JPH02282412A - Method for dephosphorizing molten iron - Google Patents

Method for dephosphorizing molten iron

Info

Publication number
JPH02282412A
JPH02282412A JP349589A JP349589A JPH02282412A JP H02282412 A JPH02282412 A JP H02282412A JP 349589 A JP349589 A JP 349589A JP 349589 A JP349589 A JP 349589A JP H02282412 A JPH02282412 A JP H02282412A
Authority
JP
Japan
Prior art keywords
ore
slag
hot metal
molten iron
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP349589A
Other languages
Japanese (ja)
Inventor
Makoto Fukagawa
深川 信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP349589A priority Critical patent/JPH02282412A/en
Publication of JPH02282412A publication Critical patent/JPH02282412A/en
Pending legal-status Critical Current

Links

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

PURPOSE:To improve Mn yield without deteriorating ability of dephosphorization and developing the operational trouble by adding small aggregative material, in which powdery Mn ore, powdery carbonaceous material and powdery slag- making agent are mixed, as Mn-containing material at the time of executing the dephosphorizing treatment to the molten iron. CONSTITUTION:At the time of executing the dephosphorizing treatment in the molten iron, the Mn-containing material is added and the dephosphorizing treatment is executed at the same time, the Mn concn. in the molten iron is raised. As this Mn-containing material, the small aggregative material of pellet- state, briquette-state, etc., in which the Mn ore powder, powdery carbonaceous material of coke, coal, etc., and powdery slag making agent of lime, lime stone, etc., are mixed is used. The molten iron to be treated is desirable to be subjected to predesiliconizing treatment to <=0.30wt.% Si content. By this method, Mn can be reduced and transferred into the molten iron from charged Mn source with high yield.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、溶銑の脱燐(以降“脱P#と表記する)処
理の際、同時に溶銑中[Mn] ’lHr度の上昇をも
行わしめしめ、高[Mn]濃度鋼の製造を有利化するた
めの溶銑脱燐処理方法に関するもので藁る。
Detailed Description of the Invention (Field of Industrial Application) This invention simultaneously increases the [Mn]'lHr degree in the hot metal during dephosphorization (hereinafter referred to as "deP#") treatment of hot metal. This article relates to a method for dephosphorizing hot metal to make it more advantageous to produce high-Mn-concentration steel.

〈従来技術とその課題〉 従来、溶銑の脱Pは転炉吹錬工程において脱炭等と一緒
に行うのが一般的であったが、この場合、脱P効率を高
めるにはCaO等の造滓剤を多量に使用しなければなら
ないと言う問題があり、そのため鋼の製造コスト上昇を
招いていたほか、転炉吹錬によって副生ずる滓の量が増
大するのでその廃棄や再生処理にも相当の経費を準備す
る必要があった。その上、通常の転炉吹錬工程での脱P
処理では、いたずらに造滓剤の量を増大しても脱P率の
向上効果には限界があった。
<Prior art and its issues> Conventionally, dephosphorization of hot metal was generally performed together with decarburization, etc. in the converter blowing process, but in this case, in order to increase the dephosphorization efficiency, it was necessary to produce CaO, etc. There is a problem in that a large amount of slag agent has to be used, which leads to an increase in the manufacturing cost of steel.In addition, the amount of slag by-product of converter blowing increases, which makes it necessary to dispose of and recycle it. It was necessary to prepare the expenses. In addition, the removal of P in the normal converter blowing process
In the treatment, even if the amount of sludge forming agent was unnecessarily increased, there was a limit to the effect of improving the P removal rate.

そこで、最近では溶鉄を転炉に装入して脱炭吹錬を行う
前に“溶鉄予備処理”として予め装入溶鉄の脱P処理を
行う方法が普及しつつある。
Therefore, recently, a method has become popular in which the charged molten iron is dephosphorized as a "molten iron pretreatment" before the molten iron is charged into a converter and decarburized by blowing.

一方、鋼の転炉精錬においては溶鉄中の[Mnl濃度に
大きな注意が払われている。これは、Mnは鋼の強度向
上元素として極めて有用なことが知られており、高Mn
鋼の需要も益々増加する傾向にあるためである。ところ
で、高Mn鋼の製造に当り従来は転炉精錬後の溶鋼にM
nを70〜80%含有するフェロマンガンの添加を行っ
て成分調整する方法が採用されていたが、フェロマンガ
ンはMn鉱石を電気炉で還元して製造されるため特に電
力料の高い日本では高価なものとなってしまい、これが
コストアップの要因の1つとなっていた。
On the other hand, in converter refining of steel, great attention is paid to the concentration of [Mnl] in molten iron. This is because Mn is known to be extremely useful as an element for improving the strength of steel, and high Mn
This is because the demand for steel is also on the rise. By the way, in the production of high Mn steel, conventionally Mn was added to the molten steel after converter refining.
The method used was to adjust the composition by adding ferromanganese containing 70 to 80% n, but since ferromanganese is produced by reducing Mn ore in an electric furnace, it is expensive, especially in Japan where electricity costs are high. This was one of the reasons for the increase in costs.

ところが、前述した如く最近の溶銑脱P処理技術の発達
により転炉での脱P負担が軽減されることとなって、ス
ラグ量を極力少なくして吹錬する方法、即ち“スラグミ
ニマム吹錬”が可能となり、転炉に直接Mn鉱石を添加
して還元することで鋼中[Mnl tM度を上昇させフ
ェロマンガンの使用量を削減することが行われるように
なった。
However, as mentioned above, with the recent development of hot metal dephosphorization treatment technology, the burden of dephosphorization in the converter has been reduced, and a method of blowing with the amount of slag minimized, ie "slag minimum blowing" has been developed. It became possible to reduce the amount of ferromanganese used by increasing the [Mnl tM degree in steel] by adding Mn ore directly to the converter and reducing it.

しかしながら、上記方法では転炉、の熱的制約によりM
n鉱石の配合量は精々15〜20kg/を程度が限界で
あり、鋼中[Mnl m度上昇程度も0.7〜0.8%
を超えるものではなかった。
However, in the above method, M
The maximum amount of N ore blended is 15 to 20 kg/m, and the degree of increase in Mnl in steel is 0.7 to 0.8%.
It was not more than that.

勿論、熱源として転炉にコークス等の炭材を添加し、M
n鉱石の添加量を増加しようとの方法も考えられるが、
この方法には炭材中のSのピックアップによって鋼中[
S]が上昇したり、また炭材の灰分によりスラグ量が増
大してMn歩留が低下する等の新たな問題が指摘された
Of course, carbonaceous material such as coke is added to the converter as a heat source, and M
One possibility is to increase the amount of n ore added, but
This method involves picking up S in the carbonaceous material [
New problems were pointed out, such as an increase in S] and a decrease in Mn yield due to an increase in the amount of slag due to the ash content of the carbonaceous material.

そのため、溶銑脱P処理の際にイn鉱石を添加し、脱P
を進めつつMn鉱石の還元をも行って溶鉄中の[Mnl
 ’l’ls度上昇を図る手段が提案された(特開昭5
8−84913号、特開昭61−153222号)。
Therefore, indium ore is added during hot metal dephosphorization treatment, and
While proceeding with the reduction of Mn ore, [Mnl] in the molten iron was also reduced.
A method was proposed to increase the degree of
No. 8-84913, JP-A-61-153222).

このうち特開昭58−84913号としての提案では、
Mn酸化物及び酸化鉄:10〜70%、酸化カルシウム
:20〜70%、弗化カルシウム及び塩化カルシウムの
1種又は2種を1〜40%含有する溶銑処理用精錬剤が
開示されており、一方、特開昭61−153222号と
しての提案は、脱Si処理後の溶銑を脱P剤及び酸素の
存在下で脱P処理するに際して該脱P処理系にMn含有
鉱石を投入し、次いで脱Pスラグの強制排滓を行うこと
なく溶鉄中へ脱S剤を吹き込んで脱S反応を進めると共
に、前記Mn含有鉱石中のMn成分を溶銑中へ留まらせ
、しかる後に精錬を行うことから成る低P・低S・高M
n鋼の製造方法を開示するものである。
Among these, the proposal as Japanese Patent Application Laid-open No. 58-84913,
A refining agent for hot metal treatment containing Mn oxide and iron oxide: 10 to 70%, calcium oxide: 20 to 70%, and one or both of calcium fluoride and calcium chloride at 1 to 40% is disclosed, On the other hand, a proposal in JP-A No. 61-153222 proposes that when hot metal after Si-removal treatment is subjected to deP treatment in the presence of a deP agent and oxygen, Mn-containing ore is introduced into the deP treatment system, and then dephosphorization is performed. A low-resolution method consisting of injecting a desulfurization agent into the molten iron to advance the desulfurization reaction without forcibly discharging the P slag, and also allowing the Mn component in the Mn-containing ore to remain in the hot metal, followed by refining. P/Low S/High M
This invention discloses a method for manufacturing n-steel.

しかし、これらの手段によっても、Mn鉱石(Mn含有
物質)の装入量を増加して溶鉄中[Mnl濃度を更に上
昇させようとすると(特にMn鉱石投入量が5kg/を
以上になると)やはりマンガン歩留が低下する上、溶銑
脱P率が悪化したり、スロッピングによる操業トラブル
を引き起こし易くなるとの問題も認められた。なお、こ
のマンガン歩留の低下は、Mn鉱石(Mn含有物質)の
添加量が多くなるとMn鉱石自身の溶融が遅くなり、溶
鉄中[c]によるMnOの還元が速やかに進行しなくな
ることに起因するものと考えられる。また、溶銑脱P率
が悪化するのは、Mn鉱石の多量添加によりMn酸化物
濃度が上昇してスラグの脱P能が低下することと、スラ
グの融点が上昇し滓化が悪化することに起因している。
However, even with these means, if you try to further increase the Mnl concentration in molten iron by increasing the amount of Mn ore (Mn-containing material) charged (especially when the amount of Mn ore charged exceeds 5 kg), In addition to lowering the manganese yield, problems such as deterioration of the hot metal removal rate and operational troubles due to slopping were also observed. This decrease in manganese yield is due to the fact that when the amount of Mn ore (Mn-containing substance) added increases, the melting of the Mn ore itself slows down, and the reduction of MnO by [c] in the molten iron does not proceed quickly. It is considered that In addition, the dephosphorization rate of hot metal deteriorates because the Mn oxide concentration increases due to the addition of a large amount of Mn ore, which reduces the dephosphorization ability of slag, and because the melting point of slag increases, which worsens slag formation. It is caused by

更に、スロッピング等のトラブルが引き起こされ易くな
る原因は、上述したように溶鉄中の°[C]によるMn
鉱石の還°元が速やかに進行しないためMnO含有量の
高いスラグが生成し、スラグのフォーミングが著しくな
ることにあると推測される。
Furthermore, the reason why troubles such as slopping are likely to occur is that Mn due to °[C] in molten iron is
It is assumed that this is because slag with a high MnO content is generated because the reduction of the ore does not proceed quickly, resulting in significant slag foaming.

従って、高Mn#をコスト安く安定して溶製するために
は、上記問題を解決できる溶銑脱P方法の確立が是非と
も必要であった。
Therefore, in order to stably produce high Mn# at a low cost, it is absolutely necessary to establish a hot metal dephosphorization method that can solve the above problems.

そこで、本発明の目的は、溶銑脱P処理時にMn含有物
質を添加して脱Pと同時に溶鉄中[Mnl ’114度
を上昇させるに際し、脱P能の悪化やスロッピング等の
操業トラブルを招くことなく効果的にMn歩留を向上さ
せ得る手段の開発に置かれた。
Therefore, the purpose of the present invention is to add a Mn-containing substance during hot metal dephosphorization treatment to increase [Mnl '114 degrees in the molten iron at the same time as dephosphorization, which may lead to operational troubles such as deterioration of dephosphorization ability and slopping. The aim was to develop a means to effectively improve the Mn yield without causing any problems.

く課題を解決するための手段〉 本発明者等は上記目的を達成すべく、まず、溶銑脱P処
理時にMn鉱石等のMn含有物質を添加した際に引き起
こされる前記不都合の原因について基礎的な考察を加え
、次の事項を確認した。
Means for Solving the Problems> In order to achieve the above object, the present inventors first investigated the basic causes of the above-mentioned disadvantages caused when Mn-containing substances such as Mn ore are added during hot metal dephosphorization treatment. After consideration, the following points were confirmed.

即ち、MnFL石はMn酸化物を主成分とすると共に脈
石として主にSingやA1□O1を含有しているが、
その融点は1700℃以上と高い。従ってMn鉱石を還
元するためにはスラグ中に溶解することが必要である。
That is, MnFL stone has Mn oxide as its main component and also mainly contains Sing and A1□O1 as gangue.
Its melting point is as high as 1700°C or higher. Therefore, in order to reduce Mn ore, it is necessary to dissolve it in slag.

ところが、脱P処理の際に多量のMn鉱石を添加すると
脱Pスラグ(生石灰、蛍石等から成る)中へMn鉱石が
溶解するに従いスラグ中Mn酸化物濃度が上昇し、スラ
グの融点が急激に上昇する。
However, when a large amount of Mn ore is added during deP treatment, as the Mn ore dissolves into the deP slag (composed of quicklime, fluorite, etc.), the concentration of Mn oxide in the slag increases, and the melting point of the slag sharply increases. rise to

なお、Mn酸化物が速やかに還元されるならばMn酸化
物濃度の上昇が抑制されて上述のような問題が起きるこ
とはないが、実際上は還元速度が十分に速くないので上
記問題を避けるのは困難である。
Note that if Mn oxide is reduced quickly, the increase in Mn oxide concentration will be suppressed and the above-mentioned problem will not occur, but in reality, the reduction rate is not fast enough, so the above-mentioned problem can be avoided. is difficult.

一方、溶銑膜Pは1250〜1350℃と言った比較的
低い温度で実施されるためMn酸化物の溶解度が十分で
なく、Mn鉱石が十分に溶解し切れないのでスラグは半
溶融状態となる。
On the other hand, since the hot metal film P is formed at a relatively low temperature of 1250 to 1350°C, the solubility of Mn oxide is insufficient, and the Mn ore cannot be fully dissolved, so the slag becomes a semi-molten state.

このため、Mn酸化物の還元が遅くなってMn歩留が低
下する上、溶銑膜P率も悪化する。
For this reason, the reduction of Mn oxide becomes slow and the Mn yield decreases, and the P ratio of the hot metal film also deteriorates.

更に、Mn酸化物含有量の高いスラグは非常にフォーミ
ングを起こし易い性質を持っている。従って、上述した
現象によりフォーミングを起こし易い高MnOスラグが
生成されると、スロッピング等のトラブルにつながるこ
ととなる。なお、フォミングを鎮静するのにコークス粉
等の粉状炭材を吹付は添加する手段が効果的であること
が知られているが、これは「炭材によりMnOが還元さ
れてその濃度が低下することと、スラグ中に粉状炭材が
分散することにより、生成ガスが抜は易い状態に変わる
ためである」と考えられる。
Furthermore, slag with a high Mn oxide content is highly prone to forming. Therefore, if a high MnO slag that is prone to forming is generated due to the above-mentioned phenomenon, it will lead to troubles such as slopping. It is known that spraying and adding powdered carbonaceous material such as coke powder is effective in suppressing foaming, but this is because MnO is reduced by the carbonaceous material and its concentration decreases. This is thought to be due to the dispersion of powdered carbonaceous material in the slag, which changes the state to a state where it is easier for the generated gas to be extracted.

このようなことから、本発明者等は上記確認事項を踏ま
えた上で前記不都合の解消策を種々検討した結果、[溶
銑膜P処理を実施しなからMn鉱石等のMn含有物質を
処理炉に投入して溶銑中[Mn]濃度の向上を図る際、
Mn含有物質として“粉状のMn鉱石、粉状の炭材及び
粉状の造滓剤を混合しベレット状やブリケット状等に団
塊化したもの”を使用すると、 a) Mn鉱石と造滓剤との反応が速やかに起こって滓
化が促進される。
For this reason, the inventors of the present invention have studied various solutions to the above-mentioned disadvantages based on the above-mentioned confirmation items. When trying to improve the [Mn] concentration in hot metal by adding
When "a mixture of powdered Mn ore, powdered carbonaceous material, and powdered slag-forming agent and agglomerated into a pellet shape, briquette shape, etc." is used as a Mn-containing substance, a) Mn ore and slag-forming agent The reaction with the slag occurs quickly and slag formation is promoted.

b)配合した炭材によりMn鉱石が速やかに還元される
b) Mn ore is quickly reduced by the blended carbonaceous material.

c) Mn鉱石の速やかな還元によりスラグ中のMn酸
化物濃度が低下し、溶銑膜P率が悪化しない。
c) Rapid reduction of Mn ore reduces the Mn oxide concentration in the slag, and the P ratio of the hot metal film does not deteriorate.

d)溶融スラグ中に粉状炭材が分散した状態が速やかに
実現され、スラグフォーミングの鎮静化が効果的に推進
される。
d) A state in which the powdered carbonaceous material is dispersed in the molten slag is quickly realized, and slag foaming is effectively suppressed.

等の作用によって多量にMn鉱石を装入しても格別なト
ラブルが引き起こされることはなくなり、また脱P率の
悪化を招くこともなく、良好な歩留の下で溶銑中[Mn
] t74度の飛躍的な向上が達成できるようになる」
との知見を得るに至った。
Due to the effects of
] It will be possible to achieve a dramatic improvement of 74 degrees.
We have come to the conclusion that

本発明は、上記知見に基づいてなされたものであり、「
脱P処理炉内に注入した溶銑に生石灰。
The present invention has been made based on the above findings, and is based on the above findings.
Quicklime is added to the hot metal injected into the deP treatment furnace.

蛍石、転炉滓等の造滓剤と鉄鉱石や気体酸素等の酸化剤
を添加して溶銑膜P処理を行うに当り、Mn鉱石粉、炭
材粉及び造滓剤粉を混合し成形した小団塊精錬剤を投入
して処理することによって、脱P率への悪影響やスロッ
ピング等の操業トラブルなしに溶銑中[Mn]濃度を効
果的に上昇せしめ得るようにしな点」に特徴を有してい
る。
When performing hot metal film P treatment by adding slag forming agents such as fluorite and converter slag and oxidizing agents such as iron ore and gaseous oxygen, Mn ore powder, carbonaceous material powder and slag forming agent powder are mixed and formed. By introducing a small nodule refining agent into the process, the [Mn] concentration in hot metal can be effectively increased without adversely affecting the P removal rate or without operational troubles such as slopping. have.

この場合、被処理溶銑としてsi、&有量が0.30%
以下(以降、成分割合を表わす%は重量%とする)にま
で予備脱硅処理されたものを使用すれば、生石灰、蛍石
等の脱P用フランクスの使用量が少なくて済み、スラグ
量が減少してMn歩留が更に向上することがら脱P処理
が一層有利になる。
In this case, the hot metal to be treated has si, & content of 0.30%.
If you use products that have been preliminarily desiliconized to the following (hereinafter, % representing the component ratio is weight %), the amount of dephosphorizing franks such as quicklime and fluorite can be reduced, and the amount of slag can be reduced. As the Mn content decreases and the Mn yield further improves, the P removal treatment becomes even more advantageous.

即ち、本発明は、溶銑膜P処理の際にMn含有物質を添
加して脱P処理と同時に溶銑中[Mn]濃度を上昇させ
る際に、上記Mn含有物質として“粉状Mn鉱石、コー
クスや石炭等の粉状炭材及び生石灰や石灰石等の粉状造
滓剤とを混合しペレット状・ブリケット状等に小団塊化
したもの”を使用することを骨子とするものであるが、
小団塊化精錬剤の配合は次の条件を目安として行えば良
い。
That is, in the present invention, when adding a Mn-containing substance during P treatment of hot metal film to increase the [Mn] concentration in the hot metal at the same time as the deP treatment, “powdered Mn ore, coke, etc.” are used as the Mn-containing substance. The basic idea is to use a mixture of powdered carbonaceous materials such as coal and powdered slag-forming agents such as quicklime and limestone, which are formed into small agglomerates in the form of pellets or briquettes.
The formulation of the refining agent for forming small agglomerates may be carried out using the following conditions as a guide.

まず、粉状炭材量はMn鉱石中のMn酸化物及び鉄酸化
物を還元するのに必要な化学量論量程度が望ましいが、
熱源として必要な分を更に増量して配合してもよい。
First, it is desirable that the amount of powdered carbon material be in the stoichiometric amount necessary to reduce Mn oxides and iron oxides in Mn ore.
The amount necessary for the heat source may be further increased and blended.

また、粉状造滓剤は、小団塊(ペレットやブリケット等
)中のCaO含有量とSin、含有量との比が0.5〜
2.0となるように配合することが望ましい。
In addition, the powdery slag agent has a ratio of CaO content to Sin content in small nodules (pellets, briquettes, etc.) of 0.5 to
It is desirable to mix it so that it becomes 2.0.

これは、後述する実施例で示すように脱P処理温度(1
250〜1350℃)下でのMn鉱石の滓化を促進する
ためであり、この範囲外ではMn鉱石の滓化・還元が遅
れ、その結果Mn歩留りが悪化する恐れが強まる。
This is due to the dephosphorization treatment temperature (1
This is to promote slag formation of Mn ore at a temperature of 250 to 1350°C). Outside this range, slag formation and reduction of Mn ore will be delayed, and as a result, there is a strong possibility that Mn yield will deteriorate.

ところで、精錬剤を構成するMn鉱石粉、炭材粉及び造
滓剤粉の粒度は0 、5 *wh以下であることが好ま
しく(これより大きいと団塊化し難い)、またこれらを
成形して得られる団塊の大きさは50鶴以下が望ましい
。なぜなら、団塊化精錬剤の大きさが50鰭より大きい
と溶解反応が遅れるので好ましくないためである。
Incidentally, the particle size of the Mn ore powder, charcoal material powder, and slag-forming agent powder that constitute the refining agent is preferably 0.5*wh or less (if it is larger than this, it is difficult to form agglomerates), and It is desirable that the size of the baby clumps is 50 cranes or less. This is because if the size of the nodule refining agent is larger than 50 fins, the dissolution reaction will be delayed, which is not preferable.

なお、精錬剤団塊化の際には適当な結合剤(例えばベン
トナイト等)を添加することが有効である。そして、団
塊化精錬剤の脱P処理炉への装入時期としては、Mn鉱
石の還元時間を確保する意味から精錬の中期より前の時
期が適切である。
Note that it is effective to add a suitable binder (for example, bentonite, etc.) when agglomerating the refining agent. In order to ensure reduction time for the Mn ore, it is appropriate to charge the agglomeration refining agent into the deP treatment furnace before the middle stage of refining.

また、脱燐処理はトーピード、取鍋或いは転炉等の何れ
で実施しても問題はない。
Moreover, there is no problem in carrying out the dephosphorization treatment in any of a torpedo, a ladle, a converter, etc.

続いて、本発明を実施例により更に具体的に説明する。Next, the present invention will be explained in more detail with reference to Examples.

〈実施例〉 2トン試験溶銑処理炉(転炉)を準備し、これによって
Mnn鉱石添加溶銑脱法試験実施した。
<Example> A 2-ton test hot metal processing furnace (converter) was prepared, and a Mnn ore-added hot metal removal method test was conducted using this.

試験は、Mn含有物質として炭材内装Mn鉱石ペレット
(粉状Mn鉱石、粉状コークス及び粉状石灰石を所定量
配合し混合してペレット状に小団塊化したもの)を装入
した場合と、塊状のMn鉱石を装入した場合とについて
行い、両者のMn歩留、脱P率並びにスロッピングの状
況を比較した。
The test was conducted when carbonaceous Mn ore pellets (powdered Mn ore, powdered coke, and powdered limestone were mixed in a predetermined amount and mixed into small nodules in the form of pellets) were charged as the Mn-containing substance. The results were compared with the case in which bulk Mn ore was charged, and the Mn yield, dephosphorization rate, and slopping conditions of both cases were compared.

なお、実験はMn鉱石の添加量を種々に変えて多数回行
ったが、以下、代表的な例についてのみ説明する。
Although the experiment was conducted many times with various amounts of Mn ore added, only typical examples will be described below.

まず、第1表に、使用した脱Si・脱S溶銑、 Mn1
12:石、コークス及び転炉滓の組成を示す。
First, Table 1 shows the Si-free/S-free hot metal used, Mn1
12: Shows the composition of stone, coke and converter slag.

第  1  表 (注)数値は「重量割合(%)」を示す。Table 1 (Note) Values indicate "weight percentage (%)".

また、第2表は、転炉に装入した各原料及び燃料の使用
量を示したものである。
Furthermore, Table 2 shows the usage amounts of each raw material and fuel charged into the converter.

第2表中、「ケースl」及び「ケース2」はそれぞれ第
3表に示す成分配合の炭材内装Mn鉱石ペレット(イ)
及び(U)を使用した本発明例であり、−方「ケース3
」は塊状Mn鉱石を使用した従来例である。
In Table 2, "Case 1" and "Case 2" respectively refer to carbonaceous-incorporated Mn ore pellets (A) with the composition shown in Table 3.
This is an example of the present invention using and (U), and - way “Case 3
” is a conventional example using massive Mn ore.

で炭材内装Mn鉱石ペレットの成分配合はペレット中の
CaO含有量とSi0g含有量の比が種別(イ)の場合
は約1.0に、そして種別([I)の場合は約1.6と
なるように石灰石の量を配慮した。また、ベントナイト
はペレット造粒の際の結合剤として使用したものである
。そして、第3表における各配合原料の粒度は、全て1
00メツシユ以下であった。
The composition of the carbon-filled Mn ore pellets is such that the ratio of CaO content to Si0g content in the pellet is approximately 1.0 for type (A), and approximately 1.6 for type (I). The amount of limestone was considered so that Furthermore, bentonite was used as a binder during pellet granulation. The particle size of each blended raw material in Table 3 is all 1
It was less than 00 mesh.

第3表 第3表は、前述したように炭材内装Mn鉱石ペレットの
成分配合割合を示したものであるが、ここなお、上記各
炭材内装Kn鉱石ベレットはディスク型ペレタイザーに
て造粒したペレットを200℃で2時間乾燥して製造し
たものであるが、脱P試験にはこのうちの粒径が10〜
25鶴のものを選んで使用した。
Table 3 Table 3 shows the composition ratio of the carbonaceous-equipped Mn ore pellets as described above, but it should be noted that each of the above-mentioned carbonaceous-equipped Kn ore pellets was granulated using a disc-type pelletizer. It is manufactured by drying pellets at 200℃ for 2 hours.
I selected and used 25 cranes.

ところで、前記ケース1乃至3とも、Mn鉱石。By the way, in all cases 1 to 3, Mn ore is used.

コークス及び各造滓剤の全使用量は同一とし、造滓剤の
配合はスラグの塩基度(Ca O/Si Oz)が約3
になるように設定した。そして、コークスの配合量は、
添加したMn鉱石中のMn及びFe酸化物をすべて還元
するのに必要な量の20%増とした。
The total amount of coke and each sludge-forming agent used was the same, and the slag-forming agent composition was determined so that the basicity of the slag (Ca O / Si Oz) was approximately 3.
I set it to be. And the amount of coke is
The amount was increased by 20% of the amount required to reduce all the Mn and Fe oxides in the added Mn ore.

さて、溶銑膜P処理は、前記脱Sト脱S溶銑を予備処理
炉(転炉)内に注銑後、処理開始直前に第2表に示す装
入物を全量投入して実施した。なお、吹錬開始時の溶湯
温度は1300℃であった。
Now, the hot metal film P treatment was carried out by pouring the de-S hot metal into a preliminary treatment furnace (converter), and then immediately before the start of the treatment, by charging the entire amount of the charge shown in Table 2. Note that the molten metal temperature at the start of blowing was 1300°C.

処理中、上吹ランスからの送酸量は2.0Nrrr/分
で一定とし、また底吹羽口からはアルゴンガスを1、O
N rd1分の流量で吹込んだ。そして、処理の途中、
メタル及びスラグのサンプリングを実施して分析に供し
た。
During the treatment, the amount of oxygen supplied from the top blowing lance was kept constant at 2.0Nrrr/min, and the argon gas was supplied from the bottom blowing tuyere at 1.0Nrrr/min.
It was blown in at a flow rate of Nrd 1 minute. And during the process,
Metal and slag samples were taken and analyzed.

この処理のうち、ケースl及びケース3の場合のメタル
中[Mn]濃度及び[P]濃度の推移を第1図及び第2
図に示した。なお、画処理とも終点[C]濃度は4.0
%であり、溶湯温度は1320℃であった。
Figures 1 and 2 show the changes in the [Mn] and [P] concentrations in the metal in cases 1 and 3 of this process.
Shown in the figure. In addition, the end point [C] density is 4.0 for both image processing.
%, and the molten metal temperature was 1320°C.

この第1図と第2図との比較からも、炭材内装Mn鉱石
ペレットの使用によりMn鉱石の溶融還元反応が促進さ
れ、その結果、メタル中[Mn]が向上し、脱P反応も
速やかに進行しCP]tffi度が低下しているのが分
かる。また、塊状Mn鉱石使用の場合(ケース3)には
Mn歩留が45%、脱P率が75%であったのに対して
、炭材内装Mnt石ベレットを使用した場合(ケース1
)にはMn歩留が65%に、そして脱P率が85%に向
上したことが確認された。
From the comparison between Figures 1 and 2, it is clear that the use of carbonaceous Mn ore pellets promotes the smelting reduction reaction of Mn ore, and as a result, the [Mn] in the metal increases and the dephosphorization reaction also occurs quickly. It can be seen that the degree of CP]tffi is decreasing as the temperature progresses. In addition, when using massive Mn ore (Case 3), the Mn yield was 45% and the P removal rate was 75%, whereas when using carbon-filled Mnt stone pellets (Case 1), the Mn yield was 45% and the P removal rate was 75%.
), it was confirmed that the Mn yield was improved to 65% and the P removal rate was improved to 85%.

更に、第3図は吹錬中のスラグ層厚を計測した結果を示
しているが、この第3図からも、塊状Mn鉱石を使用し
た場合(ケース3)には激しいスロッピングが起こった
のに対し、炭材内装ペレットを使用した場合(ケースl
)はスロッピングを殆んど生じることなく処理を終了し
得たことが分かる。
Furthermore, Figure 3 shows the results of measuring the slag layer thickness during blowing, and it also shows that severe slopping occurred when massive Mn ore was used (Case 3). In contrast, when using carbonaceous interior pellets (case l
) was able to complete the process with almost no slopping.

なお、ケース2の具体的結果の記載は省略したが、この
場合にもケース1におけるとほぼ同様に良好な結果が得
られることを確認した。
Although the specific results of Case 2 have been omitted, it has been confirmed that almost the same good results as in Case 1 can be obtained in this case as well.

一方、第4図は造滓剤(石灰石、生石灰、ドロマイト等
)の配合を種々変えたペレットを作成し、炭材内装Mn
鉱石ペレット中の適正な造滓剤配合割合を検討した結果
を示している。ここで、これら各試験とも塊状の造滓剤
をも含めた全造滓剤配合量が全て一定とされたことは勿
論である。
On the other hand, Fig. 4 shows that pellets with various combinations of slag-forming agents (limestone, quicklime, dolomite, etc.) were made, and the carbonaceous interior Mn
The results of a study on the appropriate proportion of slag-forming agents in ore pellets are shown. It goes without saying that in each of these tests, the total blending amount of the sludge-forming agent, including the lump-like sludge-forming agent, was kept constant.

この第4図に示される結果から、「ペレットに配合する
造滓剤のCab/5tot比を0.5〜2.0に調整す
ることが高いMn歩留を確保する上で好ましい」と判断
することができるが、これはrMn歩留は特に処理温度
1250〜1350℃と言う低温域でのMn鉱石の滓化
の良否に依存しており、Ca O/Si Oz比が0.
5〜2.0の範囲を外れるとMn鉱石の滓化・還元が遅
れ、その結果Mn歩留が悪化する」との理由によるもの
と推測される。
From the results shown in Figure 4, it is concluded that "it is preferable to adjust the Cab/5tot ratio of the slag forming agent added to the pellets to 0.5 to 2.0 in order to ensure a high Mn yield." However, this is because the rMn yield particularly depends on the quality of slag formation of Mn ore at a low temperature range of 1250 to 1350°C, and when the CaO/SiOz ratio is 0.
This is presumed to be due to the fact that if the value is outside the range of 5 to 2.0, the slag formation and reduction of Mn ore will be delayed, resulting in a worsening of the Mn yield.

〈効果の総括〉 以上に説明した如く、この発明によれば、溶銑膜P処理
において操業トラブルを引き起こすことなく、また脱P
率を悪化させることなく、投入Mn源から高い歩留で溶
銑中へMnを還元・移行させることができ、溶銑中[M
n]濃度を安定して大幅に向上することが可能となって
高Mn鋼精錬コストを大幅に低減できるなど、産業上極
めて有用な効果がもたらされる。
<Summary of Effects> As explained above, according to the present invention, it is possible to remove P without causing operational troubles in hot metal membrane P treatment.
It is possible to reduce and transfer Mn from the input Mn source to the hot metal with a high yield without deteriorating the Mn ratio, and the Mn in the hot metal [Mn
n] concentration can be stably and greatly improved, and the refining cost of high-Mn steel can be significantly reduced, which brings about extremely useful effects industrially.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、炭材内装Mn鉱石ペレットを投入した場合の
、溶銑膜P処理中のメタル中[Mnコ濃度及び[P]f
1度の推移を示したグラフである。 第2図は、塊状Mn鉱石を投入した場合の、吹錬中のメ
タル中[Mn111度及びCC]S度の推移を示したグ
ラフである。 第3図は、脱P処理中のスラグ層厚の計測結果を示した
グラフである。 第4図は、ペレットに配合する造滓剤のCab/Sin
、比とMn歩留との関係を示したグラフである。
Figure 1 shows the [Mn concentration and [P] f in the metal during hot metal film P treatment when carbonaceous Mn ore pellets are introduced.
It is a graph showing the transition of one degree. FIG. 2 is a graph showing changes in [Mn 111 degrees and CC] S degrees in the metal during blowing when bulk Mn ore is introduced. FIG. 3 is a graph showing the measurement results of the slag layer thickness during the P removal process. Figure 4 shows the sludge-forming agent Cab/Sin added to the pellets.
, is a graph showing the relationship between the ratio and the Mn yield.

Claims (2)

【特許請求の範囲】[Claims] (1)脱燐処理炉内に注入した溶銑に造滓剤と酸化剤を
添加して溶銑脱燐処理を行うに当り、Mn鉱石粉、炭材
粉及び造滓剤粉を混合し成形した小団塊精錬剤を投入す
ることにより、脱燐と同時にMn鉱石の溶融還元による
溶銑中[Mn]の上昇を図ることを特徴とする、溶銑脱
燐方法。
(1) When performing hot metal dephosphorization by adding a slag-forming agent and an oxidizing agent to the hot metal injected into the dephosphorization furnace, Mn ore powder, carbonaceous powder, and slag-forming agent powder are mixed and formed into small pieces. A hot metal dephosphorization method characterized by increasing [Mn] in hot metal by melting and reducing Mn ore at the same time as dephosphorization by adding a nodule refining agent.
(2)被処理溶銑がSi含有量0.30重量%以下にま
で予備脱硅処理されたものである、請求項1に記載の溶
銑脱燐方法。
(2) The method for dephosphorizing hot metal according to claim 1, wherein the hot metal to be treated has been subjected to preliminary desiliconization treatment to reduce the Si content to 0.30% by weight or less.
JP349589A 1989-01-10 1989-01-10 Method for dephosphorizing molten iron Pending JPH02282412A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP349589A JPH02282412A (en) 1989-01-10 1989-01-10 Method for dephosphorizing molten iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP349589A JPH02282412A (en) 1989-01-10 1989-01-10 Method for dephosphorizing molten iron

Publications (1)

Publication Number Publication Date
JPH02282412A true JPH02282412A (en) 1990-11-20

Family

ID=11558919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP349589A Pending JPH02282412A (en) 1989-01-10 1989-01-10 Method for dephosphorizing molten iron

Country Status (1)

Country Link
JP (1) JPH02282412A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100436652B1 (en) * 2001-08-09 2004-06-22 이승환 Flux having Low Melting Point for controlling Slag Foaming and having Dephosophorizing ability in BOF Refining

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100436652B1 (en) * 2001-08-09 2004-06-22 이승환 Flux having Low Melting Point for controlling Slag Foaming and having Dephosophorizing ability in BOF Refining

Similar Documents

Publication Publication Date Title
JPS6164807A (en) Melt reduction method of iron ore
JPS60152611A (en) Method for modifying slag
JPH0437132B2 (en)
JPH02282412A (en) Method for dephosphorizing molten iron
JP3750589B2 (en) Decarburization furnace slag manufacturing method and steel making method
JPH07278644A (en) Dephosphorizing method of high chrome and high manganese molten alloy iron
JPH0297611A (en) Method for melting cold iron source
JPS6353206A (en) Operational method for high manganese content at blow-end in top-bottom blowing converter
JPH0437135B2 (en)
JPH09143529A (en) Method for dephosphorizing molten iron
JPH05302109A (en) Method for pre-treating molten iron
KR100226925B1 (en) Dephosphorous method of molten metal
JP3736229B2 (en) Hot metal processing method
JP2899993B2 (en) Converter refining method
JPH03223412A (en) Production of chromium-containing steel by means of converter
JPH0623408B2 (en) Refining method for increasing Mn in molten steel by converter
WO2013190591A1 (en) Refining method and molten steel production method
JPH1036148A (en) Treatment of molten iron dephosphorized slag and slag
JP2757707B2 (en) Hot metal dephosphorization slag treatment method
JPH01147012A (en) Steelmaking method
JPS61104014A (en) Method for reducing mn ore with high efficiency in oxidation refining furnace
JPS62290815A (en) Steel making method
CN112011721A (en) Pig iron for directly producing low-silicon low-titanium low-trace-element nodular cast iron and preparation method thereof
JPH032312A (en) Production of low-phosphorus pig iron
JPH01316406A (en) Production of chromium-containing molten iron