JPH03227586A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPH03227586A
JPH03227586A JP2411190A JP2411190A JPH03227586A JP H03227586 A JPH03227586 A JP H03227586A JP 2411190 A JP2411190 A JP 2411190A JP 2411190 A JP2411190 A JP 2411190A JP H03227586 A JPH03227586 A JP H03227586A
Authority
JP
Japan
Prior art keywords
single crystal
silicon single
crystal substrate
semiconductor laser
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2411190A
Other languages
Japanese (ja)
Inventor
Shigeo Sugao
繁男 菅生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2411190A priority Critical patent/JPH03227586A/en
Publication of JPH03227586A publication Critical patent/JPH03227586A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain a high quality semiconductor laser whose dislocation is decreased by specifying the longitudinal direction of a laser resonator and the shape of the junction part between a III-V compound semiconductor layer and a silicon single crystal substrate. CONSTITUTION:The junction part between a silicon single crystal substrate 10 and a III-V compound semiconductor layer forms a stripe shape having the width of 10mum or less has a stripe whose width is 10mum or less. The longitudinal direction of the stripe (in parallel with the length of a resonator) is inclined by 10 deg. or more within a plane {100} with respect to the direction of [011] of the silicon single crystal substrate 10. Thus, the length in the direction in parallel with the direction of [011] of the junction part becomes 100mum or less. Therefore, the high-quality compound semiconductor layer having less dislocation can be formed. As a result, the high-quality semiconductor laser having the low threhold value can be formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体レーザに関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to a semiconductor laser.

〔従来の技術〕[Conventional technology]

シリコン単結晶基板上に■−v族化合物半導体層を形状
してなる半導体レーザを形成する際に、結晶成長技術上
の問題点として、表面清浄化が困難であること、大きな
格子定数差を有すること、ソリコンが共有結合性結晶で
あるのに対し■−v族化合物半導体が分極性結晶である
こと等の点があった。これらの問題のためシリコン基板
上に成長した化合物半導体層は10’cm−”程度の高
い転位を有しデバイス作製に充分な品質を得ることが困
難であった。
When forming a semiconductor laser consisting of a ■-V group compound semiconductor layer on a silicon single crystal substrate, problems with crystal growth technology include the difficulty of surface cleaning and the large difference in lattice constant. In particular, while soricons are covalent crystals, the ■-v group compound semiconductors are polarizable crystals. Because of these problems, compound semiconductor layers grown on silicon substrates have high dislocations of about 10'cm-'', making it difficult to obtain sufficient quality for device fabrication.

これらの問題を低減する手法として、高温での基板表面
清浄化、歪超格子層からなるバッファ層、基板方位の傾
斜等の方法があり、これらの手法を用いてシリコン単結
晶基板上にInGaAsP及びInPよりなる■−■族
化合物半導体を形成して半導体レーザとした例が7プラ
イドフイジクスレタ一ズ1988年53巻9号725頁
に報告されている。この従来例では半導体レーザの閾値
電流密度として10 K A/cJが得られている。
Methods to reduce these problems include cleaning the substrate surface at high temperatures, using a buffer layer consisting of a strained superlattice layer, and tilting the substrate orientation. An example of a semiconductor laser made by forming a ■-■ group compound semiconductor made of InP is reported in 7 Pride Physics Letters, Vol. 53, No. 9, p. 725, 1988. In this conventional example, a threshold current density of 10 K A/cJ is obtained for the semiconductor laser.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記従来例では格子整合した化合物半導
体基板を用いた通常の半導体レーザが1〜2KA/cn
iの閾値電流密度であるのに対して数倍以上の閾値電流
密度であり、結晶品質が不十分であることを示している
。これは転位に比較的敏感なデバイスである半導体レー
ザの場合、転位密度をl05cm”以下に抑える必要が
あるが、上記従来例では転位密度が充分低減されず結晶
の発光特性が良好でないためである。
However, in the above conventional example, a normal semiconductor laser using a lattice-matched compound semiconductor substrate has a power of 1 to 2 KA/cn.
The threshold current density is several times higher than that of i, indicating that the crystal quality is insufficient. This is because in the case of a semiconductor laser, which is a device that is relatively sensitive to dislocations, it is necessary to suppress the dislocation density to less than 10 cm, but in the conventional example described above, the dislocation density is not sufficiently reduced and the light emission characteristics of the crystal are not good. .

本発明の目的は、シリコン単結晶を基板とした高品質の
半導体レーザを提供することにある。
An object of the present invention is to provide a high quality semiconductor laser using a silicon single crystal as a substrate.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、(,100)面近傍の面方位を有するシリコ
ン単結晶基板上に■−■族化合物半導体をストライプ状
に多層積層してなる半導体レーザに於て、レーザ共振器
長方向が前記シリコン単結晶基板の[011]方向と平
行な方向からlO°以上の角をなし、旦つ、化合物半導
体層とシリコン単結晶基板との接合部分の形状が幅10
μm以下のストライプ形状であることを特徴とする構成
である。
The present invention provides a semiconductor laser formed by laminating multiple layers of ■-■ group compound semiconductors in a stripe shape on a silicon single crystal substrate having a plane orientation near the (,100) plane, in which the laser resonator length direction is It forms an angle of 10° or more from a direction parallel to the [011] direction of the single-crystal substrate, and the shape of the bonding portion between the compound semiconductor layer and the silicon single-crystal substrate has a width of 10°.
This structure is characterized by a stripe shape of μm or less.

〔作用〕[Effect]

本発明による半導体レーザではシリコン単結晶基板と化
合物半導体層との接合部分が幅10μm以下のストライ
プ形状をなし、且つ、前記ストライプの長平方向(共振
器長と平行方向)がシリコン単結晶基板の[0,11]
方向に対して(100)面内でlO°以上傾いて形成さ
れている。その結果、前記ストライプ状の接合部分にお
いて[011]方向と平行な方向での長さは最大でも5
7μmとなり共振器長方向を[011]方向と平行な方
向にとった場合に比べて大幅に小さくなる。一般にシリ
コン単結晶基板上に化合物半導体層を積層した場合、両
者の接合界面の面内に於てシリコン単結晶基板の[01
1]方向と平行な方向に沿って転位が生じ、互いに直交
した転位は更に新たな転位を発生させる。こうした転位
の増加は前記接合部分において[011]方向と平行な
方向での長さを低減することによって抑制され、特に1
00μm以下で転位の低減が顕著である。本発明では前
記接合部分の[011]方向と平行な方向での長さが1
00μm以下になるので、転位の少ない高品質の化合物
半導体層が形成でき、その結果、低閾値である高品質の
半導体レーザが形成できる。
In the semiconductor laser according to the present invention, the joint portion between the silicon single crystal substrate and the compound semiconductor layer has a stripe shape with a width of 10 μm or less, and the longitudinal direction of the stripe (parallel to the resonator length) is [ 0,11]
It is formed at an angle of 10° or more in the (100) plane with respect to the direction. As a result, the length of the striped joint in the direction parallel to the [011] direction is at most 5
7 μm, which is significantly smaller than when the resonator length direction is parallel to the [011] direction. Generally, when a compound semiconductor layer is stacked on a silicon single crystal substrate, the [01
1] Dislocations occur along directions parallel to the direction, and dislocations perpendicular to each other further generate new dislocations. Such an increase in dislocations can be suppressed by reducing the length of the joint in the direction parallel to the [011] direction, and in particular, 1
Dislocations are significantly reduced below 00 μm. In the present invention, the length of the joint portion in the direction parallel to the [011] direction is 1
00 μm or less, a high-quality compound semiconductor layer with few dislocations can be formed, and as a result, a high-quality semiconductor laser with a low threshold value can be formed.

〔実施例〕〔Example〕

以下、図面を用いて本発明の詳細な説明する。 Hereinafter, the present invention will be explained in detail using the drawings.

第1図は本発明の一実施例を示す半導体レーザの斜視図
である。本実施例では<110)方向に2°傾けた(1
00)面を表面とするシリコン単結晶基板IOの上にシ
リコンをl X l O”ctn−3にドープしたIn
Pバッファ層12、禁制帯幅0,95eVのアンドープ
InGaAsP活性層13、ベリリウムをl X 10
 ”cm−”にドープしたInPクラッド層14、及び
、ベリリウムをl X I O”Cm−3にドープした
InGaAsPコンタクト層15からなるダブルへテロ
構造を形成した。Si02層11はInPとInGaA
sPを選択的にエピタキシャル成長させてストライプ状
のダブルへテロ構造を作るための選択成長マスクである
。電流はp形電極17、コンタクト層15、クラッド層
14、活性層13、バッファ層12、シリコン単結晶基
板IO及びn形電極18に沿って流れ、有機絶縁体層1
6及びSigh層11層上1て狭窄される。
FIG. 1 is a perspective view of a semiconductor laser showing an embodiment of the present invention. In this example, the (1
In doped with silicon to lXlO”ctn-3 on a silicon single crystal substrate IO whose surface is
P buffer layer 12, undoped InGaAsP active layer 13 with forbidden band width 0.95 eV, beryllium 1×10
A double heterostructure was formed consisting of an InP cladding layer 14 doped with "cm-" and an InGaAsP contact layer 15 doped with beryllium lXIO"Cm-3. The Si02 layer 11 was made of InP and InGaA.
This is a selective growth mask for selectively epitaxially growing sP to create a striped double heterostructure. The current flows along the p-type electrode 17, the contact layer 15, the cladding layer 14, the active layer 13, the buffer layer 12, the silicon single crystal substrate IO and the n-type electrode 18, and the organic insulator layer 1
6 and 1 on the high layer 11.

本実施例では選択成長特性を有するエピタキシャル成長
方法としてケミカルビームエピタキシャル成長方法を用
いた。m族材料にはトリエチルガリウム(略称TEG、
分子式(C2Hs ) 3 G a )及びトリメチル
インジウム(略称TMI、分子式(CH3)3 I n
)を用い、V族材料にはアルシン(分子式ASH3)及
びホスフィン(分子式PH3)を用い、これらのガスを
高真空中で成長温度に加熱保持されたシリコン単結晶基
板10に照射してエピタキシャル成長させた。なお、成
長前に表面清浄化及びシングルドメイン化の一般的な手
法として、高温(1000℃)での表面清浄化を行った
In this example, a chemical beam epitaxial growth method was used as an epitaxial growth method having selective growth characteristics. Triethyl gallium (abbreviated as TEG) is an m-group material.
Molecular formula (C2Hs) 3 Ga) and trimethylindium (abbreviation TMI, molecular formula (CH3) 3 I n
), arsine (molecular formula ASH3) and phosphine (molecular formula PH3) were used as group V materials, and epitaxial growth was performed by irradiating these gases onto a silicon single crystal substrate 10 heated and maintained at the growth temperature in a high vacuum. . Note that, before growth, surface cleaning was performed at high temperature (1000° C.) as a general method for surface cleaning and single domain formation.

本実施例においてはまずシリコン単結晶基板lO上にS
i02層11を形成し通常のフォトリソグラフィと化学
エツチングの方法によって幅3.5μmのストライブ状
にシリコン単結晶表面を露出させた。次にケミカルビー
ムエピタキシャル成長法によって5i02層11を選択
成長マスクとして前配化合物半導体を選択成長させてダ
ブルへテロ構造を形成した。続いて有機絶縁層16とし
てポリイミド層をストライブ状のダブルへテロ構造の両
側に形成し、ダブルへテロ構造の上部及び基板裏面にそ
れぞれp形電極17及びn形電極18を形成して半導体
レーザとした。
In this example, first, S
An i02 layer 11 was formed, and the surface of the silicon single crystal was exposed in stripes having a width of 3.5 μm using conventional photolithography and chemical etching methods. Next, a double heterostructure was formed by selectively growing a precursor compound semiconductor by chemical beam epitaxial growth using the 5i02 layer 11 as a selective growth mask. Next, a polyimide layer is formed as an organic insulating layer 16 on both sides of the striped double heterostructure, and a p-type electrode 17 and an n-type electrode 18 are formed on the top of the double heterostructure and the back surface of the substrate, respectively, to form a semiconductor laser. And so.

第2図は本実施例におけるソリフン単結晶基板10と化
合物半導体層であるバッファ層12との接合部分20と
[011]方向(化合物半導体層での表記は[011]
と[011])との関係を説明する模式図である。図に
おいて紙面に垂直な上方向を<100>にとっである。
FIG. 2 shows the bonding portion 20 between the SoliFun single crystal substrate 10 and the buffer layer 12, which is a compound semiconductor layer, in the [011] direction (the notation for the compound semiconductor layer is [011]) in this embodiment.
and [011]); FIG. In the figure, the upward direction perpendicular to the plane of the paper is taken as <100>.

接合部分20は幅3.5μmのストライブ形状であり、
共振器方向を、(01D方向に対して45゜(100)
面内で傾けた。このとき、接合部分20における[01
1]方向と平行な方向での長さLは5μmと充分に小さ
くなって、その結果、転位の増加が顕著に抑制され転位
密度を10’cm−’以下に抑えることができる。
The joint portion 20 has a stripe shape with a width of 3.5 μm,
Set the resonator direction to (45° (100) with respect to the 01D direction)
Tilt within the plane. At this time, [01
1] The length L in the direction parallel to the direction is sufficiently small as 5 μm, and as a result, the increase in dislocations is significantly suppressed and the dislocation density can be suppressed to 10′ cm −′ or less.

上記実施例ではケミカルビーム成長法を用いたが、液相
成長法、有機金属気相成長法、クロライド気相成長法等
の他の選択成長特性を有するエピタキンヤル成長法を用
いても実現できる。
Although the chemical beam growth method was used in the above embodiment, it can also be realized by using other epitaaxial growth methods having selective growth characteristics, such as liquid phase epitaxy, organometallic vapor phase epitaxy, or chloride vapor phase epitaxy.

上記実施例ではInGaAsP/InP半導体材料が用
いられたが、G a A j2 A s / G a、
 A s 。
In the above embodiment, InGaAsP/InP semiconductor material was used, but Ga A j2 A s / Ga,
As.

I n G a A (! A s / I n P等
の他のm−v族生導体材料からなる半導体レーザにも適
用可能である。
It is also applicable to semiconductor lasers made of other m-v group bioconductive materials such as I n Ga A (!A s / I n P).

〔発明の効果〕〔Effect of the invention〕

本発明による半導体レーザは、共振器長の方向を傾ける
ことによって転位密度を低減した高品質の化合物半導体
層を有するために化合物半導体基板を用いた半導体レー
ザに比べ遜色の少ない発光特性を実現できる。
The semiconductor laser according to the present invention has a high-quality compound semiconductor layer with a reduced dislocation density by tilting the direction of the cavity length, so that it can achieve light emission characteristics comparable to those of a semiconductor laser using a compound semiconductor substrate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例である半導体レーザの斜視図
、第2図は本発明の共振器長方向の説明図である。 lO・・・・・・シリコン単結晶基板、11・・・・・
・S iO2層、12・・・・・・バッファ層、13・
・・・・・活性層、14・・・・・・クラッド層、15
・・・・・・コンタクト層、16−・・・・有機絶縁体
層、17・・・・・・p形電極、18・・・・・・n形
電極、20・・・・・・接合部分 を、それぞれ示す。
FIG. 1 is a perspective view of a semiconductor laser which is an embodiment of the present invention, and FIG. 2 is an explanatory diagram of the resonator length direction of the present invention. lO...Silicon single crystal substrate, 11...
・SiO2 layer, 12...Buffer layer, 13.
... Active layer, 14 ... Cladding layer, 15
...Contact layer, 16--Organic insulator layer, 17--P type electrode, 18--N type electrode, 20--Junction Each part is shown below.

Claims (1)

【特許請求の範囲】[Claims] {100}面近傍の面方位を有するシリコン単結晶基板
上にIII−V族化合物半導体を多層積層してなる半導体
レーザに於て、レーザ共振器長方向が前記シリコン単結
晶基板の[011]方向と平行な方向から10°以上の
角をなし、且つ、前記III−V族化合物半導体層と前記
シリコン単結晶基板との接合部分の形状が幅10μm以
下のストライプ形状であることを特徴とする半導体レー
ザ。
In a semiconductor laser formed by laminating multiple layers of III-V compound semiconductors on a silicon single crystal substrate having a plane orientation near the {100} plane, the laser cavity length direction is the [011] direction of the silicon single crystal substrate. A semiconductor characterized in that the bonding portion between the III-V compound semiconductor layer and the silicon single crystal substrate has a stripe shape with a width of 10 μm or less, forming an angle of 10° or more from a direction parallel to the semiconductor layer. laser.
JP2411190A 1990-02-01 1990-02-01 Semiconductor laser Pending JPH03227586A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2411190A JPH03227586A (en) 1990-02-01 1990-02-01 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2411190A JPH03227586A (en) 1990-02-01 1990-02-01 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPH03227586A true JPH03227586A (en) 1991-10-08

Family

ID=12129222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2411190A Pending JPH03227586A (en) 1990-02-01 1990-02-01 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPH03227586A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5659565A (en) * 1993-07-29 1997-08-19 Kitamura; Shotaro Semiconductor optical device with mesa structure which is surrounded laterally by insulating mask for preventing current from leaking directly from cladding layer to substrate and process of fabrication thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5659565A (en) * 1993-07-29 1997-08-19 Kitamura; Shotaro Semiconductor optical device with mesa structure which is surrounded laterally by insulating mask for preventing current from leaking directly from cladding layer to substrate and process of fabrication thereof

Similar Documents

Publication Publication Date Title
JP3830051B2 (en) Nitride semiconductor substrate manufacturing method, nitride semiconductor substrate, optical semiconductor device manufacturing method, and optical semiconductor device
US20020110945A1 (en) Optical semiconductor device having an epitaxial layer of iii-v compound semiconductor material containing n as a group v element
JPH0650723B2 (en) Epitaxial growth method
JPH1131864A (en) Crystal growth of low-migration gallium nitride
JP2854607B2 (en) Semiconductor device and semiconductor laser device
JP4031628B2 (en) Semiconductor multilayer crystal, light-emitting element using the same, and method for growing the semiconductor multilayer crystal
JPH06296060A (en) Manufacture of visible light semiconductor laser diode
JP2969979B2 (en) Semiconductor structures for optoelectronic components
JP4078891B2 (en) Compound semiconductor epitaxial wafer manufacturing method and compound semiconductor epitaxial wafer
JPH025589A (en) Manufacture of semiconductor laser
JP3869641B2 (en) Semiconductor device and semiconductor laser device
JPH03227586A (en) Semiconductor laser
JPH11204878A (en) Semiconductor laser and its manufacture
JP2003158074A (en) Semiconductor multilayer substrate and method for manufacturing semiconductor multilayer film
JPH0434920A (en) Hetero epitaxial growth method for group iii-v compound semiconductor on different type board
JP2803375B2 (en) Semiconductor structure
JPH0888185A (en) Semiconductor crystal growth method
JP4560885B2 (en) Compound semiconductor device and manufacturing method thereof, and semiconductor light emitting device and manufacturing method thereof
JP2967719B2 (en) Semiconductor crystal growth method and semiconductor device
JP2586118B2 (en) Vapor phase growth method and method of manufacturing embedded semiconductor laser
JPH03247597A (en) Epitaxial growth method of iii-v compound semiconductor on silicon substrate
JPH02188912A (en) Selective growth method of iii-v compound semiconductor
JPH04273493A (en) Semiconductor laser and manufacture
JPH07176830A (en) Manufacture of semiconductor light-emitting element
JP3607827B2 (en) Compound semiconductor light emitting device and method of manufacturing the same