JPH02281772A - Metal vapor laser oscillating tube - Google Patents

Metal vapor laser oscillating tube

Info

Publication number
JPH02281772A
JPH02281772A JP10161489A JP10161489A JPH02281772A JP H02281772 A JPH02281772 A JP H02281772A JP 10161489 A JP10161489 A JP 10161489A JP 10161489 A JP10161489 A JP 10161489A JP H02281772 A JPH02281772 A JP H02281772A
Authority
JP
Japan
Prior art keywords
tube
heat
insulating material
axial direction
laser oscillation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10161489A
Other languages
Japanese (ja)
Inventor
Shuntaro Hata
秦 俊太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP10161489A priority Critical patent/JPH02281772A/en
Publication of JPH02281772A publication Critical patent/JPH02281772A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/031Metal vapour lasers, e.g. metal vapour generation

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To keep the clearance of a heat-insulating material at zero at all times by dividing the heat-insulating material covering the outside into the plural in the axial direction of a tube and installing elastic members deformable in response to thermal expansion in the axial direction of the heat-insulating material near one end sections of the heat-insulating material. CONSTITUTION:Elastic members 20 are disposed at least one end sections in the axial direction of heat-insulating materials 12, and the thermal expansion of the heat-insulating materials 12 is absorbed. One end sections of the heat- insulating materials 12 in which thermal expansion is generated in the axial direction are made to abut against an end plate 19a, elongation is further generated and the end plate 19a is pushed, and springs 20 are compressed and the end plate 19a is moved. Accordingly, the thermal expansion of the heat- insulating materials 12 is compensated by the action of the elastic members 20, a clearance is hardly generated, the efficiency of heat insulation is improved, and a high-temperature region required for laser oscillation is ensured.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明は金属蒸気レーザ発振管に関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) This invention relates to a metal vapor laser oscillation tube.

(従来の技術) 金属蒸気レーザ発振管は、一般に第4図に示すような構
造となっている。第4図において1は耐熱性に優れたセ
ラミック内管であり、その内部の放電部2にガス供給系
3からHe、Ne等の放電用バッファガスが供給される
と共に、ロータリーポンプ4により排気され、陽極6と
陰極5間にパルス高電圧電源7から印加される電圧が数
KV〜10数KV、繰返し周波数が数KHz〜10数K
Hzの高電圧パルスによりパルス二極放電によりプラズ
マを発生する。セラミック内管1内には金属粒子8が配
置され、この金属粒子8が放電プラズマと接触してセラ
ミック内管1内が極めて高温状態に加熱され、金属粒子
8が蒸発することにより、レーザ媒質となる金属蒸気が
生成される。
(Prior Art) A metal vapor laser oscillation tube generally has a structure as shown in FIG. In FIG. 4, reference numeral 1 denotes a ceramic inner tube with excellent heat resistance, and a discharge buffer gas such as He, Ne, etc. is supplied from a gas supply system 3 to a discharge section 2 inside the tube, and is exhausted by a rotary pump 4. , the voltage applied from the pulse high voltage power supply 7 between the anode 6 and the cathode 5 is from several KV to 10-odd KV, and the repetition frequency is from several KHz to 10-odd KV.
Plasma is generated by pulsed bipolar discharge using a high voltage pulse of Hz. Metal particles 8 are placed inside the ceramic inner tube 1, and the metal particles 8 come into contact with the discharge plasma to heat the inside of the ceramic inner tube 1 to an extremely high temperature, and the metal particles 8 evaporate, forming a laser medium. metal vapor is produced.

この金属蒸気はセラミック内管1内に一様に10〜10
16n/■3の密度で分布し、放電プラズマ中の自由電
子により励起されることによって、その金属特有の波長
の光を発光しブリュースタ窓9を通してセラミック内管
1の両端に置かれた出力ミラー10と全反射ミラー11
で構成される光共振器で増1Jされ、出力ミラー10側
よりレーザ光となって出力される。
This metal vapor is uniformly distributed in the ceramic inner tube 1 at 10 to 10
Output mirrors placed at both ends of the ceramic inner tube 1 emit light with a wavelength specific to the metal by being excited by free electrons in the discharge plasma distributed at a density of 16n/■3. 10 and total reflection mirror 11
The light is amplified by 1J in an optical resonator composed of , and is output as a laser beam from the output mirror 10 side.

セラミック内管1には内部を高温に保持するため断熱材
12が巻かれており、更にこれらは保護管13内に挿入
されている。セラミック内管1゜断熱材12及び保護管
13は両端側においてOリング14を介して外管15に
支持されている。又、外管15と保護管13との間はロ
ータリーポンプ16により排気されて真空断熱室17と
なっている。外管15の途中には陽極5側と陰極6側と
を電気的に分離する絶縁管18が配設されている。
A heat insulating material 12 is wrapped around the ceramic inner tube 1 to keep the inside at a high temperature, and these are further inserted into a protective tube 13. Ceramic inner tube 1° heat insulating material 12 and protection tube 13 are supported by outer tube 15 via O-rings 14 at both ends. Further, the space between the outer tube 15 and the protection tube 13 is evacuated by a rotary pump 16 to form a vacuum insulation chamber 17. An insulating tube 18 is disposed in the middle of the outer tube 15 to electrically isolate the anode 5 side and the cathode 6 side.

上述のごとき金属蒸気レーザ発振管において本発明者等
が試作したものを第5図に示す。すなわち、セラミック
内管1の外周に巻かれた断熱材12を軸方向に複数に分
割し、外管15の両端部に取付けられた位置決め板19
との間にすきまを保って配設した。
FIG. 5 shows a prototype of the metal vapor laser oscillation tube as described above, which was manufactured by the present inventors. That is, the heat insulating material 12 wound around the outer circumference of the ceramic inner tube 1 is divided into a plurality of parts in the axial direction, and the positioning plates 19 are attached to both ends of the outer tube 15.
It was placed so that there was a gap between the two.

この理由は、セラミック内管1の内部は約1500℃の
高温下であり、断熱材12は円周方向及び軸方向の熱膨
張を生じ、特に円周方向に比較して軸方向に長尺な構造
のため安全上からも軸方向に十分なすきまが必要とされ
るからである。
The reason for this is that the inside of the ceramic inner tube 1 is at a high temperature of approximately 1500°C, and the heat insulating material 12 undergoes thermal expansion in the circumferential direction and axial direction. This is because the structure requires sufficient clearance in the axial direction for safety reasons.

第6図と第7図はレーザ発振を何回か繰返し行なった時
の断熱材12の位置を示したもので、第6図は断熱材1
2の軸方向の分割数により平均的にすきまがあいた状態
、第7図は中央付近へ集中的にすきまがあいた状態であ
る。すなわち、断熱材12は膨張、収縮を繰返すことに
より軸方向にすきまの量のだけ自由に移動してしまう。
Figures 6 and 7 show the position of the heat insulating material 12 when laser oscillation is repeated several times.
Figure 7 shows a state in which there is an average gap due to the number of axial divisions in Figure 7, and a state in which the gap is concentrated near the center. That is, by repeating expansion and contraction, the heat insulating material 12 moves freely in the axial direction by the amount of the gap.

この様にすきまが生じた状態(本発明者等の実験によれ
ば2m程度のセラミック内管に対して30關〜40龍の
すきまが生じた)でレーザ発振を行なった場合は断熱効
率が低下し、放電に寄与する均一な高温領域が確保でき
ない為、効率のよい出力が得られない。
If laser oscillation is performed with a gap created like this (according to experiments by the inventors, a gap of 30 to 40 degrees was created for a ceramic inner tube of about 2 m), the insulation efficiency will decrease. However, since it is not possible to secure a uniform high temperature area that contributes to discharge, efficient output cannot be obtained.

(発明が解決しようとする課題) 上述のように安全性を考慮して断熱材を軸方向に複数分
割した金属蒸気レーザ発振管では、断熱材の軸方向の熱
膨張による伸びを、すきま(空間)により吸収していた
ため、レーザ発振を何回か繰返し行なった場合には、す
きまの位置が変化し、特に、中央付近に集中した場合等
は均一な高温領が確保できず効率の良い出力が得られな
かった。
(Problem to be solved by the invention) As mentioned above, in the metal vapor laser oscillation tube in which the insulation material is divided into multiple parts in the axial direction, the elongation due to the thermal expansion of the insulation material in the axial direction is reduced by the gap (space). ), so if the laser oscillation is repeated several times, the position of the gap will change, and especially if it is concentrated near the center, a uniform high temperature area cannot be secured and efficient output will not be achieved. I couldn't get it.

本発明は以上のような問題点を解決するものでその目的
とするところは断熱材のすきまを常にゼロに保ち効率の
よい出力を得ることのできる金属蒸気レーザ発振管を提
供することにある。
The present invention is intended to solve the above-mentioned problems, and its purpose is to provide a metal vapor laser oscillation tube that can always keep the gap between the insulation materials at zero and obtain efficient output.

[発明の構成] (課題を解決するための手段) 本発明の金属蒸気レーザ発振管では、断熱材の軸方向の
少なくとも一端部へ弾性部材を配設して断熱材の熱膨張
を吸収する構成とした。
[Structure of the Invention] (Means for Solving the Problems) The metal vapor laser oscillation tube of the present invention has a structure in which an elastic member is disposed at at least one end in the axial direction of the heat insulating material to absorb thermal expansion of the heat insulating material. And so.

(作  用) このように構成された金属蒸気レーザ発振管においては
、レーザ発振を繰返し行なった後においても、弾性部材
の作用により断熱材の熱膨張が補償されて、すきまはほ
とんど生じず、断熱効率が向上し、レーザ発振に必要な
高温領域が確保され、レーザ出力の大きい金属蒸気レー
ザ発振が可能になる。
(Function) In the metal vapor laser oscillation tube configured in this way, even after repeated laser oscillations, the thermal expansion of the heat insulating material is compensated for by the action of the elastic member, so that almost no gaps occur, and the heat insulation is maintained. Efficiency is improved, the high temperature region necessary for laser oscillation is secured, and metal vapor laser oscillation with high laser output becomes possible.

(実施例) 以下、本発明を図示の実施例に基づいて詳細に説明する
。尚、従来と同一部分には同一符号を付し重複する説明
は省略する。
(Example) Hereinafter, the present invention will be explained in detail based on the illustrated example. Incidentally, the same parts as in the prior art are given the same reference numerals, and redundant explanations will be omitted.

第1図は本発明に関わる金属蒸気発振管を示す概略断面
図である。この図に示すように断熱材12は軸方向に複
数に分割されており両端部には断熱材12を位置決めす
る端板19a及び19bが配設されている。一方の端板
19aはバネ20を介してボルト21aにより外管15
に支持されている、又他方の端板19bはボルト21b
により外管15に固定されている。
FIG. 1 is a schematic cross-sectional view showing a metal vapor oscillator tube according to the present invention. As shown in this figure, the heat insulating material 12 is divided into a plurality of parts in the axial direction, and end plates 19a and 19b for positioning the heat insulating material 12 are provided at both ends. One end plate 19a is attached to the outer tube 15 by a bolt 21a via a spring 20.
The other end plate 19b is supported by bolts 21b.
It is fixed to the outer tube 15 by.

断熱材12はレーザ発振時には約1500”Cの高温に
なり熱膨張を生じる、特に軸方向に長い横励起型の金属
蒸気レーザ発振管においては軸方向の伸びはいちじるし
い。軸方向へ熱膨張を生じる断熱材12は一方の端部で
端板19aに当接して、さらに伸びを生じ端板19aを
押し、バネ2oが圧縮される、すなわち第1図の右下側
に示す破線の位置へ端板19aは移動する。又、レーザ
発振を停止すると断熱材12は収縮し、端板19aはバ
ネ20の弾性の復帰力により第1図の実線で示す初期の
状態へ復帰する。
During laser oscillation, the heat insulating material 12 reaches a high temperature of about 1500"C and causes thermal expansion. Especially in a horizontally excited metal vapor laser oscillation tube that is long in the axial direction, the axial expansion is remarkable.Thermal expansion occurs in the axial direction. The heat insulating material 12 contacts the end plate 19a at one end and further stretches, pushing the end plate 19a, compressing the spring 2o, that is, moving the end plate to the position indicated by the broken line on the lower right side of FIG. 19a moves.Furthermore, when the laser oscillation is stopped, the heat insulating material 12 contracts, and the end plate 19a returns to the initial state shown by the solid line in FIG. 1 due to the elastic restoring force of the spring 20.

本実施例の主たるものは断熱材12の軸方向の伸縮を端
板19に具備するバネ20により吸収し、断熱材12の
軸方向のすきまをゼロとする構成としたものである。
The main feature of this embodiment is that the expansion and contraction of the heat insulating material 12 in the axial direction is absorbed by the spring 20 provided in the end plate 19, so that the gap in the axial direction of the heat insulating material 12 is made zero.

次に第2図は、本発明の第2の実施例を示すものであり
、第1の実施例と異なる箇所は弾性部材の構成の違いで
ある。
Next, FIG. 2 shows a second embodiment of the present invention, which differs from the first embodiment in the structure of the elastic member.

第2図においては、一方の端端19aは2つに分割され
ており、各々19aと19a゛である。
In FIG. 2, one end 19a is divided into two parts, 19a and 19a', respectively.

端板19aはボルト21aにより外管15に固定され、
この固定された端板194に対してベローズ22により
分割された端板19a゛が軸方向に移動自在に取付けら
れている。
The end plate 19a is fixed to the outer tube 15 with bolts 21a,
An end plate 19a' divided by a bellows 22 is attached to the fixed end plate 194 so as to be movable in the axial direction.

このように構成されたものにおいては、レーザ発振時に
断熱材12が熱膨張により軸方向へ伸びると、端板19
a′を押し、端板19a°はベローズ22を伸ばして軸
方向へ移動する。(第2図の状態)そして、レーザ発振
を停止すると断熱材12は収縮し、ベローズ22が伸ば
された状態から初期の状態へ戻ろうとする復帰力によっ
て、端板19a″は初期の状態へ戻る。
In this structure, when the heat insulating material 12 extends in the axial direction due to thermal expansion during laser oscillation, the end plate 19
By pressing a', the end plate 19a extends the bellows 22 and moves in the axial direction. (The state shown in Fig. 2) Then, when the laser oscillation is stopped, the heat insulating material 12 contracts, and the end plate 19a'' returns to its initial state due to the restoring force that causes the bellows 22 to return from its extended state to its initial state. .

この実施例においても、断熱材が熱膨張した状態におい
ても、ベローズ22の弾性力により断熱材12は常に他
方の端板19bへ押し付けられているためすきまは生じ
ない。
In this embodiment as well, even when the heat insulating material is thermally expanded, the heat insulating material 12 is always pressed against the other end plate 19b by the elastic force of the bellows 22, so that no gap is created.

第3図は、本発明の第3の実施例を示すものであり、第
1および第2の実施例と異なる箇所は弾性部材の構成の
違いである。
FIG. 3 shows a third embodiment of the present invention, which differs from the first and second embodiments in the structure of the elastic member.

第3図においては、端板19a自体をバネ24で構成し
たものである。このバネ24は弾性板の一部を例えば湾
曲させて、この湾曲部で断熱材12の伸縮を吸収するよ
うにした。いわゆるダイヤフラム形状である。
In FIG. 3, the end plate 19a itself is constructed of a spring 24. This spring 24 is made by, for example, bending a part of the elastic plate so that the expansion and contraction of the heat insulating material 12 is absorbed by this curved part. It has a so-called diaphragm shape.

なお、第3図右下側にバネ24が弾性変形した状態を破
線で示している。
Note that the state in which the spring 24 is elastically deformed is shown by a broken line on the lower right side of FIG.

なお、この湾曲部を形成せずにバネ24を通常の板バネ
で形成することも可能である。
Note that it is also possible to form the spring 24 with a normal leaf spring without forming this curved portion.

このように第3の実施例の構成においても第1および第
2の実施例と同様の作用・効果が得られ、かつ端板19
a自体をバネ24で形成したため部品点数を少なくする
こともできる。
In this way, the configuration of the third embodiment also provides the same functions and effects as those of the first and second embodiments, and the end plate 19
Since a itself is formed from the spring 24, the number of parts can also be reduced.

なお、以上第1乃至第3の実施例において、両端の端板
のうち、一方の端板に弾性体を具備、あるいは弾性体の
機能を持たせたが両方の端板に実施することも可能であ
る。
In addition, in the first to third embodiments above, one of the end plates at both ends is equipped with an elastic body or has the function of an elastic body, but it is also possible to implement the elastic body on both end plates. It is.

また、本発明は上記実施例に限定されることなく、弾性
体の構成やあるいは他の部分の構成はその要旨を逸脱し
ない範囲において種々変形して実施することができる。
Further, the present invention is not limited to the above embodiments, and the structure of the elastic body or the structure of other parts can be modified in various ways without departing from the gist thereof.

[発明の効果] 以上、実施例に基づいて具体的に説明したように本発明
によれば、断熱材の軸方向にすきまを弾性部材により生
じさせないような構成により断熱材効果が向上し、効率
の高いレーザ発振を行なうことができる。
[Effects of the Invention] As described above in detail based on the embodiments, according to the present invention, the effect of the heat insulating material is improved due to the structure in which the elastic member does not create a gap in the axial direction of the heat insulating material, and the efficiency is improved. It is possible to perform high laser oscillation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係わる金属蒸気レーザ発振管を示す概
略断面図、第2図及び第3図は本発明の第2.第3の実
施例を示す概略断面図、第4図は従来の金属蒸気レーザ
発振管を示す概略断面図、第5図は、改良された従来の
金属蒸気レーザ発振管を示す概略断面図、第6図と第7
図は、第5図の発振管において発振を繰り返した状態を
示す概略断面図である。 1・・・セラミック内管、3・・・ガス供給系、5・・
・陽極、6・・・陰極、7・・・パルス高電圧電源、8
・・・金属粒子、10・・・出力ミラー 11・・・全
反射ミラー12−・・断熱材、15−・・外管、19a
、19b19b″、23・・・端板、20・・・バネ(
弾性部材)、22・・・ベローズ(弾性部材)、24・
・・バネ(弾性部材)。
FIG. 1 is a schematic sectional view showing a metal vapor laser oscillation tube according to the present invention, and FIGS. 4 is a schematic sectional view showing a conventional metal vapor laser oscillation tube; FIG. 5 is a schematic sectional view showing an improved conventional metal vapor laser oscillation tube; Figure 6 and 7
This figure is a schematic sectional view showing a state in which oscillation is repeated in the oscillation tube of FIG. 5. 1...Ceramic inner tube, 3...Gas supply system, 5...
・Anode, 6... Cathode, 7... Pulse high voltage power supply, 8
...Metal particles, 10...Output mirror 11...Total reflection mirror 12-...Insulating material, 15-...Outer tube, 19a
, 19b19b'', 23... end plate, 20... spring (
elastic member), 22... bellows (elastic member), 24.
...Spring (elastic member).

Claims (1)

【特許請求の範囲】[Claims] 金属粒子を内部に配置した管内に放電用のガスを供給し
、前記管に設けられた放電電極間に電圧を印加すること
により放電プラズマを形成して前記金属粒子を蒸気化し
、この蒸気化された金属粒子を前記放電プラズマ中の自
由電子により励起してレーザ発振を行なう金属レーザ発
振管において、前記管の外部を覆う断熱材を前記管の軸
方向に複数に分割し、前記管の少なくとも一方の端部近
傍に前記断熱材の軸方向の熱膨張に応じて変形可能な弾
性部材を設けたことを特徴とする金属蒸気レーザ発振管
A discharge gas is supplied into a tube in which metal particles are arranged, and a voltage is applied between discharge electrodes provided in the tube to form a discharge plasma to vaporize the metal particles, and the vaporized metal particles are vaporized. In a metal laser oscillation tube that performs laser oscillation by exciting metal particles in the discharge plasma with free electrons in the discharge plasma, a heat insulating material covering the outside of the tube is divided into a plurality of parts in the axial direction of the tube, and at least one of the tubes is A metal vapor laser oscillation tube characterized in that an elastic member that can be deformed according to the thermal expansion in the axial direction of the heat insulating material is provided near the end of the metal vapor laser oscillation tube.
JP10161489A 1989-04-24 1989-04-24 Metal vapor laser oscillating tube Pending JPH02281772A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10161489A JPH02281772A (en) 1989-04-24 1989-04-24 Metal vapor laser oscillating tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10161489A JPH02281772A (en) 1989-04-24 1989-04-24 Metal vapor laser oscillating tube

Publications (1)

Publication Number Publication Date
JPH02281772A true JPH02281772A (en) 1990-11-19

Family

ID=14305281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10161489A Pending JPH02281772A (en) 1989-04-24 1989-04-24 Metal vapor laser oscillating tube

Country Status (1)

Country Link
JP (1) JPH02281772A (en)

Similar Documents

Publication Publication Date Title
JPH04259270A (en) High-output strip waveguide laser
JPH02281772A (en) Metal vapor laser oscillating tube
US3452295A (en) Gas laser discharge tube having insulator shields
US4945545A (en) Cold electrode metal vapor laser
JPS63199471A (en) Metallic vapor laser oscillating tube
RU2321096C1 (en) Cathode assembly for extensive-flow electron gun
JPS6355987A (en) Laser device
JPS60189703A (en) Damage preventing mechanism for reflecting mirror for laser resonance
JP2880731B2 (en) Laser oscillation device
JPH02281773A (en) Metal vapor laser oscillating tube
JPH104230A (en) Electrode for gas laser
JP2971595B2 (en) Metal vapor laser oscillation tube
JPH0635487Y2 (en) Metal vapor laser discharge tube
JP2861114B2 (en) Metal vapor laser device
JPH02148777A (en) Metal vapor laser oscillation tube
JPH0453010Y2 (en)
JPH01228183A (en) Metal vapor laser oscillator
JPS6226877A (en) Metal vapor laser oscillation tube
JPS62222686A (en) Ion laser tube
JPS62101093A (en) Metal vapor laser apparatus
JPH03237782A (en) Metal vapor laser equipment
JP2829118B2 (en) Metal vapor laser device
JPS63252490A (en) Metal vapor laser device
JPS63252489A (en) Metal vapor laser device
JPS62101092A (en) Metal vapor laser apparatus