JPH0228380A - Manufacture of semiconductor nonvolatile memory - Google Patents

Manufacture of semiconductor nonvolatile memory

Info

Publication number
JPH0228380A
JPH0228380A JP14777888A JP14777888A JPH0228380A JP H0228380 A JPH0228380 A JP H0228380A JP 14777888 A JP14777888 A JP 14777888A JP 14777888 A JP14777888 A JP 14777888A JP H0228380 A JPH0228380 A JP H0228380A
Authority
JP
Japan
Prior art keywords
insulating film
gate insulating
thickness
peripheral circuit
oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14777888A
Other languages
Japanese (ja)
Inventor
Kazutoshi Ishii
石井 和敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP14777888A priority Critical patent/JPH0228380A/en
Publication of JPH0228380A publication Critical patent/JPH0228380A/en
Pending legal-status Critical Current

Links

Landscapes

  • Non-Volatile Memory (AREA)

Abstract

PURPOSE:To seek to improve the controllability of the thickness of the first gate insulating film by thermally oxidizing the first insulating film of a memory cell part, and then thermally nitriding it so as to form. CONSTITUTION:Phosphor is implanted into a P-type Si substrate 1, an n-well region 2 is formed, a field oxide film 3 is formed, and the first gate insulating film 4 is formed in 400Angstrom by dry oxidation, for example, at an oxidation temperature of 1000 deg.C at a memory cell part, and then it is formed by being annealed in the ammonium atmosphere for one hour, for example, at a nitrizing temperature of 900 deg.C. The thickness of the thermally nitrized oxide film formed at this time is 400Angstrom . Hereafter, the first gate insulating film 4 only at a peripheral circuit is etched so as to form the second gate oxide film 5 of 300Angstrom at the peripheral circuit by dry oxidation, for example, at an oxidation temperature of 1000 deg.C. At this time, the thickness of the first gate insulating film is 405Angstrom . Hereby, even if it goes through the process to form the second gate insulating film 5 of the peripheral circuit by thermal oxidation, the thickness of the first gate insulating film 4 is not increased, thus the controllability of the thickness of the first gate insulating film 4 can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野1 本発明は、電気的に書き込み・消去を容易に行なえる浮
遊ゲート型半導体不揮発性メモリの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application 1] The present invention relates to a method of manufacturing a floating gate type semiconductor nonvolatile memory that can be easily electrically written and erased.

〔発明の概要1 この発明は、電気的に書き込み・消去を容易に行なえる
浮遊ゲート型半導体不揮発性メモリの製造方法において
、メモリセル部の第1ゲート絶縁膜を熱酸化後熱窒化し
形成することにより、次に周辺回路の第2ゲート絶縁膜
を熱酸化し形成する工程を経ても、第1ゲート絶縁膜厚
の制御性が高く、信頼性の高い半導体不揮発性メモリを
提供するものである。
[Summary of the Invention 1 This invention is a method for manufacturing a floating gate type semiconductor nonvolatile memory that can be easily electrically written and erased, in which a first gate insulating film in a memory cell portion is formed by thermal oxidation and then thermal nitridation. This provides a highly reliable semiconductor nonvolatile memory in which the thickness of the first gate insulating film is highly controllable even after the next step of thermally oxidizing and forming the second gate insulating film of the peripheral circuit. .

[従来の技術] 第3図(a)〜(d)は従来の半導体不揮発性メモリ(
以下EEPROMと呼ぶことにする。)の周辺回路の製
造工程順を示す断面図である。第4図(a) 〜(d)
は従来のEEPROMのメモリセル部の製造工程順を示
す断面図である。
[Prior art] Figures 3(a) to 3(d) show a conventional semiconductor nonvolatile memory (
Hereinafter, it will be referred to as EEPROM. ) is a cross-sectional view showing the order of manufacturing steps of the peripheral circuit. Figure 4 (a) to (d)
1 is a cross-sectional view showing the order of manufacturing steps of a memory cell portion of a conventional EEPROM.

P型Si基板101を用い、前記P型Si基板101に
リンを注入し、nウェル領域102を形成し、フィール
ド酸化膜103を形成し、メモリセル部に第1ゲート酸
化膜104を熱酸化し形成する。[第3図(a)、第4
図(a)]この後、周辺回路のみ第1ゲート酸化III
 104をエツチングし、周辺回路の第2ゲート酸化膜
105を熱酸化し形成する。[第3図(b)、第4図(
b)] 次にメモリセル部のn型トンネル領域106と、n型制
御ゲート領域107を作り、その部分にトンネル絶縁1
I1108と薄い酸化1* t o gを形成し、多結
晶シリコン層を形成し、リン拡散法により多結晶シリコ
ン層をN′″型化し、浮遊ゲート電極110を形成する
。この時、周辺回路では、MOSトランジスタのゲート
電極1.10を形成する。[第3図(C)、第4図(C
)] ボロンを注入し、Pチャネルトランジスタのソース11
1とドレイン112を形成し、ヒ素を注入し、nチャネ
ルトランジスタのソース113とドレイン114を形成
する。[第3図(d)、第4図(d)] [発明が解決しようとする課題] メモリセル部の第1ゲート酸化膜104は周辺回路の第
2ゲート酸化膜105を形成する際、追加酸化され、第
1ゲート酸化膜104の膜厚の制御性を困難にするとい
う欠点を有していた。
Using a P-type Si substrate 101, phosphorus is implanted into the P-type Si substrate 101, an n-well region 102 is formed, a field oxide film 103 is formed, and a first gate oxide film 104 is thermally oxidized in the memory cell area. Form. [Figure 3(a), 4th
Figure (a)] After this, first gate oxidation III is applied only to the peripheral circuits.
104 is etched, and a second gate oxide film 105 of the peripheral circuit is thermally oxidized. [Figure 3 (b), Figure 4 (
b)] Next, an n-type tunnel region 106 and an n-type control gate region 107 in the memory cell section are formed, and a tunnel insulator 1 is formed in that part.
A thin oxide 1*tog is formed with I1108, a polycrystalline silicon layer is formed, and the polycrystalline silicon layer is made into an N'' type by a phosphorus diffusion method to form a floating gate electrode 110.At this time, in the peripheral circuit, , form the gate electrode 1.10 of the MOS transistor. [Figure 3 (C), Figure 4 (C
)] Boron is implanted to form the source 11 of the P-channel transistor.
1 and a drain 112 are formed, and arsenic is implanted to form a source 113 and a drain 114 of an n-channel transistor. [Fig. 3(d), Fig. 4(d)] [Problems to be Solved by the Invention] The first gate oxide film 104 in the memory cell portion is added when forming the second gate oxide film 105 in the peripheral circuit. This has the disadvantage that it is oxidized, making it difficult to control the thickness of the first gate oxide film 104.

[課題を解決する為の手段1 上記の課題を解決するためにメモリセル部の第1ゲート
絶縁膜を熱酸化後熱窒化し酸化されにくい絶縁膜とし、
周辺回路の第2ゲート絶縁膜を熱酸化して形成した。
[Means for solving the problem 1 In order to solve the above problem, the first gate insulating film in the memory cell part is thermally oxidized and then thermally nitrided to make it an insulating film that is difficult to oxidize.
The second gate insulating film of the peripheral circuit was formed by thermal oxidation.

[作用] 上記のように、メモリセル部の第1ゲート絶縁膜を熱酸
化後熱窒化し酸化されにくい絶縁膜としたため、周辺回
路の第2ゲート絶縁膜を熱酸化して形成する工程を経て
も、第1ゲート絶縁膜の膜厚を増加させず、第1ゲート
絶縁膜の膜厚の制御性を向上させた6 [実施例1 以下、本発明を実施例を用いて説明する。第1図(a)
〜(d)は本発明の半導体不揮発性メモノの一実施例の
周辺回路の製造工程順を示す断面図である。第2図(a
)〜(d)は本発明のEEPROMの一実施例のメモリ
セル部の製造工程順を示す断面図である。
[Function] As mentioned above, since the first gate insulating film in the memory cell portion was thermally oxidized and then thermally nitrided to form an insulating film that is resistant to oxidation, the second gate insulating film in the peripheral circuit was formed through a process of thermal oxidation. Also, the controllability of the film thickness of the first gate insulating film was improved without increasing the film thickness of the first gate insulating film.6 [Example 1] Hereinafter, the present invention will be explained using an example. Figure 1(a)
-(d) are cross-sectional views showing the order of manufacturing steps of the peripheral circuit of one embodiment of the semiconductor nonvolatile memo of the present invention. Figure 2 (a
) to (d) are cross-sectional views showing the order of manufacturing steps of the memory cell portion of an embodiment of the EEPROM of the present invention.

P型S1基板lを′用い、前記P型Si基板1にノンを
注入し、nウェル領域2を形成し、フィールド酸化膜3
を形成し、メモリセル部に第1ゲート絶縁膜4を例^ば
酸化温度1000℃、ドライ酸化で400人形成し、そ
の後例えば窒化温度900℃、アンモニア雰囲気で1時
間アニールして形成する。この時、形成された熱窒化酸
化膜厚は400人である。[第1図(a)、第2図(a
)] この後、周辺回路のみ第1ゲート絶縁膜4をエツチング
し周辺回路の第2ゲート酸化ll15を例えば酸化温度
1000℃、ドライ酸化で300人形成する。この時、
第1ゲート絶縁膜厚は405人である。[第1図(b)
、第2図(b)]次にメモリセル部のn型トンネル領域
6とn9型制御ゲート領域7を作り、その部分にトンネ
ル絶縁膜8と薄い酸化膜9を形成し、多結晶シリコン層
を形成し、リン拡散法により、多結晶シリコン層をN0
型化し、浮遊ゲート電極lOを形成する。この時、周辺
回路ではMOSトランジスタのゲート電極10を形成す
る。[第1図(C)、第2図(C)] ボロンを注入し、Pチャネルトランジスタのソース11
とドレイン12を形成し、ヒ素を注入し、nチャネルト
ランジスタのソース13とドレイン14を形成する。[
第1図(d)、第2図(d)] 上記のように、メモリセル部の第1ゲート絶縁膜を熱酸
化後熱窒化し酸化されにくい絶縁膜としたため、周辺回
路の第2ゲート絶縁膜を熱酸化して形成する工程を経て
も、第1ゲート絶縁膜の膜厚は増加されず、第1ゲート
絶縁膜の膜厚の制御性を向上させた。
Using a P-type S1 substrate 1', non-ion is implanted into the P-type Si substrate 1 to form an n-well region 2, and a field oxide film 3 is formed.
A first gate insulating film 4 is formed in the memory cell portion by, for example, dry oxidation at an oxidation temperature of 1000° C., followed by annealing for one hour in an ammonia atmosphere at a nitriding temperature of 900° C. At this time, the thickness of the thermal nitrided oxide film formed was 400 mm. [Figure 1 (a), Figure 2 (a)
)] Thereafter, only the first gate insulating film 4 of the peripheral circuit is etched, and the second gate oxide 115 of the peripheral circuit is formed by dry oxidation at an oxidation temperature of 1000 DEG C. for 300 times. At this time,
The thickness of the first gate insulating film is 405. [Figure 1(b)
, FIG. 2(b)] Next, an n-type tunnel region 6 and an n9-type control gate region 7 in the memory cell part are formed, a tunnel insulating film 8 and a thin oxide film 9 are formed in these parts, and a polycrystalline silicon layer is formed. The polycrystalline silicon layer is formed with N0 by the phosphorus diffusion method.
A mold is formed to form a floating gate electrode IO. At this time, the gate electrode 10 of the MOS transistor is formed in the peripheral circuit. [Fig. 1(C), Fig. 2(C)] Boron is implanted to form the source 11 of the P-channel transistor.
A source 13 and a drain 14 of an n-channel transistor are formed by implanting arsenic. [
FIG. 1(d), FIG. 2(d)] As mentioned above, the first gate insulating film in the memory cell portion is thermally oxidized and then thermally nitrided to make it an insulating film that is resistant to oxidation. Even through the process of thermally oxidizing the film, the thickness of the first gate insulating film was not increased, and the controllability of the thickness of the first gate insulating film was improved.

[発明の効果1 本発明のEEPROMはメモリセル部の第1ゲート絶縁
膜な熱酸化後熱窒化し形成することにより、周辺回路の
第2ゲート絶縁膜を熱酸化し形成する工程を経ても、第
1ゲート絶縁膜厚の制御性が高く、信頼性の高い半導体
不揮発性メモリを提供するものである。
[Effect of the Invention 1] The EEPROM of the present invention has a first gate insulating film in the memory cell portion that is formed by thermal oxidation and then thermal nitridation. The present invention provides a highly reliable semiconductor nonvolatile memory in which the thickness of the first gate insulating film is highly controllable.

【図面の簡単な説明】 第1図(a)〜(d)は本発明の半導体不揮発性メモリ
の周辺回路の製造工程順を示す断面図、第2図(a)〜
(d)は本発明のEEFROMのメモリセル部の製造工
程順を示す断面図、第3図(a)〜(d)は従来のEE
FROMの周辺回路の製造工程順を示す断面図、第4図
(a)〜(d)は従来のEEFROMのメモリセル部の
製造工程順を示す断面図である。 ■・・P型シリコン基板 4・・熱窒化酸化膜からなる第1ゲート絶縁膜5・・第
2ゲート酸化膜 以 上 出願人 セイコー電子工業株式会社 代理人 弁理士  林   敬 之 助+02 +01 +02 第 図 ス) +0S b) ot +01 第 図
[BRIEF DESCRIPTION OF THE DRAWINGS] FIGS. 1(a) to (d) are cross-sectional views showing the manufacturing process order of the peripheral circuit of the semiconductor nonvolatile memory of the present invention, and FIGS. 2(a) to 2(d)
(d) is a cross-sectional view showing the manufacturing process order of the memory cell part of the EEFROM of the present invention, and FIGS.
4(a) to 4(d) are cross-sectional views showing the order of manufacturing steps of the peripheral circuit of FROM, and FIGS. 4(a) to 4(d) are sectional views showing the order of manufacturing steps of the memory cell portion of a conventional EEFROM. ■...P-type silicon substrate 4...First gate insulating film 5 consisting of thermal nitrided oxide film...Second gate oxide film and above Applicant Seiko Electronics Industries Co., Ltd. Agent Patent Attorney Keinosuke Hayashi +02 +01 +02 Figure s) +0S b) ot +01 Fig.

Claims (1)

【特許請求の範囲】[Claims] 2種類のゲート絶縁膜厚を有する半導体不揮発性メモリ
の製造方法において、第1のゲート絶縁膜を熱酸化後熱
窒化し形成する工程と次に形成する第2のゲート絶縁膜
を熱酸化し形成する工程とを有する半導体不揮発性メモ
リの製造方法。
In a method for manufacturing a semiconductor nonvolatile memory having two types of gate insulating film thicknesses, a first gate insulating film is thermally oxidized and then thermally nitrided, and a second gate insulating film is then formed by thermal oxidation. A method for manufacturing a semiconductor nonvolatile memory, comprising the steps of:
JP14777888A 1988-06-15 1988-06-15 Manufacture of semiconductor nonvolatile memory Pending JPH0228380A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14777888A JPH0228380A (en) 1988-06-15 1988-06-15 Manufacture of semiconductor nonvolatile memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14777888A JPH0228380A (en) 1988-06-15 1988-06-15 Manufacture of semiconductor nonvolatile memory

Publications (1)

Publication Number Publication Date
JPH0228380A true JPH0228380A (en) 1990-01-30

Family

ID=15437974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14777888A Pending JPH0228380A (en) 1988-06-15 1988-06-15 Manufacture of semiconductor nonvolatile memory

Country Status (1)

Country Link
JP (1) JPH0228380A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5669556A (en) * 1994-07-06 1997-09-23 Exedy Corporation Nozzle for a welding torch having sputter build-up reducing configuration
KR100372529B1 (en) * 1999-03-12 2003-02-17 가부시끼가이샤 도시바 A semiconductor device and method for manufacturing the same
CN107217226A (en) * 2017-05-24 2017-09-29 昆山鑫昌泰模具科技有限公司 The nitriding processing technology of sewing-machine foot part

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5669556A (en) * 1994-07-06 1997-09-23 Exedy Corporation Nozzle for a welding torch having sputter build-up reducing configuration
KR100372529B1 (en) * 1999-03-12 2003-02-17 가부시끼가이샤 도시바 A semiconductor device and method for manufacturing the same
CN107217226A (en) * 2017-05-24 2017-09-29 昆山鑫昌泰模具科技有限公司 The nitriding processing technology of sewing-machine foot part

Similar Documents

Publication Publication Date Title
JPH0228380A (en) Manufacture of semiconductor nonvolatile memory
JP3054422B2 (en) Method for manufacturing semiconductor device
JPH06291330A (en) Semiconductor non-volatile memory element and preparation thereof
JP2002110973A (en) Method of manufacturing semiconductor device
JP3229003B2 (en) Nonvolatile semiconductor memory device
JPH0831539B2 (en) Non-volatile memory manufacturing method
JPH1050860A (en) Semiconductor device and method of manufacturing the same
JP2920636B2 (en) Manufacturing method of nonvolatile semiconductor memory device
JPS6272171A (en) Semiconductor memory
JPH03257935A (en) Manufacture of semiconductor device
JPS60124965A (en) Manufacture of semiconductor device
JPH023982A (en) Nonvolatile storage element and manufacture thereof
JPH0888286A (en) Manufacture of semiconductor memory device
JP2554929B2 (en) High voltage N-channel transistor manufacturing method
JPH11233758A (en) Semiconductor device and its manufacture
JPH10335500A (en) Manufacture of semiconductor device
JPS63253671A (en) Manufacture of semiconductor device
JPH01208866A (en) Manufacture of semiconductor device
JPH06224442A (en) Mos type integrated circuit with built-in nonvolatile memory and manufacture thereof
JPS6155964A (en) Manufacture of nonvolatile semiconductor memory device
JPS6244700B2 (en)
JPH02246376A (en) Semiconductor device
JPS62291970A (en) Manufacture of semiconductor device
JPH06296028A (en) Manufacture of semiconductor nonvolatile storage element
JPS6153869B2 (en)