JPS61137387A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPS61137387A
JPS61137387A JP26026284A JP26026284A JPS61137387A JP S61137387 A JPS61137387 A JP S61137387A JP 26026284 A JP26026284 A JP 26026284A JP 26026284 A JP26026284 A JP 26026284A JP S61137387 A JPS61137387 A JP S61137387A
Authority
JP
Japan
Prior art keywords
layer
semiconductor
type
waveguide
gaas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26026284A
Other languages
Japanese (ja)
Inventor
Masaaki Oshima
大島 正晃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP26026284A priority Critical patent/JPS61137387A/en
Publication of JPS61137387A publication Critical patent/JPS61137387A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To suppress burying light loss by sequentially forming 3 semiconductor growing layers having different band gaps on a semiconductor substrate, and burying a ring waveguide in which two semiconductor thin films are alternately grown with different band gaps. CONSTITUTION:An N type Al0.3Ga0.7As layer (band gap Eg1)2, an N type GaAs active layer (Eg2)3, a P type Al0.3Ga0.7As layer (Eg3)4, and a P type GaAs layer 5 are sequentially grown on an (100) N type GaAs substrate by a liquid phase growing method. In this case, the relationship of Eg1approx.=Eg2 is satisfied. A mesa etching at least deeper than the layer 3 is formed at a wafer, and a bar-like light producing waveguide 7 is also formed. SiO2 films 8, 9 are formed on a circular ring 6 and the waveguide 7, an N type Al0.7Ga0.3As and an N type GaAs are alternately grown until the layer 3 is buried by an MO-CVD method. AlGaAs and GaAs are removed by a fluoric acid on the films 8, 9, and ohmic electrodes 10, 11 are formed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、へき開を用いない半導体レーザに関するもの
であり、通信、計測等の分野に使用される。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a semiconductor laser that does not use cleavage, and is used in fields such as communications and measurement.

従来の技術 一般に、半導体レーザの共振器としてはへき開により形
成されるファブリペロ共振器が広く使用されている。そ
してこの構造のレーザは、今日単体のレーザとしてオー
ディオ、ビデオディスク等に広く使用されている。しか
しながら上記へき開工程は、未だ自動化が困難であると
共に共振器長を短かくすることが困難であるという欠点
をもっている。このようなへき開工程からのがれる構造
Physics VoI、 16、洗8.1977))
このリングレーザによればへき開工程なしに、半導体基
板中の任意の場所へ結晶成長工程と、ホトエツチング工
程によってレーザ発振器を作り込めるので、光集積回路
には極めて都合のよいレーザである。
2. Description of the Related Art In general, Fabry-Perot resonators formed by cleavage are widely used as resonators for semiconductor lasers. Lasers with this structure are now widely used as single lasers for audio, video discs, and the like. However, the above-mentioned cleavage process still has drawbacks in that it is difficult to automate and it is difficult to shorten the resonator length. Structures that can escape from such a cleavage process Physics Vol. 16, Wash. 8.1977))
According to this ring laser, a laser oscillator can be fabricated anywhere in a semiconductor substrate by a crystal growth process and a photoetching process without a cleavage process, so it is an extremely convenient laser for optical integrated circuits.

リングレーザの従来からの構成を第6図に示す。A conventional configuration of a ring laser is shown in FIG.

半導体基板上にダブルへテロp −n接合12を円環状
にメサ型に形成する。活性層の屈折率tl−n2にした
時それを埋め込む材料の屈折率n1  との関係は、 n、! >> n 1       ・・・・・・・・
・・・・・・・・・・(1)であることが望ましい。す
なわちリングレーザは、曲シ導波路であるから、極めて
光の損失が大きい。
A double hetero p-n junction 12 is formed in an annular mesa shape on a semiconductor substrate. The relationship between the refractive index tl-n2 of the active layer and the refractive index n1 of the material in which it is embedded is n,! >> n 1 ・・・・・・・・・
・・・・・・・・・(1) is desirable. That is, since the ring laser has a curved waveguide, the loss of light is extremely large.

損失を小さくするためにはリング径を大きくすればよい
が実用的な値とはならない。(1)式なる関係を満足す
る方法の一つは、半導体材料で埋め込まずに空気層とす
ることが考えられる。しかしながら、あまりに屈折率差
が大となると光取出用光導波路13とのカップリング効
率が悪くなる〇発明が解決しようとする問題点 従来のリングレーザでは最適な屈折率で埋め込むことが
難かしい。例えば、AlGaAs/GaAsからなるレ
ーザでは、埋め込み用材料として最も屈折率の小さな組
成はA IA sであるが、AlAsは、不安定を材料
であり、実用上Ae0.7Ga0.3A8 程度が屈折
率の上限であり、この材料では、損失が大きく充分低し
きい値の半導体リングレーザを得ることが出来ない。
In order to reduce the loss, the ring diameter can be increased, but this is not a practical value. One possible method for satisfying the relationship expressed by equation (1) is to form an air layer without filling it with a semiconductor material. However, if the refractive index difference becomes too large, the coupling efficiency with the light extraction optical waveguide 13 will deteriorate.Problems to be Solved by the Invention In conventional ring lasers, it is difficult to embed the ring laser with an optimal refractive index. For example, in a laser made of AlGaAs/GaAs, the composition with the lowest refractive index as an embedding material is AIAs, but AlAs is an unstable material, and in practice, the refractive index is about Ae0.7Ga0.3A8. This is the upper limit, and with this material, the loss is large and a semiconductor ring laser with a sufficiently low threshold cannot be obtained.

問題点を解決するための手段 本発明は安定な組成域のAlGaAsとG a A s
  の薄膜を交互に成長しリング導波路を埋め込むこと
によシ実効的にA7Agで埋め込むものである。
Means for Solving the Problems The present invention uses AlGaAs and GaAs in a stable composition range.
This method effectively embeds A7Ag by growing thin films alternately and embedding a ring waveguide.

作  用 リング導波路を埋め込むことKより実効的にA I A
 sで埋め込み光損失の抑制する。
By embedding a working ring waveguide, it is more effective to
s to suppress embedded optical loss.

実施例 〔実施例1〕 図に従って実施例を説明する。第1図のように液相成長
法により(100) n−GaAtt 基板1上に、n
−A10.3Ga□、yAs(3IIm)2.n−Ga
As活性層(0,2−)3.p−Ado、3Ga0.7
As(2−)4゜p−GaAs (211rn)5を順
次成長させる。
Example [Example 1] An example will be described according to the drawings. As shown in FIG. 1, an n
-A10.3Ga□,yAs(3IIm)2. n-Ga
As active layer (0,2-)3. p-Ado, 3Ga0.7
As(2-)4°p-GaAs(211rn)5 is grown sequentially.

このような成長ウェーハを円環状に少なくともn −G
 a A s 活性層3より深く達するようにホトンン
グラフィーの手段によりエツチングをおこなう。
Such a grown wafer is grown in an annular manner at least n-G.
aA s Etching is performed by means of photonography so as to reach deeper than the active layer 3.

第2図斜視図を示す。図において円環6の外輪の直径り
は1oOIXnである。また幅lは1ourrLである
。尚、陽性させバー状の光取出用導波路7も合せて形成
する。導波路7の幅もまた10μmとした。また円環ら
及び、導波路7の上にはS 102膜8及び9を形成す
る。このような加工ウェーハを次にNo−CVD  法
によりn A l □、 7 Gao 、gkm 。
Figure 2 shows a perspective view. In the figure, the diameter of the outer ring of the ring 6 is 1oOIXn. Further, the width l is 1ourrL. Incidentally, a positive bar-shaped light extraction waveguide 7 is also formed. The width of the waveguide 7 was also 10 μm. Further, S102 films 8 and 9 are formed on the ring and the waveguide 7. Such processed wafers are then subjected to nAl□,7Gao,gkm by the No-CVD method.

n −G a A aを交互に成長させる。各層の厚さ
は約60人であり、少なくともn−GaAs活性層が埋
め込まれるまで成長する。図3に埋め込み終了後のウェ
ーハを円環部からへき開した断面を示す。
Grow n-G a A a alternately. Each layer is approximately 60 nm thick and grows until at least the n-GaAs active layer is embedded. FIG. 3 shows a cross section of the wafer after embedding, which is cleaved from the annular portion.

S 1028 、 及ヒ9 f ’Ic成長した多結晶
のAlGaAs。
S1028, and 9f'Ic grown polycrystalline AlGaAs.

G a A sは、弗酸でS i O2を除去すること
によりとりのぞく。次にこのウェーハの円環部のみにオ
ーミック電極10と、基板側オーミック電極11をとり
つける。
G a As is removed by removing S i O2 with hydrofluoric acid. Next, an ohmic electrode 10 and a substrate-side ohmic electrode 11 are attached only to the annular portion of this wafer.

第4図は、本発明のレーザと、第2図に示すような埋め
込み前のレーザすなわち従来からのものとの電流−光出
力特性の比較である。尚光出力は、いづれも光取出用光
導波路から得た。図かられかるように、埋め込み層なし
の場合すなわち屈折率差が大きい時、しきい値電流は約
200 mAと大きい。一方本発明の多層埋め込みを行
ったものでは100mAと約半分のしきい値電流を示し
た。
FIG. 4 is a comparison of the current-light output characteristics of the laser of the present invention and the laser before embedding as shown in FIG. 2, that is, the conventional laser. In each case, the optical output was obtained from the optical waveguide for light extraction. As can be seen from the figure, when there is no buried layer, that is, when the refractive index difference is large, the threshold current is as large as about 200 mA. On the other hand, the one in which the multilayer embedding of the present invention was performed showed a threshold current of 100 mA, about half that.

また図には示していないが、AlAs単層のみ、またA
10.7Ga0.3Ag単層で埋め込んだものはいづれ
もレーザ発振には至らなかった。
Also, although not shown in the figure, only AlAs single layer and A
None of the samples embedded with a single layer of 10.7Ga0.3Ag led to laser oscillation.

〔実施例2〕 実施例1に、述べた同様の構造においてMO−CVD法
によって作られるn−Alo、 7Gao、aAs。
[Example 2] n-Alo, 7Gao, aAs made by MO-CVD method in the same structure as described in Example 1.

n −G a A B成長層の厚さを10人〜300人
まで変えてその発撮しきい値電流の変化を調べた。結果
を第5図に示す。第5図は横軸をn−AlGaAs。
The thickness of the n-G a AB growth layer was varied from 10 to 300 to examine changes in the firing threshold current. The results are shown in Figure 5. In FIG. 5, the horizontal axis represents n-AlGaAs.

n−GaAs それぞれの膜厚、縦軸は発振しきい電流
である。図から膜厚が10Aから12OAの間では発振
しきい電流は100mA以下である。実用的な観点から
室温連続発振のための上限電流値が100mA程度と考
えられるので、10人〜120人の範囲が最適の膜厚で
ある。
The thickness of each n-GaAs film and the vertical axis are the oscillation threshold currents. As can be seen from the figure, when the film thickness is between 10A and 12OA, the oscillation threshold current is 100mA or less. From a practical point of view, the upper limit current value for continuous oscillation at room temperature is considered to be about 100 mA, so the optimal film thickness is in the range of 10 to 120 people.

〔実施例3〕 実施例2に述べた同様の実験においてn−AlGaAs
を10 、20 、50 、120Aの4種類の厚みと
し、同様にn−GaAs  を、各n−AdGaAsの
厚み線対して10,20,50,120人と変化させた
・その結果、実施例2と同様に、それぞれの厚みは、1
0〜120人の範囲内であれば、異なる膜厚でも発振し
きい値電流は100mA以下となった。したがってn−
GaAt5.n−AdQaAsの膜厚は、同じである必
要はないが、それぞれの厚さは10〜120人の範囲で
なければならない。
[Example 3] In a similar experiment described in Example 2, n-AlGaAs
were set to four types of thickness: 10, 20, 50, and 120A, and similarly, the thickness of n-GaAs was changed to 10, 20, 50, and 120 for each n-AdGaAs thickness line.As a result, Example 2 Similarly, the thickness of each is 1
Within the range of 0 to 120 people, the oscillation threshold current was 100 mA or less even with different film thicknesses. Therefore n-
GaAt5. The n-AdQaAs film thicknesses do not have to be the same, but each thickness must be in the range of 10-120.

尚、実施例ではAlGaAa、GaAs半導体について
述べたが、InGaAsP、InPからなる半導体レー
ザについても同様の結果が得られた。
In the examples, AlGaAa and GaAs semiconductors were described, but similar results were obtained for semiconductor lasers made of InGaAsP and InP.

発明の効果 本発明は、構成層のエネルギーギャップを特定の関係に
選ぶこと釦よってへき開工程を用いずにリングレーザの
欠点である光損失の大きいことを改良した半導体レーザ
を提供できる。
Effects of the Invention The present invention makes it possible to provide a semiconductor laser that improves the large optical loss, which is a disadvantage of ring lasers, without using a cleavage process by selecting the energy gaps of the constituent layers in a specific relationship.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明の一実施例の半導体レーザ
の側面図および斜視図、第3図は同半導体レーザの断面
図、第4図は同半導体レーザと従来例の半導体レーザの
特性図、第6図は膜厚としきい値電流の関係図1等61
η慎f先牛帽う+44レ−r^為z+5J丈1)。 1 、3−−川・n−GaAs、 2−−−−・−n−
A7GaAs 、 4−−−−−−p−AIGaAa、
 5−−−−−−p−GaAs、8 .9−−−−・−
3102,10,11・・・・・・オーミック電極。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第 
1 図 第3図 第4図
1 and 2 are a side view and a perspective view of a semiconductor laser according to an embodiment of the present invention, FIG. 3 is a sectional view of the same semiconductor laser, and FIG. 4 is a characteristic of the same semiconductor laser and a conventional semiconductor laser. Figure 6 is a diagram showing the relationship between film thickness and threshold current 61
η Shin f first cow hat + 44 rays + 5 J length 1). 1, 3--kawa・n-GaAs, 2----・-n-
A7GaAs, 4-------p-AIGaAa,
5------- p-GaAs, 8. 9------・-
3102, 10, 11... Ohmic electrode. Name of agent: Patent attorney Toshio Nakao and 1 other person
1 Figure 3 Figure 4

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板上に、バンドギャップEg_1、Eg
_2、Eg_3(Eg_1≒Eg_3>Eg_2)の半
導体成長層を順次構成し、少なくともEg_3のバンド
ギャップをもつ半導体層に届くまで円環状にメサエッチ
され、該メサエッチされた部分をEg_5、及びEg_
4(Eg_5>Eg_4≧Eg_3なる関係)のバンド
ギャップをもつ半導体薄膜を交互に多層成長させ活性層
を埋め込まれた構造の半導体レーザ。
(1) On the semiconductor substrate, band gaps Eg_1, Eg
Semiconductor growth layers of _2 and Eg_3 (Eg_1≒Eg_3>Eg_2) are formed in sequence, mesa-etched in an annular shape until reaching the semiconductor layer having a band gap of at least Eg_3, and the mesa-etched portions are formed into Eg_5 and Eg_3.
A semiconductor laser has a structure in which multiple layers of semiconductor thin films having a band gap of 4 (Eg_5>Eg_4≧Eg_3) are grown alternately and an active layer is embedded.
(2)バンドギャップEg_5及びEg_4の半導体薄
膜の厚さは、10〜120Åの厚みであることを特徴と
する特許請求の範囲第1項記載の半導体レーザ。
(2) The semiconductor laser according to claim 1, wherein the thickness of the semiconductor thin film of band gaps Eg_5 and Eg_4 is 10 to 120 Å.
JP26026284A 1984-12-10 1984-12-10 Semiconductor laser Pending JPS61137387A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26026284A JPS61137387A (en) 1984-12-10 1984-12-10 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26026284A JPS61137387A (en) 1984-12-10 1984-12-10 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPS61137387A true JPS61137387A (en) 1986-06-25

Family

ID=17345603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26026284A Pending JPS61137387A (en) 1984-12-10 1984-12-10 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPS61137387A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1306947A1 (en) * 2001-10-12 2003-05-02 Samsung Electronics Co., Ltd. Planar lightwave circuit type optical amplifier
WO2011105066A1 (en) * 2010-02-26 2011-09-01 住友化学株式会社 Semiconductor substrate, semiconductor device, and method for manufacturing semiconductor substrate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1306947A1 (en) * 2001-10-12 2003-05-02 Samsung Electronics Co., Ltd. Planar lightwave circuit type optical amplifier
WO2011105066A1 (en) * 2010-02-26 2011-09-01 住友化学株式会社 Semiconductor substrate, semiconductor device, and method for manufacturing semiconductor substrate
JP2011199268A (en) * 2010-02-26 2011-10-06 Sumitomo Chemical Co Ltd Semiconductor substrate, semiconductor device, and method for manufacturing semiconductor substrate

Similar Documents

Publication Publication Date Title
JPS61137387A (en) Semiconductor laser
JPS5948976A (en) Semiconductor laser
JPH04180684A (en) Semiconductor laser
JPS63269593A (en) Semiconductor laser device and its manufacture
JPH07176830A (en) Manufacture of semiconductor light-emitting element
JPS61107782A (en) Compound semiconductor device
JPS6258692A (en) Manufacture of semiconductor light emitting device
JPS6262581A (en) Manufacture of semiconductor light emitting device
JPH04180686A (en) Manufacture of semiconductor laser of window structure
JPH0349287A (en) Semiconductor laser device and manufacturing process
JPS62179790A (en) Semiconductor laser
JPS63152192A (en) Semiconductor laser device and manufacture thereof
JPH06177487A (en) Manufacture of high-resistance buried layer
JPH01115186A (en) Buried hetero type semiconductor laser element
JP3609840B2 (en) Manufacturing method of semiconductor light emitting device
JPS63187A (en) Semiconductor laser and manufacture thereof
JPH02119285A (en) Manufacture of semiconductor laser
JPH0349286A (en) Semiconductor laser device and manufacturing process
JPH04206587A (en) Semiconductor laser and manufacture thereof
JP3033664B2 (en) Method of manufacturing semiconductor laser device
JPS61276390A (en) Manufacture of semiconductor light-emitting device
JPS61284985A (en) Manufacture of semiconductor laser device
JPH01166592A (en) Semiconductor laser element
JP2001177183A (en) Manufacturing method for semiconductor laser
JPH04159787A (en) Semiconductor laser element with gallium-indium-arsenic active layer