcal/℃・Kg)、熱伝達
係数をα(kcal/m2・h・℃)とすると、冷却装
置内における鋼帯から冷却水への熱移動量Q
(kcal/h)は次式で表される。
Now, the cooling length of the steel strip S in the water-cooled jacket 1 (the length of contact between the cooling water and the steel strip) is L (m),
The steel strip passing rate is W (Kg/h), and the steel strip temperature before and after cooling is
T SI (℃), T IO (℃), and strip width B (m),
If the specific heat of the strip is C P (kcal/℃・Kg) and the heat transfer coefficient is α (kcal/m 2・h・℃), then the amount of heat transferred from the steel strip to the cooling water in the cooling device is Q.
(kcal/h) is expressed by the following formula.

Q=2・α・L・B・ΔT ……(1) =CP・W・(TSI−TSO) ……(2) ここでΔT(℃)は冷却水とストリツプの対数
平均温度差であり、次式で算出される。
Q=2・α・L・B・ΔT ……(1) =C P・W・(T SI −T SO ) ……(2) Here, ΔT (°C) is the logarithmic average temperature difference between the cooling water and the strip. It is calculated using the following formula.

ΔT=(TWI−TSI)−TWO−TSO)/InTWI−TSI/TWO−TS
O
……(3) なお、TWI,TWO(℃)は各々冷却水の供給温
度、オーバーフロー水温度である。
ΔT=(T WI − T SI )−T WO −T SO )/InT WI −T SI /T WO −T S
O
...(3) Note that T WI and T WO (°C) are the cooling water supply temperature and overflow water temperature, respectively.

従つて、冷却長Lは(1),(2)式より L=CP・W・(TSI−TSO)/2・α・B・ΔT……(4) ここで、例えば鋼帯通板量がWからW′に変化
し、鋼帯出側温度がTSOからT′SOに変化したとす
ると、冷却長Lはこの時点では変化させていない
ので、次式が成立する。
Therefore, the cooling length L is obtained from equations (1) and (2): L=C P・W・(T SI −T SO )/2・α・B・ΔT...(4) Here, for example, when the steel strip is Assuming that the plate weight changes from W to W' and the steel strip exit temperature changes from TSO to T'SO , the cooling length L is not changed at this point, so the following equation holds true.

L=CP・W′・(TSI−T′SO)/2・α・B・ΔT′…
…(5) 尚、鋼帯入側温度TSIは水冷ジヤケツトの前段
にある焼鈍炉における熱処理により一定であり、
また鋼帯出側温度が変化するに伴つてオーバーフ
ロー水温度も変化し、従つて平均対数温度差ΔT
もΔT′に変化しているものとする。
L=C P・W′・(T SI −T′ SO )/2・α・B・ΔT′…
...(5) The steel strip entrance temperature T SI is constant due to the heat treatment in the annealing furnace located before the water-cooled jacket.
In addition, as the steel strip outlet temperature changes, the overflow water temperature also changes, so the average logarithmic temperature difference ΔT
It is also assumed that ΔT′ has also changed.

そこで、鋼帯出側温度T′SOをTSOに戻すのに必
要な冷却長L′は次式で求められる。
Therefore, the cooling length L' required to return the steel strip outlet temperature T' SO to T SO is determined by the following equation.

L′=CP・W′・(TSI−T′SO)/2・α・B・ΔT′
……(6) 即ち、現在の冷却長Lを ΔL=L′−L ……(1) だけ変化させてやれば、鋼帯出側温度をTSOに保
持できる。
L′=C P・W′・(T SI −T′ SO )/2・α・B・ΔT′
...(6) That is, if the current cooling length L is changed by ΔL=L'-L ...(1), the temperature at the exit side of the steel strip can be maintained at TSO .

以上は通板量が変化した場合につき説明した
が、冷却水の供給温度が変化した場合も同様に算
出できる。
Although the above description has been made regarding the case where the sheet passing amount changes, calculations can be made in the same way when the cooling water supply temperature changes.

(実施例) 前掲第1図に示した冷却装置および制御系を用
いて、以下の条件下に鋼帯の冷却処理を行つた。
(Example) Using the cooling device and control system shown in FIG. 1 above, a steel strip was cooled under the following conditions.

●鋼帯寸法:厚み1mm、幅1000mm ●冷却水温:40℃ ●冷却水量:14T/h ●鋼帯冷却開始温度:150℃ ●冷却処理後の目標温度:50〜60℃ ●初期通板量:30T/h ●冷却水のオーバーフロー高さ:0.6m 上記の条件下に冷却処理を開始し、次第に通板
量を上げていつたところ、それに伴つて鋼帯の冷
却装置出側温度も次第に上昇し始めたので、通板
量が40T/hとなつた時点でオーバーフロー高さ
を0.8mまで引き上げた。その結果鋼帯出側温度
は53℃まで低下したので、そのまま冷却処理を継
続したところ通板量が50T/hとなつた時点で再
び鋼帯の出側板温が上昇する傾向がみられたので
再度オーバーフロー高さを1.2mまで引上げた。
●Steel strip dimensions: Thickness 1mm, width 1000mm ●Cooling water temperature: 40℃ ●Cooling water amount: 14T/h ●Steel strip cooling start temperature: 150℃ ●Target temperature after cooling treatment: 50 to 60℃ ●Initial threading amount: 30T/h Cooling water overflow height: 0.6m When cooling treatment was started under the above conditions and the throughput was gradually increased, the temperature of the steel strip at the outlet of the cooling device gradually began to rise. Therefore, when the throughput reached 40T/h, the overflow height was raised to 0.8m. As a result, the temperature at the exit side of the steel strip decreased to 53℃, so we continued the cooling process, and when the throughput reached 50T/h, there was a tendency for the temperature at the exit side of the steel strip to rise again. The overflow height has been raised to 1.2m.

その結果、鋼帯温度は51℃まで低下し、その後
は通板量を60T/hまで上昇させても、鋼帯温度
は60℃を越えることはなかつた。第5図に操業成
績を整理して示したとおり、通板量が30T/hか
ら60T/hまで変化した場合であつても、鋼帯の
冷却装置出側温度を常に目標温度である50〜60℃
の範囲に収めることができた。
As a result, the temperature of the steel strip decreased to 51°C, and thereafter, even when the throughput was increased to 60T/h, the temperature of the steel strip did not exceed 60°C. As shown in Figure 5, the operating results are summarized and shown, even when the throughput rate changes from 30T/h to 60T/h, the temperature at the outlet of the steel strip cooling device is always kept at the target temperature of 50~60T/h. 60℃
was able to fit within the range.

(発明の効果) かくしてこの発明によれば、連続焼鈍ラインに
おける冷却処理において、通板量などが変動した
としても、かかる変動要因に左右されることなし
に鋼帯温度を常に所定の目標温度範囲に収めるこ
とができる。
(Effects of the Invention) Thus, according to the present invention, even if the threading amount etc. fluctuates in the cooling process in the continuous annealing line, the steel strip temperature is always kept within the predetermined target temperature range without being influenced by such fluctuation factors. can be accommodated in

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明に従う制御系を水冷ジヤケ
ツト式冷却装置と共に示した模式図、第2図は、
昇降板と整流板との好適接合状態を示した図、第
3図は、水冷ジヤケツト式冷却装置の模式図、第
4図は、冷却水入側温度が一定の温度における通
板量と水冷ジヤケツト出側鋼帯温度との関係を示
したグラフ、第5図は、この発明を実操業に適用
したときの通板量と水冷ジヤケツト出側鋼帯温度
との関係を示したグラフである。 1……水冷ジヤケツト、1a,1b……整流
板、2……デイフレクタロール、3……冷却水の
供給管、4……ポンプ、5……冷却排水の貯蔵タ
ンク、6……昇降板、7……シリンダー、8……
ロープ、9……シーブ、10……昇降装置、11
……リンガーロール、12……温度計、13……
レベル計、14,15……温度計、16……演算
装置、17……冷却目標温度、18……鋼帯通板
量、19……制御装置。
FIG. 1 is a schematic diagram showing a control system according to the present invention together with a water-cooled jacket type cooling device, and FIG.
Fig. 3 is a schematic diagram of a water-cooled jacket type cooling device, and Fig. 4 shows the amount of plate passing and the water-cooled jacket when the cooling water inlet temperature is constant. FIG. 5 is a graph showing the relationship between the steel strip temperature on the exit side and the steel strip temperature on the exit side of the water-cooled jacket when the present invention is applied to actual operation. 1... Water cooling jacket, 1a, 1b... Current plate, 2... Deflector roll, 3... Cooling water supply pipe, 4... Pump, 5... Storage tank for cooling waste water, 6... Lifting plate , 7... cylinder, 8...
Rope, 9...sheave, 10...lifting device, 11
... Ringer roll, 12 ... Thermometer, 13 ...
Level meter, 14, 15... Thermometer, 16... Arithmetic device, 17... Cooling target temperature, 18... Steel strip threading amount, 19... Control device.

Claims (1)

【特許請求の範囲】 1 連続焼鈍ラインの冷却ゾーンを通過させた鋼
帯を、その表裏面から冷却水の流路を隔てて対設
した整流板をそなえる水冷ジヤケツト内に導いて
最終冷却を施すに際し、冷却水を、上記水冷ジヤ
ケツト内において鋼帯の走行方向とは逆向きにし
かも該鋼帯の表裏面に沿う整流として強制流動さ
せて鋼帯を冷却する方法において、 水冷ジヤケツト内の冷却水レベルをコントロー
ルすることにより、鋼帯の水冷ジヤケツト出側温
度を所定の目標温度に制御することを特徴とす
る、連続焼鈍ラインにおける鋼帯の冷却装置出側
板温制御方法。
[Scope of Claims] 1. A steel strip passed through a cooling zone of a continuous annealing line is guided from its front and back surfaces into a water-cooled jacket equipped with baffle plates placed opposite each other across a cooling water flow path for final cooling. In the method of cooling the steel strip by forcing the cooling water to flow in the water-cooling jacket in a direction opposite to the traveling direction of the steel strip and along the front and back surfaces of the steel strip, the cooling water in the water-cooling jacket 1. A method for controlling the outlet temperature of a steel strip cooling device in a continuous annealing line, the method comprising controlling the outlet temperature of the steel strip at a water cooling jacket to a predetermined target temperature by controlling the level.
JP13911486A 1986-06-17 1986-06-17 RENZOKUSHODONRAINNIOKERUKOTAINOREIKYAKUSOCHISHUTSUGAWAITAONSEIGYOHOHO Expired - Lifetime JPH0229731B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13911486A JPH0229731B2 (en) 1986-06-17 1986-06-17 RENZOKUSHODONRAINNIOKERUKOTAINOREIKYAKUSOCHISHUTSUGAWAITAONSEIGYOHOHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13911486A JPH0229731B2 (en) 1986-06-17 1986-06-17 RENZOKUSHODONRAINNIOKERUKOTAINOREIKYAKUSOCHISHUTSUGAWAITAONSEIGYOHOHO

Publications (2)

Publication Number Publication Date
JPS62297418A JPS62297418A (en) 1987-12-24
JPH0229731B2 true JPH0229731B2 (en) 1990-07-02

Family

ID=15237817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13911486A Expired - Lifetime JPH0229731B2 (en) 1986-06-17 1986-06-17 RENZOKUSHODONRAINNIOKERUKOTAINOREIKYAKUSOCHISHUTSUGAWAITAONSEIGYOHOHO

Country Status (1)

Country Link
JP (1) JPH0229731B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4547936B2 (en) * 2004-02-25 2010-09-22 Jfeスチール株式会社 Manufacturing method of high-strength cold-rolled steel sheet

Also Published As

Publication number Publication date
JPS62297418A (en) 1987-12-24

Similar Documents

Publication Publication Date Title
US8728244B2 (en) Method and device for descaling a metal strip
EP0276457B1 (en) A method for producing non-aging hot-dip galvanized steel strip
US5798007A (en) Process and apparatus for the continuous heat treatment of a metal strip travelling in a different atmosphere
GB2042595A (en) Heat treating steel strip
US2797173A (en) Method of and apparatus for annealing and coating steel sheets
EP0117083B1 (en) Method and apparatus for cooling a metal strip in a continuous annealing furnace
CA1060322A (en) Method and apparatus for water quenching steel strip with reduced amount of oxidation
US4713154A (en) Continuous annealing and pickling method and apparatus for steel strips
CA1272431A (en) Method and apparatus of cooling steel strip
JPH0229731B2 (en) RENZOKUSHODONRAINNIOKERUKOTAINOREIKYAKUSOCHISHUTSUGAWAITAONSEIGYOHOHO
KR900001092B1 (en) Apparatus for colling strip of metals
EP0210847A2 (en) Method and apparatus for cooling steel strips
JPS5822525B2 (en) Sealing device in cooling section of steel strip
JPH0229732B2 (en) RENZOKUSHODONRAINNIOKERUKOTAINOREIKYAKUSOCHISHUTSUGAWAITAONSEIGYOHOHO
JPS5944367B2 (en) Water quenching continuous annealing method
JPH0319287B2 (en)
JPS5864322A (en) Method and device for cooling of band-like steel plate
JPS5832219B2 (en) Cooling method of steel strip in continuous annealing line
JPH0371486B2 (en)
KR950004711B1 (en) Device for continuously cooling metal strip
JPS639569B2 (en)
KR950007080Y1 (en) Forming roll for steel plate
JPS6342698B2 (en)
JPS5818977B2 (en) Continuous heat treatment equipment for strip metal materials
JPS6261654B2 (en)

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees