JPH0228905B2 - - Google Patents

Info

Publication number
JPH0228905B2
JPH0228905B2 JP56108381A JP10838181A JPH0228905B2 JP H0228905 B2 JPH0228905 B2 JP H0228905B2 JP 56108381 A JP56108381 A JP 56108381A JP 10838181 A JP10838181 A JP 10838181A JP H0228905 B2 JPH0228905 B2 JP H0228905B2
Authority
JP
Japan
Prior art keywords
region
gate electrode
insulating film
drain
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56108381A
Other languages
Japanese (ja)
Other versions
JPS5743472A (en
Inventor
Yutaka Hayashi
Yasuo Tarui
Kyoko Nagai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP56108381A priority Critical patent/JPS5743472A/en
Publication of JPS5743472A publication Critical patent/JPS5743472A/en
Publication of JPH0228905B2 publication Critical patent/JPH0228905B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/788Field effect transistors with field effect produced by an insulated gate with floating gate
    • H01L29/7881Programmable transistors with only two possible levels of programmation

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Description

【発明の詳細な説明】 半導体メモリは、蓄えられた情報が電気信号と
して容易且高速度で取り出せること、集積回路
(以下ICと称す)技術の発達により大規模集積
(以下LSIと称す)されるようになり、ビツト密
度、信頼性が向上したこと等の理由により、最近
電子計算機の高速用メモリ装置として用いられて
いる。
[Detailed Description of the Invention] Semiconductor memories are capable of large-scale integration (hereinafter referred to as LSI) due to the fact that stored information can be retrieved easily and at high speed as electrical signals and the development of integrated circuit (hereinafter referred to as IC) technology. Due to its improved bit density and reliability, it has recently been used as a high-speed memory device for electronic computers.

しかしながら半導体メモリは、磁性メモリと異
なり、バイアス電極の供給が断たれると、記憶内
容が消えてしまう(以下揮発性と称す)という欠
点を有していた。この欠点のない半導体メモリを
得べく、従来、例えばカルコゲナイドガラス等の
半導体ガラスの記憶作用についての研究がなされ
ているが、未だ実用段階には至つていない。
However, unlike magnetic memories, semiconductor memories have the disadvantage that when the supply of bias electrodes is cut off, the stored contents disappear (hereinafter referred to as volatility). In order to obtain a semiconductor memory that does not have this drawback, research has been carried out on the memory function of semiconductor glasses such as chalcogenide glass, but this has not yet reached a practical stage.

又揮発性のない半導体メモリとして、シリコン
半導体ICの分野に於て、金属(M)・シリコン窒
化膜(N)・シリコン酸化膜(O)・シリコン
(S)の構成を有するMNOS電界効果トランジス
タが開発されたが、この場合、シリコン酸化膜
(SiO2)を半導体表面のキヤリアがトンネルする
程度に薄くしなければならないので、このシリコ
ン酸化膜にピンホール等が生じ易く、しかも記憶
機構がトラツプ準位によるために生産性、再現性
が劣ることとなるおそれがあり、為に電子計算機
には実用化されていない。
In addition, as a non-volatile semiconductor memory, in the field of silicon semiconductor ICs, MNOS field effect transistors having a structure of metal (M), silicon nitride film (N), silicon oxide film (O), and silicon (S) are used. However, in this case, the silicon oxide film (SiO 2 ) must be made thin enough to allow carriers on the semiconductor surface to tunnel, so pinholes are likely to occur in the silicon oxide film, and the storage mechanism is likely to be trapped. Because of this, there is a risk that productivity and reproducibility may be degraded due to the position, and for this reason, it has not been put to practical use in electronic computers.

ところでこれ等以外の半導体メモリの分野とし
て、半導体メモリの高ビツト密度、高速性を活か
して固定記憶内容を読み出す様になされた読み出
し専用メモリ(以下ROMと称す)がある。この
ROMの構成方法には2種類あり、その1つはIC
を作る際のホトエツチに用いるガラスマスクに固
定情報をもたせる方法である。他の1つはICを
作る際には記憶すべき内容に関係なく一様に製作
し、その後記憶すべき内容に応じて電気的に情報
を書き込む方法である。
By the way, as a field of semiconductor memory other than these, there is a read-only memory (hereinafter referred to as ROM) which is designed to read fixed storage contents by taking advantage of the high bit density and high speed of semiconductor memory. this
There are two types of ROM configuration methods, one of which is the IC
This is a method of attaching fixed information to the glass mask used for photo-etching when making. The other method is to manufacture ICs uniformly regardless of the content to be stored, and then electrically write information in accordance with the content to be stored.

後者の方法は更に3つの方法が知られている。
すなわちその第1の方法は配線を電流パルスで溶
断する方法であり、第2の方法はアルミナのトラ
ツプによる記憶特性を用いる方法であり、第3の
方法はチヤネル電流が流れないときのMOSトラ
ンジスタのドレイン及び半導体基板間接合のアバ
ランシエ降服により、半導体基板と同一形のキヤ
リアを酸化膜中に注入し、このキヤリアにより酸
化膜を埋込まれた多結晶シリコン薄膜層を充電し
て情報を書き込む様になされた方法である。
Three methods of the latter method are known.
That is, the first method is to fuse the wiring with a current pulse, the second method is to use the memory characteristics of alumina traps, and the third method is to use the memory characteristics of alumina when no channel current flows. Due to the avalanche breakdown of the junction between the drain and the semiconductor substrate, a carrier having the same shape as the semiconductor substrate is injected into the oxide film, and this carrier charges the polycrystalline silicon thin film layer in which the oxide film is embedded, so that information can be written. This is the way it was done.

本発明はこれ等3つの方法中の第3の方法を改
良し、更に機能を拡張できる新たな、なだれ降服
書込構成を提供するもので、先ず第1図につい
て、従来の方法を更に詳述する。この場合、第1
図Aに示す如く、基板1に、その伝導形とは反対
の伝導形をし且つ不純物濃度の大なるドレイン領
域2及びソース領域3と、ゲートシリコン酸化膜
4と、シリコン酸化膜4及び5間に埋込まれたシ
リコン多結晶層6とでなる電界効果トランジスタ
7を形成する。この電界効果トランジスタ7に於
て、ドレイン電圧を増加して行くと、ドレイン領
域2から基板1中に空乏層8が拡がつて行くが、
特にシリコン多結晶層6の下の部分9には矢示す
る如く電界が集中して空乏層8の他の部分より高
電界となつて行き、遂にはなだれ降服の臨界電界
に達する。このときこの部分9には第1図Bに示
す如く電子10及び正孔11の電子・正孔対が発
生し、基板1が例えばn形の場合は電界により電
子10が矢12に示す如く酸化膜4の方向へ加速
され、これにより高いエネルギーを得て酸化膜4
の中へ注入される。この様にして注入された電子
10は酸化膜4を通過してシリコン多結晶層6に
到達し、これを負に帯電させる。一方正孔11は
電界によつて矢13の如くドレイン領域2に運ば
れる。
The present invention improves the third method among these three methods and provides a new avalanche writing configuration that can further expand the functionality. First, the conventional method will be explained in more detail with reference to FIG. do. In this case, the first
As shown in FIG. A field effect transistor 7 is formed with a silicon polycrystalline layer 6 embedded in the silicon polycrystalline layer 6. In this field effect transistor 7, as the drain voltage increases, the depletion layer 8 spreads from the drain region 2 into the substrate 1.
In particular, the electric field is concentrated in the lower part 9 of the silicon polycrystalline layer 6 as shown by the arrow, becoming higher than other parts of the depletion layer 8, and finally reaches the critical electric field for avalanche breakdown. At this time, electron-hole pairs of electrons 10 and holes 11 are generated in this portion 9 as shown in FIG. It is accelerated in the direction of the film 4, thereby obtaining high energy and causing the oxide film 4 to
is injected into the. The electrons 10 injected in this manner pass through the oxide film 4 and reach the silicon polycrystalline layer 6, charging it negatively. On the other hand, the holes 11 are transported to the drain region 2 as shown by an arrow 13 by the electric field.

かくしてシリコン多結晶層6の充電状態を得る
ことにより情報の書き込みをなし得、一方かくし
て一旦書き込まれた情報は、電界効果トランジス
タ7に紫外線又はX線を照射することにより、原
理的には消すことができる。但し、後述の本発明
構成により、なだれ降服により書込まれた情報の
消去、非消去や、消去するにしてもいづれの方法
でなすかは本発明がこれを特定するものではな
い。しかし、一般には、消去乃至書き替えをする
なら、本出願人が別途提案しているホツトキヤリ
ア注入が便利ではある。
In this way, information can be written by obtaining a charged state of the silicon polycrystalline layer 6, and on the other hand, information once written in this way can be erased in principle by irradiating the field effect transistor 7 with ultraviolet rays or X-rays. Can be done. However, according to the configuration of the present invention, which will be described later, the present invention does not specify whether the information written by avalanche is erased or not, or even if it is erased, which method is used. However, in general, for erasing or rewriting, hot carrier injection, which has been proposed separately by the present applicant, is convenient.

次に、本発明は、ゲート電極が第1、第2の積
み重ねにて成る構成を出発点としているので、こ
の構成に就き第2図に即して述べると、この場合
の記憶用電界効果トランジスタ21は、シリコン
酸化膜でなる絶縁膜27上に第2のゲート電極2
3を設けたことを除いては、第1図の電界効果ト
ランジスタ7と同様の構成を有する。
Next, since the present invention is based on a configuration in which the gate electrodes are stacked with first and second layers, this configuration will be described with reference to FIG. 2. 21 is a second gate electrode 2 on an insulating film 27 made of a silicon oxide film.
The field effect transistor 7 has the same structure as the field effect transistor 7 shown in FIG. 1 except that the field effect transistor 3 is provided.

尚第2図に於て、22はゲート絶縁膜、24は
半導体基板、25はドレイン領域、26はソース
領域、27は前記ゲート絶縁膜22に連続する絶
縁膜、28は前記ゲート絶縁膜22及び絶縁膜2
7間に埋込まれた第1のゲート電極、29は空乏
層を夫々示す。
In FIG. 2, 22 is a gate insulating film, 24 is a semiconductor substrate, 25 is a drain region, 26 is a source region, 27 is an insulating film continuous with the gate insulating film 22, and 28 is the gate insulating film 22 and the semiconductor substrate. Insulating film 2
The first gate electrode buried between the electrodes 7 and 29 represents a depletion layer, respectively.

所で電界効果トランジスタ21のゲート絶縁膜
22に基板24中のキヤリアを注入するために
は、本発明による場合、第2のゲート電極23の
電位を基板24と同電位に保つたまま、ドレイン
領域25に基板24との間の降伏電圧以上の電圧
を与える。こうすれば、ドレイン領域25及び基
板24間になだれ降伏が生じ、電極28及び降伏
点間の電界に基づき、チヤネルキヤリアの電荷の
符号とは逆符号の電荷のキヤリアが電極28の方
向に加速されて絶縁膜22中に注入され、結局、
電極28がチヤネルキヤリアとは逆極性に充電さ
れることになる。この時、ゲート電極23の電位
は、ドレインのなだれ降服電位とは逆方向に変化
しているので、このゲート電極23は、電極28
へ逆符号の電荷を引き寄せ易くする仇きを有する
と共に、ドレインのなだれ降服電位を減少させる
役割も果たしている。この効果は、第7図にその
具体的な測定例が示されているように、この不揮
発性メモリの動作速度を向上させ、かつ、アレイ
構成においては選択された番地の素子のみを書き
込む確実性を増す。
According to the present invention, in order to inject carriers in the substrate 24 into the gate insulating film 22 of the field effect transistor 21, the second gate electrode 23 is kept at the same potential as the substrate 24, and the drain region is 25 is applied with a voltage higher than the breakdown voltage between it and the substrate 24. In this way, an avalanche breakdown occurs between the drain region 25 and the substrate 24, and based on the electric field between the electrode 28 and the breakdown point, charge carriers having a sign opposite to that of the channel carrier charges are accelerated in the direction of the electrode 28. is injected into the insulating film 22, and eventually
Electrode 28 will be charged to the opposite polarity to the channel carrier. At this time, the potential of the gate electrode 23 is changing in the opposite direction to the avalanche potential of the drain, so that the potential of the gate electrode 23 is
It has the effect of making it easier to attract charges of the opposite sign to the drain, and also plays the role of reducing the avalanche potential of the drain. As a specific measurement example is shown in FIG. 7, this effect improves the operating speed of this nonvolatile memory, and in an array configuration, it increases the reliability of writing only to elements at selected addresses. increase.

第3図はこの発明の一実施例で、この場合、絶
縁膜22及び27内に埋設された電極33は、チ
ヤネル領域の一部を残した他の範囲にのみ重なる
ようになされた所謂オフセツト構成となされてい
る。この構成に依れば、第2図の効果を有すると
共に、チヤネル領域の残る部分と、これに対向す
るゲート電極23の部分との間に直接電界34が
形成されるので、このチヤネル領域の残る部分に
当該電界34によるチヤネル35を誘起させるこ
とができ、電界34の変更制御により、第2図示
の構成よりも更に確実かつ融通性に富んで電界効
果トランジスタ21のオン・オフ動作を制御し得
る。但し、先掲の第2,3図及び以下に述べる第
4,5図においても、図面中ではピンチオフ領域
31,39,39′からのホツトキヤリア注入の
可能性を示している。しかし明らかなように、こ
れは本発明の要旨ではなく、単に一つの可能性を
示すに過ぎず、本発明においてはあくまで、なだ
れ降伏により書込情報が与えられ、かつ、その状
態において情報内容の書き替え変更を受けない素
子を提供するものである。
FIG. 3 shows an embodiment of the present invention, in which the electrodes 33 buried in the insulating films 22 and 27 have a so-called offset configuration in which the electrodes 33 overlap only a portion of the channel region. It is said that According to this configuration, the effect shown in FIG. 2 is obtained, and since an electric field 34 is directly formed between the remaining portion of the channel region and the portion of the gate electrode 23 facing thereto, the remaining portion of the channel region A channel 35 can be induced in the part by the electric field 34, and by controlling the change in the electric field 34, the on/off operation of the field effect transistor 21 can be controlled more reliably and with greater flexibility than in the configuration shown in the second figure. . However, also in FIGS. 2 and 3 mentioned above and FIGS. 4 and 5 described below, the possibility of hot carrier injection from the pinch-off regions 31, 39, and 39' is shown in the drawings. However, as is clear, this is not the gist of the present invention, and merely represents one possibility; in the present invention, the written information is given by avalanche surrender, and in that state, the information content is changed. This provides an element that is not subject to rewriting or modification.

また、第4図はこの発明の他の実施例で、この
場合、電極33にその厚味を横切つて透孔36を
設けたもので、かくすれば、電極23及び基板2
4の透孔36に臨んで対向する部分間に直接電界
37が形成されるので、この電界37により基板
24の透孔36に対向する領域にチヤネル38が
誘起される。
FIG. 4 shows another embodiment of the present invention, in which the electrode 33 is provided with a through hole 36 across its thickness.
Since an electric field 37 is directly formed between the opposing portions of the substrate 24 facing the through hole 36, a channel 38 is induced in the region of the substrate 24 facing the through hole 36 by this electric field 37.

更に第5図は第3図の構成の変形例で、この場
合電極34は、第3図に示すと同様のオフセツト
構造と、第4図に示すと同様の透孔36とを共に
具えた構成を有し、かくすれば第3図及び第4図
について夫々上述したと同様の効果を合せ有す
る。
Furthermore, FIG. 5 shows a modification of the configuration of FIG. 3, in which the electrode 34 has an offset structure similar to that shown in FIG. 3 and a through hole 36 similar to that shown in FIG. , and thus has the same effects as described above with respect to FIGS. 3 and 4, respectively.

尚、第3〜5図示の構成では、なだれ降服によ
つてゲート電極33へキヤリア電荷を注入するの
に用いられるソース又はドレイン領域と、ゲート
電極33がその領域と領域24の表面接合の上を
一部覆つている領域であるとは本発明の趣旨から
顕らかである。
Note that in the configurations shown in Figures 3 to 5, the source or drain region used to inject carrier charges into the gate electrode 33 by avalanche deposition and the gate electrode 33 over the surface junction between the region and the region 24. It is clear from the spirit of the present invention that the area is a partially covered area.

本発明の第2ゲート電極の効果を確めるため
に、第6図に示す電界効果トランジスタを用いて
実験した結果、第7図に示す関係が得られた。こ
の場合、半導体基板24は不純物濃度5×1013
個/cm3のn形でシリコンでなり、ソース領域26
の領域46との接合附近の表面不純物濃度を略々
1016個/cm3、ゲート絶縁膜(SiO2)22の厚さι1
を約1000Å、絶縁膜(SiO2)27の厚さι2を約
1000Å、チヤネル長Lを約10μとし、埋込みゲー
ト電極(Si)の電圧が基板24に対して、「1」
書込みの場合の0Vから−4V相当へ、「0」書込
みの場合−4Vから0V相当へ夫々変化するに要す
る時間を測定し、その結果を第2のゲート23
(Aι)及びソース領域26(P)の端子電圧VGS
に対する時間tとして表わしたものである。
In order to confirm the effect of the second gate electrode of the present invention, an experiment was conducted using the field effect transistor shown in FIG. 6, and as a result, the relationship shown in FIG. 7 was obtained. In this case, the semiconductor substrate 24 has an impurity concentration of 5×10 13
The source region 26 is made of silicon and is n-type with
The surface impurity concentration near the junction with region 46 is approximately
10 16 pieces/cm 3 , thickness of gate insulating film (SiO 2 ) 22 ι 1
is about 1000 Å, and the thickness of the insulating film (SiO 2 ) 27 is about ι 2
1000 Å, the channel length L is about 10 μ, and the voltage of the buried gate electrode (Si) is “1” with respect to the substrate 24.
Measure the time required to change from 0V to -4V equivalent for writing, and from -4V to 0V equivalent for "0" writing, and send the results to the second gate 23.
(Aι) and the terminal voltage V GS of the source region 26 (P)
It is expressed as time t for

尚第7図に於て、符号は、ドレイン端子D及
びソース端子sを接地し、基板端子Bに正バイア
スを与え、ソース領域26及び領域46間接合の
逆方向電流を100μAとした場合に得られた曲線
を、符号は基板端子Bを接地し、ドレイン端子
Dに負バイアスを与え、ソース端子sに少し負バ
イアスを与え、基板24及びドレイン領域25間
接合の逆方向電流を10μAとした場合に得られた
曲線を、夫々示す。
In FIG. 7, the symbols indicate the values obtained when the drain terminal D and the source terminal s are grounded, the substrate terminal B is given a positive bias, and the reverse current in the junction between the source region 26 and the region 46 is 100 μA. The sign of the curve is when the substrate terminal B is grounded, the drain terminal D is given a negative bias, the source terminal S is given a slight negative bias, and the reverse current at the junction between the substrate 24 and the drain region 25 is 10 μA. The curves obtained are shown respectively.

この測定結果から、第2ゲート電極を設けてソ
ース又はドレイン領域のなだれ降服電位と逆方向
の電位変化を与えることにより、書込み時間を格
段に高速化し得ることが判かり、更に、なだれ降
服電圧は、第2ゲート電極に上記バイアスを与え
ない時よりも小さくなるので、書込みが確実に行
い得ることが判かる。
These measurement results show that by providing a second gate electrode and applying a potential change in the opposite direction to the avalanche potential of the source or drain region, it is possible to significantly speed up the writing time. , is smaller than when the bias is not applied to the second gate electrode, so it can be seen that writing can be performed reliably.

上述の如く本発明に依れば、半導体メモリが本
来有している読出しの高速性と、従来磁気メモリ
によつてしか実用化されていなかつた記憶の不揮
発性とを兼ね備えた半導体メモリを得ることがで
き、かかるメモリを製作するにつき、従来のシリ
コンゲート技術又はモリブデンゲート技術を用
い、他に何等特殊な技術を要することなく、容易
に高密度に製作することができるものである。さ
らに第1のゲート電極に効率よくキヤリアを注入
することが可能であり、さらに第1のゲート電極
のキヤリアの蓄積状態に関係なく、第2の絶縁ゲ
ートで、オン、オフ制御することができる。
As described above, according to the present invention, it is possible to obtain a semiconductor memory that combines the high speed of readout that semiconductor memory inherently has and the nonvolatile memory that has conventionally been put into practical use only with magnetic memory. When manufacturing such a memory, it is possible to easily manufacture it at high density using conventional silicon gate technology or molybdenum gate technology without requiring any other special technology. Further, it is possible to efficiently inject carriers into the first gate electrode, and furthermore, it is possible to perform on/off control using the second insulated gate regardless of the carrier accumulation state of the first gate electrode.

以上の説明では記憶内容が「1」と「0」のデ
イジタル情報にあつたが不揮発性アナログ情報の
記憶に用いることもできることは明らかだし、デ
ジタル系としても、例えば本発明トランジスタを
メモリセルに応用する場合の当該セルの回路の静
的な構成具体は通常の回路技術を援用して差仕え
ない。
In the above explanation, the storage content is digital information of "1" and "0", but it is clear that it can also be used to store non-volatile analog information, and it can also be used for digital systems, for example, by applying the transistor of the present invention to memory cells. In this case, the specific static configuration of the circuit of the cell concerned can be achieved by using ordinary circuit technology.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の情報書込み方法の説明に供する
電界効果トランジスタを示す断面図、第2図は本
発明に依る不揮発性メモリの記憶方法の一例の説
明に供する記憶用電界効果トランジスタを示す断
面図、第3図乃至第5図は本発明の一実施例を示
す断面図、第6図は本発明の効果を示すために作
成された実施例素子の概略構成図、第7図は第6
図示素子を用いた実験結果を示す図、である。 図中、21,45,70……記憶用電界効果ト
ランジスタ、22……ゲート絶縁膜、23……第
2のゲート電極、24……半導体基板、25……
ドレイン領域、26……ソース領域、27……絶
縁膜、28……第1のゲート電極、29,47…
…空乏層、30,35,38……チヤネル、3
1,39,39′……ピンチオフ領域、36……
透孔。
FIG. 1 is a sectional view showing a field effect transistor for explaining a conventional information writing method, and FIG. 2 is a sectional view showing a storage field effect transistor for explaining an example of a nonvolatile memory storage method according to the present invention. , FIG. 3 to FIG. 5 are cross-sectional views showing one embodiment of the present invention, FIG. 6 is a schematic configuration diagram of an example element created to demonstrate the effects of the present invention, and FIG.
It is a figure which shows the experimental result using the illustrated element. In the figure, 21, 45, 70... memory field effect transistor, 22... gate insulating film, 23... second gate electrode, 24... semiconductor substrate, 25...
Drain region, 26... Source region, 27... Insulating film, 28... First gate electrode, 29, 47...
...depletion layer, 30, 35, 38...channel, 3
1, 39, 39'...pinch-off area, 36...
Through hole.

Claims (1)

【特許請求の範囲】[Claims] 1 第1の半導体領域と、この第1の半導体領域
に離間して形成されたドレイン領域及びソース領
域と、少なくとも前記ドレイン領域・ソース領域
間の前記第1の半導体領域表面に付着されたゲー
ト絶縁膜及びこれと連続した絶縁膜と、前記ゲー
ト絶縁膜及びこれと連続した絶縁膜間に埋め込ま
れた第1のゲート電極と、前記絶縁膜を介して前
記第1のゲート電極上及び前記ソース領域・ドレ
イン領域間の前記第1の半導体領域表面上に設け
られた第2の絶縁ゲート電極とから少なくともな
り、前記第2のゲート電極は前記ソース領域・ド
レイン領域間の前記第1の半導体領域表面と前記
第1のゲート電極を介さずに絶縁膜を介して直接
対向する部分を有すると共に、該第1のゲート電
極下の前記ソース領域又はドレイン領域と前記第
1の半導体領域との接合におけるなだれ降服によ
り書込情報が与えられていることを特徴とする部
分ゲート形不揮発性メモリ。
1 A first semiconductor region, a drain region and a source region formed separately in the first semiconductor region, and a gate insulator attached to the surface of the first semiconductor region at least between the drain region and the source region. a first gate electrode buried between the gate insulating film and the insulating film continuous thereto; and a first gate electrode buried between the gate insulating film and the insulating film continuous thereto, and a region on the first gate electrode and the source region via the insulating film. - a second insulated gate electrode provided on the surface of the first semiconductor region between the drain regions, and the second gate electrode is provided on the surface of the first semiconductor region between the source and drain regions. and an avalanche at a junction between the source region or drain region under the first gate electrode and the first semiconductor region, and having a portion directly opposing each other through an insulating film without intervening the first gate electrode, and an avalanche at a junction between the source region or drain region under the first gate electrode and the first semiconductor region A partially gated nonvolatile memory characterized in that write information is given by surrender.
JP56108381A 1981-07-11 1981-07-11 Partial gate type non-volatile memory Granted JPS5743472A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56108381A JPS5743472A (en) 1981-07-11 1981-07-11 Partial gate type non-volatile memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56108381A JPS5743472A (en) 1981-07-11 1981-07-11 Partial gate type non-volatile memory

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2639880A Division JPS55127068A (en) 1980-03-03 1980-03-03 Field effect transistor for memory

Publications (2)

Publication Number Publication Date
JPS5743472A JPS5743472A (en) 1982-03-11
JPH0228905B2 true JPH0228905B2 (en) 1990-06-27

Family

ID=14483322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56108381A Granted JPS5743472A (en) 1981-07-11 1981-07-11 Partial gate type non-volatile memory

Country Status (1)

Country Link
JP (1) JPS5743472A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5537107A (en) * 1978-09-05 1980-03-15 Iseki Agricult Mach Separator of thresher

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5537107A (en) * 1978-09-05 1980-03-15 Iseki Agricult Mach Separator of thresher

Also Published As

Publication number Publication date
JPS5743472A (en) 1982-03-11

Similar Documents

Publication Publication Date Title
US4115914A (en) Electrically erasable non-volatile semiconductor memory
JP2986359B2 (en) Low voltage memory
US6787841B2 (en) Semiconductor element and semiconductor memory device using the same
EP0198040B1 (en) Nonvolatile memory cell
DiMaria et al. Enhanced conduction and minimized charge trapping in electrically alterable read‐only memories using off‐stoichiometric silicon dioxide films
JPH1065030A (en) Single-gate nonvolatile memory cell and method for accessing the same
US4068217A (en) Ultimate density non-volatile cross-point semiconductor memory array
JPS59500343A (en) Electrically Modifiable Nonvolatile Floating Gate Storage Device
JPS627714B2 (en)
US6040995A (en) Method of operating a storage cell arrangement
US3882469A (en) Non-volatile variable threshold memory cell
US6274903B1 (en) Memory device having a storage region is constructed with a plurality of dispersed particulates
JPH04105368A (en) Nonvolatile semiconductor storage device
JPH0480544B2 (en)
JP2002043448A (en) Integrated circuit and charge method of trap charge layer of memory cell
JPH06302828A (en) Nonvolatile semiconductor memory device
JPH0228905B2 (en)
JP2004087770A (en) Nonvolatile semiconductor memory device and charge injection method thereof
JPS6343902B2 (en)
JP3069607B2 (en) Operating method of semiconductor nonvolatile memory
JPH0577189B2 (en)
JPH0353788B2 (en)
JPH03253072A (en) Semiconductor device
JPS5958868A (en) Semiconductor non-volatile memory
JPS6252956B2 (en)