JPH02288283A - Manufacture of semiconductor laser element - Google Patents

Manufacture of semiconductor laser element

Info

Publication number
JPH02288283A
JPH02288283A JP10715889A JP10715889A JPH02288283A JP H02288283 A JPH02288283 A JP H02288283A JP 10715889 A JP10715889 A JP 10715889A JP 10715889 A JP10715889 A JP 10715889A JP H02288283 A JPH02288283 A JP H02288283A
Authority
JP
Japan
Prior art keywords
layer
gaas
type
growth
face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10715889A
Other languages
Japanese (ja)
Inventor
Akihiro Hashimoto
明弘 橋本
Toshiaki Fukunaga
敏明 福永
Nozomi Watanabe
望 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP10715889A priority Critical patent/JPH02288283A/en
Publication of JPH02288283A publication Critical patent/JPH02288283A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • H01S5/2272Buried mesa structure ; Striped active layer grown by a mask induced selective growth

Landscapes

  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain a semiconductor laser element equipped with an internal current constriction layer and refractive index distribution by applying gas source MBE method for formation of an active layer part and an internal current constriction layer and next using the MOCVD method. CONSTITUTION:For a silicon substrate 1, the one which has a face orientation of (100) and is off-angled about 3 deg. in the orientation of (011) is used, the after forming a film for buffer of CaAs by doing gas source MBE, an n-type AlCaAs clad layer 4, a CaAs active layer 4, and a p-type AlCaAs clad layer 5 are grown selectively in order on a stripe 12 by MOCVD method, whereupon the stripe is formed of an active layer part whose cross section being surrounded by face (111)B CaAs is triangle. Next, when a mask 2 is removed and gas source MBE is done again, a CaAs thin layer for buffer whose crystal orientation is rotated 90 deg. is formed, and when a p-type AlCaAs clad layer 6 is grown in two stages by MOCVD, the formation of the growth layer becomes the face surrounded by the face (100), the face (111)A CaAs and face (111)B GaAs. As a result, and internal current constriction layer and refractive index distribution can be made.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は半導体レーザ索子の製造方法に関し、特に格
子不整合系のエピタキシャル成長によって形成する半導
体レーザ素子の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a semiconductor laser element, and more particularly to a method for manufacturing a semiconductor laser element formed by epitaxial growth of a lattice-mismatched system.

[従来の技術] 従来の発光素子で例えば半導体レーザにおいては、主と
して低コスト化と機械的強度及び熱伝導率がよいなどの
メリットをもつことからシリコン基板に形成される場合
があるが、シリコン基板上に形成された半導体レーザ素
子は内部狭窄層やつくりっけの屈折率分布をもたない利
得導波形の構造のものに限られていた。その理由は結晶
成長の技術面によるものであって、シリコン基板上に−
様にGaAs層を成長したものであるため、上記のよう
な内部電流狭窄層や屈折率分布を組込んでビーム発散角
の小さい高効率の半導体レーザ素子を形成できなかった
ことによるものである。
[Prior Art] Conventional light emitting elements, such as semiconductor lasers, are sometimes formed on silicon substrates mainly because of their advantages such as low cost, good mechanical strength, and good thermal conductivity. Semiconductor laser elements formed thereon have been limited to those having a gain waveguide structure without an internal confinement layer or artificial refractive index distribution. The reason for this is due to the technical aspect of crystal growth;
This is because a GaAs layer is grown in the same manner as described above, and therefore a highly efficient semiconductor laser device with a small beam divergence angle cannot be formed by incorporating the internal current confinement layer and refractive index distribution as described above.

近年になって、MBE(分子線エピタキシャル成長)法
の技術が進展し、81基板上にGaAs層などを成長さ
せるようないわゆる格子不整合系のエピタキシャル成長
において逆位相境界を自己消滅させる方法の開発が進展
しており、例えば下記文献に開示されたものがある。
In recent years, the technology of MBE (molecular beam epitaxial growth) has progressed, and progress has been made in the development of methods to self-annihilate antiphase boundaries in so-called lattice-mismatched epitaxial growth, such as growing a GaAs layer on a substrate. For example, there are those disclosed in the following documents.

ジャパニーズ ジャーナル オブ アプライドフィジッ
クス(Japanese Journal of’ A
ppliedPhysics、 2G 、[6F 、(
1987−fli、)   (日)、日本応用物理学会
、M、Kawabe、 T、Ueda、  “5elf
’−Anni−1+1latlon of’ Antl
phase Bourdany in GaAs on
 5l(100) Grown by Mol’ecu
lar Beam Epitaxy  、 P。
Japanese Journal of Applied Physics
ppliedPhysics, 2G, [6F, (
1987-fli, ) (Sun), Japanese Society of Applied Physics, M. Kawabe, T. Ueda, “5elf
'-Anni-1+1latlon of' Antl
phase Border in GaAs on
5l (100) Grown by Mol'ecu
lar Beam Epitaxy, P.

L944〜L94B、) しかしながら、上記文献に示されるようなエピタキシャ
ル成長による新規な性質を利用して半導体レーザ索子を
形成する方法はなかった。
L944-L94B,) However, there was no method of forming a semiconductor laser probe utilizing the novel properties of epitaxial growth as shown in the above-mentioned documents.

[発明が解決しようとする課題] 上記のような従来のシリコン基板上に形成される半導体
レーザ素子の製造方法においては、シリコン基板上に−
様な化合物半導体層のダブルへテロ構造を形成する構成
となっているため、キャリヤ閉じ込めのための内部電流
狭窄層や屈折率分布をつくりつけることが難かしいとい
う課題があった。
[Problems to be Solved by the Invention] In the conventional method for manufacturing a semiconductor laser device formed on a silicon substrate as described above, -
Since the structure consists of a double heterostructure of compound semiconductor layers, it is difficult to create an internal current confinement layer and refractive index distribution for carrier confinement.

この発明は上述の課題を解決するためになされたもので
、シリコン基板上の選択成長の性質を応用して内部電流
狭窄層と屈折率分布を備えた半導体レーザ素子の製造方
法を提供することを目的とするものである。
This invention has been made to solve the above-mentioned problems, and aims to provide a method for manufacturing a semiconductor laser device having an internal current confinement layer and a refractive index distribution by applying the properties of selective growth on a silicon substrate. This is the purpose.

[課題を解決するための手段] この発明に係る半導体レーザ素子の製造方法は、(01
1)方向に約3″オフアングルをつけたシリコン(10
0)基板上にマスクを形成したのち、基板表面の熱処理
を行い、さらに結晶成長の方向が(100)方位には成
長するが(Ill)方向には成長しないようなAs吸着
温度でMBE成長を行いGaAs薄層を形成したのち、
有機金属気相成長法(以下)40CVD法と略称する)
による選択成長による発光部となる化合物半導体の活性
層部分を形成し、ついでマスクを除去したシリコン基板
表面を熱処理を行ったのちMBE法によって結晶方位を
90@回転させた化合物半導体の薄膜を堆積してバッフ
ァ層を形成し、再びMOCVD法によって化合物半導体
層を堆積することにより活性層分布を囲むように内部電
流狭窄層を埋込み層として形成するものである。
[Means for Solving the Problems] A method for manufacturing a semiconductor laser device according to the present invention includes (01
1) Silicone (10
0) After forming a mask on the substrate, heat treatment is performed on the substrate surface, and MBE growth is performed at an As adsorption temperature such that crystal growth occurs in the (100) direction but not in the (Ill) direction. After forming a thin GaAs layer,
Metal-organic chemical vapor deposition method (hereinafter abbreviated as 40CVD method)
An active layer of a compound semiconductor, which will become a light-emitting part, is formed by selective growth using the method.Then, the surface of the silicon substrate from which the mask is removed is heat-treated, and a thin film of a compound semiconductor whose crystal orientation is rotated by 90@ is deposited by the MBE method. A buffer layer is then formed, and a compound semiconductor layer is deposited again using the MOCVD method, thereby forming an internal current confinement layer as a buried layer so as to surround the active layer distribution.

[作用] この発明においては、基板上にストライブ状の活性層部
分を形成したのち、内部電流狭窄層を埋め込み形成する
が、各部の形成ははじめにMBE法による結晶方位の変
化の性質を応用して行い、ついでMOCVD法の選択成
長特性を用いた成長といういずれも2段階成長法によっ
て行う。
[Function] In this invention, after forming a striped active layer portion on a substrate, an internal current confinement layer is buried and formed, but each portion is first formed by applying the property of changing crystal orientation by MBE method. Both are performed by a two-step growth method: first, and then growth using the selective growth characteristics of the MOCVD method.

すなわち、はじめの活性層部分はマスクに露出されたシ
リコン(100)基板を(011)方向へ3°程度オフ
アングルしたものを使用し、シリコン表面の温度を90
0℃とする熱処理後に第1層目のAsの吸着温度を50
0℃以上とするMBEを行ってGaAsの薄層(バッフ
ァ層)を形成したのち、MOCVD法で活性層部分を選
択成長させてMBEとMOCVDの2段階成長を行う。
That is, for the first active layer part, a silicon (100) substrate exposed by a mask is tilted about 3 degrees off-angle in the (011) direction, and the temperature of the silicon surface is set to 90 degrees.
After heat treatment at 0°C, the adsorption temperature of As in the first layer was set at 50°C.
After performing MBE at 0° C. or higher to form a thin layer of GaAs (buffer layer), the active layer portion is selectively grown using MOCVD to perform two-step growth of MBE and MOCVD.

こうすると、本発明者らの実験事実から、MOCVDの
減圧成長では(IILIB GaAs面は成長速度が極
端におそくほとんど成長しないので、11111BGa
As面にかこまれた断面三角状の活性層部分が選択成長
により形成されることを発見した。
In this way, from the experimental facts of the present inventors, in MOCVD low-pressure growth (IILIB GaAs surface has an extremely slow growth rate and hardly grows, 11111BGa
It has been discovered that an active layer portion with a triangular cross section surrounded by an As plane is formed by selective growth.

ついで、マスクを除去後にこの除去部分を含めて内部電
流狭窄層を形成するが、シリコン基板の表面熱処理後の
Asの第1層目の吸着温度を500℃以下にしてGaA
sのMBE成長を行った後、前記のはじめの2段階成長
と同様にMOCVDでGaAsを成長させるとその方位
は90°回転し、IIIIIA GaAs面及び(10
0)GaAs面上は成長するが、IIIIIB GaA
s面上には成長しないので、電流ブロック層、クラッド
層は活性層部分とは反対の逆三角形状に形成され、屈折
率分布も同時に形成される。なお、上記において tl
lllA GaAs面及び111118 GaAs面は
11111面において第1層がそれぞれGa及びAsで
ある面を指すものとして定義された面である。
Next, after removing the mask, an internal current confinement layer is formed including the removed portion, but the adsorption temperature of the first layer of As after the surface heat treatment of the silicon substrate is set to 500°C or less to form a GaA layer.
After performing MBE growth of s, GaAs is grown by MOCVD in the same manner as the first two-step growth described above, and its orientation is rotated by 90°, forming the IIIA GaAs plane and the (10
0) Although it grows on the GaAs surface, IIIB GaA
Since they are not grown on the s-plane, the current blocking layer and cladding layer are formed in an inverted triangular shape opposite to the active layer portion, and a refractive index distribution is also formed at the same time. In addition, in the above, tl
The 111118 GaAs plane and the 111118 GaAs plane are defined as planes in which the first layer is Ga and As, respectively, in the 11111 plane.

[実施例] 第1図(a) 、 (b)はこの発明の一実施例を示す
半導体レーザ素子の製造方法を示す模式説明図である。
[Example] FIGS. 1(a) and 1(b) are schematic explanatory diagrams showing a method for manufacturing a semiconductor laser device according to an example of the present invention.

第1図(a)は活性層部分形成までの断面図であり、第
1図(b)は半導体レーザ素子の完成状態を示す断面図
である。以下、第1図(a) 、 (b)の順にその製
造方法とその状態を説明する。
FIG. 1(a) is a cross-sectional view up to the formation of the active layer portion, and FIG. 1(b) is a cross-sectional view showing the completed state of the semiconductor laser device. The manufacturing method and its state will be explained below in the order of FIGS. 1(a) and 1(b).

まず、第1図(a)において、n型シリコン基板1上に
選択成長のためのマスク2として用いるSI N  膜
又は310゜膜などを通常の気相成長(CVD)法によ
り数1000人成膜したのち、通常のリソグラフィー技
術を用いて幅約4〜51mのストライプ12を形成する
。この時用いるシリコン基板1は(10G)の面方位を
もつものでn型シリコン基板1の(100)面を(01
1)方向へ3″程度オフアングルをつけたものを使用し
、まずMBE装置に導入してセットする。
First, in FIG. 1(a), several thousand people formed a SI N film or a 310° film on an n-type silicon substrate 1 to be used as a mask 2 for selective growth using a normal vapor phase deposition (CVD) method. Thereafter, stripes 12 having a width of about 4 to 51 m are formed using a conventional lithography technique. The silicon substrate 1 used at this time has a (10G) plane orientation, and the (100) plane of the n-type silicon substrate 1 is (01
1) Use a device with an off-angle of about 3″ in the direction, and first introduce it into the MBE device and set it.

この状態でシリコン基板1の表面の熱処理温度を900
℃とし、ついで第1層目のAsの吸着温度を500℃以
上にしてMBEを行い、ストライプI2の面に図示しな
いGaAsのバッファ用薄膜を形成する。
In this state, the heat treatment temperature of the surface of the silicon substrate 1 is set to 900℃.
.degree. C., and then MBE is performed with the adsorption temperature of the first layer of As at 500.degree. C. or higher to form a buffer thin film of GaAs (not shown) on the surface of the stripe I2.

ついで、この状態のシリコン基板1をMOCVD装置に
導入してMOCVD法によりストライプ12上に選択的
にn型AJII GaAsクラッド層3、GaAs活性
層4、p型^I GaAsクラッド層5を順次成長する
。このような選択成長によって、(011)方向のスト
ライプは第1図(a)に示したようにIIIIIB G
aAs面にかこまれた形状からなる断面が三角形状の成
長層となる活性層部分が形成される。このとき、MOC
VD法では一般に減圧成長において、IIIIIBGa
As面は成長速度が極端におそくほとんど成長しない。
Next, the silicon substrate 1 in this state is introduced into an MOCVD apparatus, and an n-type AJII GaAs cladding layer 3, a GaAs active layer 4, and a p-type^I GaAs cladding layer 5 are selectively grown on the stripe 12 in order by the MOCVD method. . Due to this selective growth, the stripes in the (011) direction form IIIB G as shown in FIG. 1(a).
An active layer portion is formed that is a grown layer surrounded by the aAs plane and has a triangular cross section. At this time, MOC
In the VD method, IIIBGa is generally grown during reduced pressure growth.
The As surface has an extremely slow growth rate and hardly grows.

この時第1図(a)に示したようにn型ANGaAsク
ラッド層3は約1.5 IJmGaAs活性層4を〜1
000人、p型AN GaAsクラッド層5を約0.5
1Ja+程度とすれば活性層の横幅は約1−程度となる
。各クラッド層は不純物濃度を5 X 10’(至)−
3程度とすればよい。
At this time, as shown in FIG. 1(a), the n-type ANGaAs cladding layer 3 is about 1.5 IJmGaAs active layer 4 is about 1
000, p-type AN GaAs cladding layer 5 about 0.5
If it is about 1 Ja+, the width of the active layer will be about 1-. Each cladding layer has an impurity concentration of 5 x 10' (to) -
It should be about 3.

次に、第1図(a)の状態の基板のマスク2をIP系の
エッチャント等で除去し、再びMBB装置にセットし、
シリコン基板1の表面熱処理後のAsの第1層目の吸着
温度を500℃以下にしてMBEを行うとGaAs層の
結晶方位は90″回転したバッファ用のGaAs薄層が
形成される。さらに、この状態の基板をMOCVD装置
に導入し、p型All GaAsクラッド層6をMOC
VDにより2回目の2段階成長をすると、第1図(b)
に示すように成長層の形成は+1001面及びIIII
IA GaAs面と IIIIIB GaAs面とに囲
まれた面となる。この時、tllllAGaAs面及び
(100)GaAs面上は成長するが IIIIIB 
GaAs面上は成長しない。
Next, the mask 2 of the substrate in the state shown in FIG.
When MBE is performed with the adsorption temperature of the first layer of As after the surface heat treatment of the silicon substrate 1 being 500° C. or lower, a thin GaAs layer for a buffer is formed in which the crystal orientation of the GaAs layer is rotated by 90″.Furthermore, The substrate in this state is introduced into an MOCVD device, and the p-type All GaAs cladding layer 6 is
When the second two-stage growth is performed by VD, the result is shown in Figure 1(b).
As shown in , the growth layer is formed on +1001 plane and III plane.
The surface is surrounded by the IA GaAs surface and the IIIB GaAs surface. At this time, growth occurs on the tllllA GaAs surface and the (100) GaAs surface, but IIIB
It does not grow on GaAs surfaces.

このようにして、マスクを除去した部分のp型Aj? 
GaAsクラッド層6上にn型A、11 GaAsクラ
ッド層(電流ブロック層)7、p型AN GaAsクラ
ッド層8、−型GaAsキャップ層9を順次成長する。
In this way, the p-type Aj?
On the GaAs cladding layer 6, an n-type A, 11-GaAs cladding layer (current blocking layer) 7, a p-type AN GaAs cladding layer 8, and a −-type GaAs cap layer 9 are successively grown.

この時、p型AllGaAsクラッド層6の厚みは次に
形成するn型AD GaAs電流ブロック層7との界面
が活性層4の中央にくる厚みとする。次にn型電流ブロ
ック層7は約5000〜6000人の厚さとし、p型A
I GaAsクラッド層5をおおわない程度とする。
At this time, the thickness of the p-type AllGaAs cladding layer 6 is such that the interface with the n-type AD GaAs current blocking layer 7 to be formed next is at the center of the active layer 4. Next, the n-type current blocking layer 7 is made to have a thickness of about 5,000 to 6,000 layers, and the p-type A
It should not cover the I GaAs cladding layer 5.

次に形成するp型AN GaAs層8は厚さ約11JI
11とし、最後にメ型GaAsキャップ層9を形成する
。キャップ層は数千人程度でよい。また、不純物濃度は
p型AD GaAsクラッド層8を5XlOcm  、
p+−Ga^Sキャップ層9を〜、018cIn−3以
上とする。終りに、p型電極lO1およびn型電極11
を形成して、第1図(b)の段階までの半導体レーザ素
子の基本構造の形成を終了する。
The p-type AN GaAs layer 8 to be formed next has a thickness of about 11JI.
11, and finally, a square GaAs cap layer 9 is formed. The cap layer may be around a few thousand people. In addition, the impurity concentration of the p-type AD GaAs cladding layer 8 is 5XlOcm,
The p+-Ga^S cap layer 9 is made to be .018cIn-3 or more. Finally, the p-type electrode lO1 and the n-type electrode 11
The formation of the basic structure of the semiconductor laser device up to the stage shown in FIG. 1(b) is completed.

以上のようにして、n型AN GaAsクラッド層3、
GaAs活性層4、p型AN GaAsクラッド層5、
n型^1) GaAsクラッド層7によって内部電流狭
窄層が形成され、n型AN GaAsクラッド層3、p
型ANGaAsクラッド層5、n型A(l GaAsク
ラッド層7、p型^f) GaAsクラッド層8によっ
て所要の屈折率分布が形成される。この構成によって、
従来のシリコン基板上に形成される半導体レーザ素子で
は達成されなかった内部電流狭窄層が形成されたので、
電流の閉じ込めが容易となり、しきい値電流が小さく、
発散角の小さいレーザビームが活性層の端面から射出さ
れる。
As described above, the n-type AN GaAs cladding layer 3,
GaAs active layer 4, p-type AN GaAs cladding layer 5,
n-type^1) An internal current confinement layer is formed by the GaAs cladding layer 7, and the n-type AN GaAs cladding layer 3, p
A desired refractive index distribution is formed by the AN GaAs cladding layer 5, the n-type A (l GaAs cladding layer 7, and the p-type^f) GaAs cladding layer 8. With this configuration,
Because an internal current confinement layer was formed, which was not achieved in conventional semiconductor laser devices formed on silicon substrates,
Current confinement becomes easy, threshold current is small,
A laser beam with a small divergence angle is emitted from the end face of the active layer.

以上のようなこの発明の製造方法は、GaAs。The manufacturing method of the present invention as described above uses GaAs.

A11l GaAs系の半導体材料に限定されず、シリ
コン基板上の選択成長特性及び表面処理による結晶方位
の変化を有する材料系ならばいかなるものでもよい。ま
た、極性は上記例で述べた例と全(逆のものであっても
よい。
A11l The material is not limited to GaAs-based semiconductor materials, but any material system may be used as long as it has selective growth characteristics on a silicon substrate and changes in crystal orientation due to surface treatment. Further, the polarity may be the same as the example described in the above example (opposite).

[発明の効果コ 以上のようにこの発明によれば、MOCVD法による選
択成長特性とMB2法による結晶方位の変化の性質を利
用して、シリコン基板上に化合物半導体層を形成する簡
易な2段階成長の2回成長により、シリコン基板上にエ
ツチング等の技術を用いることなく内部電流狭窄層及び
屈折率分布をつくりつけることかできたので、発光特性
のすぐれた半導体レーザ素子が容易に実現される。また
、この発明の製造方法を応用して選択成長における活性
層の成長厚み等をより微細化して変化させることにより
、現在注目されている量子効果形の量子細線レーザを実
現する可能性が示唆される効果がある。
[Effects of the Invention] As described above, according to the present invention, a simple two-step process for forming a compound semiconductor layer on a silicon substrate takes advantage of the selective growth characteristics of the MOCVD method and the crystal orientation change characteristics of the MB2 method. By growing twice, it was possible to create an internal current confinement layer and a refractive index distribution on the silicon substrate without using techniques such as etching, so a semiconductor laser device with excellent light emission characteristics could be easily realized. . Furthermore, it has been suggested that by applying the manufacturing method of this invention to further refine and change the growth thickness of the active layer in selective growth, it is possible to realize a quantum wire laser of the quantum effect type, which is currently attracting attention. It has the effect of

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a) 、 (b)はこの発明の一実施例を示す
半導体レーザ索子の製造方法を示す模式説明図、第1図
(a)は活性層部分までの形成状態を示す断面図、第1
図(b)は完成状態を示す半導体レーザ索子の要部断面
図である。 図において、1はn型シリコン基板、2はマスク、3は
n型Ap GaAsクラッド層、4はGaAs活性層、
5はp型^(l GaAsクラッド層、6はp型^ΩG
aAsクラッド層、7はn型AΩGaAsクラッド層(
電流ブロック層) 8はp型AΩGaAsクラッド層、
9はp+型GaAsキャップ層、1oはp電極(正極)
、11はn’を極(負極)である。 ゛・二ノ (a) (b)
FIGS. 1(a) and 1(b) are schematic explanatory diagrams showing a method of manufacturing a semiconductor laser cable according to an embodiment of the present invention, and FIG. 1(a) is a sectional view showing the state of formation up to the active layer portion. , 1st
Figure (b) is a sectional view of a main part of the semiconductor laser cable in a completed state. In the figure, 1 is an n-type silicon substrate, 2 is a mask, 3 is an n-type Ap GaAs cladding layer, 4 is a GaAs active layer,
5 is p-type^(l GaAs cladding layer, 6 is p-type^ΩG
aAs cladding layer, 7 is n-type AΩGaAs cladding layer (
current blocking layer) 8 is a p-type AΩGaAs cladding layer;
9 is a p+ type GaAs cap layer, 1o is a p electrode (positive electrode)
, 11, n' is a pole (negative pole).゛・Nino (a) (b)

Claims (1)

【特許請求の範囲】 格子不整合系のエピタキシャル成長を行いシリコン基板
上に化合物半導体の層を形成する半導体レーザ素子の製
造方法において、 (011)方向にオフアングルをつけた前記シリコン(
100)基板上に選択成長用のマスクを形成し、シリコ
ン表面を熱処理したのち、前記マスクの開口部に結晶成
長の方向が(100)方位には成長するが(111)方
位には成長しないような第1層のAsの吸着温度に設定
して分子線エピタキシャル成長を行ってGaAs薄層を
形成し、 前記GaAs薄層の領域に、有機金属気相成長を行い、
クラッド層、活性層、クラッド層を順次それぞれ選択成
長させて活性層部分を形成し、 前記マスクを除去し、シリコン領域の表面熱処理を行っ
たのち、結晶成長の方向が前記分子線エピタキシャル成
長の方向とは90°変化するような温度に設定して分子
線エピタキシャル成長を行って結晶方位を90°回転さ
せたGaAsの薄層を形成し、該薄層上に有機金属気相
成長により化合物半導体層を順次成長させて前記活性層
部分を囲む内部電流狭窄層を埋込み形成するとともに屈
折率分布を形成することを特徴とする半導体レーザ素子
の製造方法。
[Claims] In a method for manufacturing a semiconductor laser device in which a compound semiconductor layer is formed on a silicon substrate by lattice-mismatched epitaxial growth, the silicon (
100) After forming a selective growth mask on the substrate and heat-treating the silicon surface, a crystal is grown in the opening of the mask so that the direction of crystal growth is in the (100) direction but not in the (111) direction. forming a GaAs thin layer by performing molecular beam epitaxial growth at a first layer As adsorption temperature, and performing organometallic vapor phase epitaxy on the region of the GaAs thin layer;
A cladding layer, an active layer, and a cladding layer are sequentially selectively grown to form an active layer portion, the mask is removed, and the silicon region is subjected to surface heat treatment, and then the direction of crystal growth is aligned with the direction of the molecular beam epitaxial growth. A thin layer of GaAs with a crystal orientation rotated by 90° is formed by molecular beam epitaxial growth at a temperature that changes by 90°, and compound semiconductor layers are successively deposited on the thin layer by organometallic vapor phase epitaxy. 1. A method of manufacturing a semiconductor laser device, which comprises growing and embedding an internal current confinement layer surrounding the active layer portion and forming a refractive index distribution.
JP10715889A 1989-04-28 1989-04-28 Manufacture of semiconductor laser element Pending JPH02288283A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10715889A JPH02288283A (en) 1989-04-28 1989-04-28 Manufacture of semiconductor laser element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10715889A JPH02288283A (en) 1989-04-28 1989-04-28 Manufacture of semiconductor laser element

Publications (1)

Publication Number Publication Date
JPH02288283A true JPH02288283A (en) 1990-11-28

Family

ID=14451967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10715889A Pending JPH02288283A (en) 1989-04-28 1989-04-28 Manufacture of semiconductor laser element

Country Status (1)

Country Link
JP (1) JPH02288283A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5991322A (en) * 1993-07-20 1999-11-23 Mitsubishi Denki Kabushiki Kaisha Semiconductor optical device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5991322A (en) * 1993-07-20 1999-11-23 Mitsubishi Denki Kabushiki Kaisha Semiconductor optical device

Similar Documents

Publication Publication Date Title
JP2854607B2 (en) Semiconductor device and semiconductor laser device
JPH01282197A (en) Method for growing crystal of algainp-base crystal and semiconductor laser
JPS59129473A (en) Semiconductor laser device and manufacture thereof
JPH02288283A (en) Manufacture of semiconductor laser element
JP3869641B2 (en) Semiconductor device and semiconductor laser device
JPH03238813A (en) Epitaxial growth method
JP3684519B2 (en) Semiconductor laser manufacturing method
JP2533777B2 (en) Method for manufacturing one-dimensional quantum wire
JPH023222A (en) Manufacture of semiconductor quantum wire
JPS6179281A (en) Manufacture of semiconductor laser
JPS6262581A (en) Manufacture of semiconductor light emitting device
JP2751356B2 (en) Manufacturing method of semiconductor laser
JPS62226673A (en) Semiconductor light-emitting device and manufacture thereof
JPS62245691A (en) Manufacure of semiconductor laser
JPS6342114A (en) Crystal growth method
JP2000183327A (en) Formation of quantum dots, quantum dot structure formed thereby and semiconductor quantum dot laser
JPH03119777A (en) Buried heterostructure semiconductor laser device and manufacture thereof
JPH03227586A (en) Semiconductor laser
JPS6373583A (en) Manufacture of semiconductor laser
JPS61276390A (en) Manufacture of semiconductor light-emitting device
JPS60260183A (en) Semiconductor luminescent device
JPS61137387A (en) Semiconductor laser
JPH046889A (en) Semiconductor laser device
JPH01226191A (en) Manufacture of algainp buried structure semiconductor laser
JPH0442981A (en) Semiconductor device and manufacture thereof