JPS60189703A - Damage preventing mechanism for reflecting mirror for laser resonance - Google Patents

Damage preventing mechanism for reflecting mirror for laser resonance

Info

Publication number
JPS60189703A
JPS60189703A JP4632284A JP4632284A JPS60189703A JP S60189703 A JPS60189703 A JP S60189703A JP 4632284 A JP4632284 A JP 4632284A JP 4632284 A JP4632284 A JP 4632284A JP S60189703 A JPS60189703 A JP S60189703A
Authority
JP
Japan
Prior art keywords
electrode
mirror
sleeve
reflection mirror
conductive sleeve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4632284A
Other languages
Japanese (ja)
Inventor
Kozo Ono
公三 小野
Toru Iwai
岩井 通
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP4632284A priority Critical patent/JPS60189703A/en
Publication of JPS60189703A publication Critical patent/JPS60189703A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08059Constructional details of the reflector, e.g. shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Lasers (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

PURPOSE:To trap plasma or an electron which travels to a reflection mirror and to prevent the reflection mirror from damaging by interposing a conductive sleeve which is connected electrically between an electrode or a power source between the reflection mirror and the nearby electrode. CONSTITUTION:A carbon dioxide gas laser oscillator which has an output mirror at the left half and a total reflection mirror at the right half is provided with a conductive sleeve 17 inserted into the electrode-side opening part of a holder 11 on the side of the output mirror 8 and also with a conductive sleeve 17' inserted into the center hole of the holder 11 nearly to its overall length on the side of the total reflection mirror 8'. Further, the conductive sleeves are connected electrically to the electrode 5 through a conductive auxiliary sleeve 18 and a compression spring 19 and held at the same potential with the electrode 15 during discharging operation. Consequently, coat layers on surfaces of the mirrors 8 and 8' are held at the same potential with the electrode 15, so the acceleration of plasma and an electron is prevented between the electrode 15 and mirrors 8 and 8' and damage to the mirrors due to overheating is prevented.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は、放電管を伴う反射鏡、特に、放電励起方式
のガスレーザ発振器における共振用反射鏡の損傷防止機
構に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a damage prevention mechanism for a reflecting mirror with a discharge tube, particularly for a resonant reflecting mirror in a discharge excitation type gas laser oscillator.

(ロ)従来技術とその問題点 例えば、一般的炭酸ガスレーザ発振器は、第1図に示す
ように、ベースプレート1と、石英ガラスやインバー等
から成る複数本の安定化用ロッド2や放電管3等を備え
る共振器基部4と、その両側に逆向きに連結した出力ミ
ラ一部5及び全反射ミラ一部6によって構成されている
(b) Prior art and its problems For example, as shown in FIG. 1, a general carbon dioxide laser oscillator includes a base plate 1, a plurality of stabilizing rods 2 made of quartz glass, invar, etc., a discharge tube 3, etc. The resonator base 4 includes an output mirror part 5 and a total reflection mirror part 6 connected in opposite directions on both sides of the resonator base part 4.

この種のガスレーザ発振器は、放電管の内部に満たした
レーザ媒質であるガスに対し、電圧を印加して放電させ
、その放電によりガス分子を励起して誘導放出を発生さ
せ、レーザ発振を得るが、このとき温度が1040Kを
超える電子や高温のプラズマが対向した反射鏡即ち出力
ミラーと全反射ミラーに衝突し、反射鏡の温度を上昇さ
せる。
This type of gas laser oscillator obtains laser oscillation by applying a voltage to the gas, which is the laser medium, filled inside the discharge tube and causing it to discharge, and the discharge excites the gas molecules to generate stimulated emission. At this time, electrons and high-temperature plasma whose temperature exceeds 1040 K collide with the opposing reflecting mirrors, that is, the output mirror and the total reflection mirror, raising the temperature of the reflecting mirrors.

このプラー、ズマや電子の流しを第2図に示す従来例に
基いて説明すると、それ等は、図の右方即ち、第1図の
共振器基部中心付近にあるアノード(陽極)部7から発
生し、第2図の出力ミラー8に近接したカソード(陰極
)9.10との間に印加された電圧をこより加速されて
その殆んどが実線矢印で示すようにカソードに流れ込む
か、一部は点線矢印で示すように加速されたまま直進し
、ミラーに衝突するのである。この現象は全反射ミラー
側においてもミラー近くにカソードがあるため同様に起
こり、これにより、ミラーの表層部は極めて高温に加熱
され、その熱テコ−ティング層が損傷してミラーの光学
的性能を著しく低下させるに至るのである。
The puller, zuma, and electron flow will be explained based on the conventional example shown in FIG. It is accelerated by the voltage applied between the cathode (cathode) 9 and 10 close to the output mirror 8 in FIG. 2, and most of it flows into the cathode as shown by the solid arrow, or The part continues to accelerate as shown by the dotted arrow and travels straight ahead, colliding with the mirror. This phenomenon also occurs on the total reflection mirror side because there is a cathode near the mirror, and as a result, the surface layer of the mirror is heated to an extremely high temperature, damaging its thermal coating layer and impairing the optical performance of the mirror. This results in a significant decrease.

かメる問題対策として、従来は、第2図の2即ちカソー
ド10とミラー8間の間隙を大きくし、ここでカソード
をすり抜けたプラズマをトラッ゛プする方法が採られて
いる。
Conventionally, as a countermeasure to this problem, a method has been adopted in which the gap 2 shown in FIG.

しかしながら、この方法は、 ■ 共振器の全長が長くなりレーザ発振器の小型化計画
の妨げになる。
However, this method (1) increases the total length of the resonator, which hinders plans for downsizing the laser oscillator.

■ 間隔店は、レーザの増幅、発振機能からみれば無用
の個所で、それが大きくなる程ビームの回折ひろがりに
よる損失やレーザガスによる吸収による損失が増加し、
図に示す程度の間隔であっても出力が僅かではあるが低
下する。このため、込を大きく採り難い面があるが、痣
が小さいとプラズマ等のトラップ量が減少してミラーの
保護効果が薄れる。このように、従来法ではレーザ出力
又はミラー保護効果のいずれか一方が必ず犠牲になる。
■ The spacing is a useless part from the point of view of the laser's amplification and oscillation functions, and the larger it becomes, the more loss due to diffraction spreading of the beam and absorption by the laser gas increases.
Even with the spacing shown in the figure, the output decreases, albeit slightly. For this reason, it is difficult to obtain a large blemish, but if the blemish is small, the amount of plasma etc. trapped will be reduced and the protective effect of the mirror will be weakened. As described above, in the conventional method, either the laser output or the mirror protection effect is necessarily sacrificed.

以上の事情は、アノ゛−ドとカソードを逆転した共振器
においても同じである。
The above situation is the same even in a resonator in which the anode and cathode are reversed.

(ハ)問題点を解決するための手段 この発明は、上述の問題点を無くすことを目的としてな
されたもので、この目的を達成する本発明の反射鏡の損
傷防止機構は、反射鏡とそれに近接した電極との間に電
極又は他の電源に電気的に接続される導電性のスリーブ
を挿入し、このスリーブによって電極をすり抜けてミラ
ーに向かうプラズマ或いは電子をトラップする構成とし
である。
(c) Means for solving the problem This invention was made with the purpose of eliminating the above-mentioned problem, and the damage prevention mechanism for the reflector of the present invention that achieves this purpose is based on the reflector and the damage prevention mechanism for the reflector. A conductive sleeve electrically connected to the electrode or another power source is inserted between adjacent electrodes, and the sleeve traps plasma or electrons that pass through the electrodes and head toward the mirror.

なお、導電性スリーブは、例えば近接した電極と同電位
にすれば電極の延長部と考えることができ、従って軸対
称形状であっても本来の電極をすり抜けた直進性のプラ
ズマ等が幾分かはスリーブに流れみ、ミラーの損傷防止
効果は従来に比べて高まる。ただし、このスリーブを非
軸対称形状とすると、トラップ効率が向−卜し、先の効
果が万全のものとなる。その理由は以下に挙げる実施例
の項で詳しく説明する。
Note that a conductive sleeve can be considered an extension of an electrode if it is made to have the same potential as a nearby electrode, so even if it has an axially symmetrical shape, some linear plasma that has passed through the original electrode will still be generated. flows into the sleeve, making the mirror more effective at preventing damage than before. However, if the sleeve has a non-axisymmetric shape, the trapping efficiency will be improved and the above effects will be fully realized. The reason for this will be explained in detail in the Examples section below.

(→実施例 第3図は、この発明の損傷防止機構を採用したミラー結
合部の断面図であり、その左半分が出力ミラー側を、右
半分が全反射ミラー側を示している。
(→Embodiment FIG. 3 is a cross-sectional view of a mirror coupling part that employs the damage prevention mechanism of the present invention, with the left half showing the output mirror side and the right half showing the total reflection mirror side.

同図の符号3は放電管、8は出力ミラー、8′は全反射
ミラー、11はセラミック製本体11a1押え具11b
1締付具11cから成るミラーホルダ、12はミラーホ
ルダを支持するミラー取付プレート、13は共振器の端
部プレート、14は電極カバー、15はアノード又はカ
ソード電極、16はホルダ冷却部であって、出力ミラー
8側では、ホルダ11の電極側開口部に導電性スリーブ
17を、一方、全反射ミラー8′側ではホルダ11の中
心穴内に、その穴のはゾ全長に渡る導電性スリーブ17
′をそれぞれ挿入しである。
In the figure, 3 is a discharge tube, 8 is an output mirror, 8' is a total reflection mirror, 11 is a ceramic main body 11a1 and a presser 11b.
1 a mirror holder consisting of a fastener 11c; 12 a mirror mounting plate supporting the mirror holder; 13 an end plate of the resonator; 14 an electrode cover; 15 an anode or cathode electrode; and 16 a holder cooling unit. On the output mirror 8 side, a conductive sleeve 17 is placed in the electrode-side opening of the holder 11, while on the total reflection mirror 8' side, a conductive sleeve 17 is placed in the center hole of the holder 11, and the conductive sleeve 17 extends over the entire length of the hole.
′ is inserted in each case.

上記導電性スリーブ17は、第4図に示すように、一端
部にホルダの開口段部に係止する鍔17aを有し、その
鍔より延びる円筒部17bを切欠部17cにより半分切
除した非軸対称形状をなすもので、第3図に示す如く、
近接した電極15との間に導電性の補助スリーブ18と
圧縮スプリング19を介してホルダに圧接させ、同時に
電極15と電気的につないで、放電時に電極と同電位を
保つようにしである。
As shown in FIG. 4, the conductive sleeve 17 has a flange 17a at one end that engages with the opening step of the holder, and a cylindrical portion 17b extending from the flange is cut in half by a notch 17c. It has a symmetrical shape, as shown in Figure 3.
The holder is brought into pressure contact with the adjacent electrode 15 via a conductive auxiliary sleeve 18 and a compression spring 19, and at the same time it is electrically connected to the electrode 15 to maintain the same potential as the electrode during discharge.

ここで、電極15との間に圧縮スプリングを入れたのは
、共振器の光軸調整のためにミラーを微動させる必要が
あり、この際のホルダと電極との相対的ずれをこよる変
位量をスプリングの伸縮によって吸収し、電極への電気
的接続状態を維持するためである。
Here, the reason why the compression spring is inserted between the electrode 15 is that it is necessary to slightly move the mirror in order to adjust the optical axis of the resonator, and the amount of displacement caused by the relative misalignment between the holder and the electrode at this time is This is to absorb it by the expansion and contraction of the spring and maintain the electrical connection to the electrode.

なお、補助スリーブ18はトラップ空間を長くする効果
をもつが4、これを省略してスプリング19の一端を直
接スリーブ17に接触させてよい。
Although the auxiliary sleeve 18 has the effect of lengthening the trap space 4, it may be omitted and one end of the spring 19 may be brought into direct contact with the sleeve 17.

また、スリーブ17には、電極以外の電源から電圧を位
加でき、そのときには、スプリング17も省略できる。
Further, voltage can be applied to the sleeve 17 from a power source other than the electrodes, and in that case, the spring 17 can also be omitted.

尤も、このスプリングがあれば別電源が不要で共振器の
構造を不必要に複雑にすることがない。
Of course, with this spring, there is no need for a separate power supply, and the structure of the resonator does not become unnecessarily complicated.

全反射ミラー8′側のスリーブ17′ も同様にして電
極15に電気的に接続しであるが、このスリーブは、第
5図に示すように、鍔17a′より延びる円筒部17b
′ の途中に切欠部17c′を設け、円筒部17b′の
端面を、金や銀等から成る全反射ミラ−8′表面の導電
性コート層をこ圧接させである。このようにすればミラ
ー表面のコート層が電極と同電位になるため、電極とミ
ラー間でのプラズマや電子の加速を防止できる。しかし
、この点は本願の必須要件ではなく、スリーブ17′が
ミラー8′から離れていても発明の目的は達成される。
The sleeve 17' on the side of the total reflection mirror 8' is similarly electrically connected to the electrode 15, but this sleeve has a cylindrical portion 17b extending from the collar 17a' as shown in FIG.
A notch 17c' is provided in the middle of the cylindrical part 17b', and a conductive coating layer on the surface of the total reflection mirror 8' made of gold, silver, etc. is pressed against the end face of the cylindrical part 17b'. In this way, the coating layer on the surface of the mirror has the same potential as the electrode, so that acceleration of plasma and electrons between the electrode and the mirror can be prevented. However, this point is not an essential requirement of the present application, and the purpose of the invention can be achieved even if the sleeve 17' is separated from the mirror 8'.

次に、スリーブ17.17′を非軸対称形状とすること
によりトラップ効率の高まる理由は以下の通りである。
Next, the reason why the trapping efficiency is improved by making the sleeves 17, 17' non-axisymmetric is as follows.

即ち、スリーブが軸対称形状であると、その内側の電界
も軸対称になり、直進するプラズマ等の向ぎを変える力
が弱い。従って間をすり抜けてミラーに衝突するプラズ
マや電子は多い。
That is, if the sleeve has an axially symmetrical shape, the electric field inside the sleeve will also be axially symmetrical, and the force that changes the direction of straight-advancing plasma or the like will be weak. Therefore, there are many plasmas and electrons that slip through the gap and collide with the mirror.

これに対し、スリーブが非軸対称形状であれば内側の電
界も非軸対称になる。即ち、軸に垂直な成分が生U、こ
のため、電極をすり抜けた直進性のプラズマ或いは電子
は、全体に流れ方向を変え、スリーブの半円筒部に流れ
込むことになる。よって、ミラーへのプラズマ或いは電
子の衝突が減少し、ミラーの加熱による損傷が防止され
ることになる。
On the other hand, if the sleeve has a non-axisymmetric shape, the electric field inside will also be non-axisymmetric. That is, a component perpendicular to the axis is generated, so that the linear plasma or electrons that have passed through the electrode change their flow direction as a whole and flow into the semi-cylindrical portion of the sleeve. Therefore, collisions of plasma or electrons against the mirror are reduced, and damage to the mirror due to heating is prevented.

(ホ) 効 果 以上説明したように、この発明によれば、ミラーと近接
電極との間に導電性のスリーブを挿入し、このスリーブ
により電極をすり抜けたプラズマ或いは電子をトラップ
するようにしたので、共振器を長くすることなく、また
、レーザ出力を低下させることなくトラップ効果を高め
ることかでき、従来の諸問題が一挙に解決される。
(e) Effects As explained above, according to the present invention, a conductive sleeve is inserted between the mirror and the nearby electrode, and the sleeve traps plasma or electrons that have passed through the electrode. , it is possible to enhance the trap effect without increasing the length of the resonator or reducing the laser output, and various conventional problems are solved at once.

なお、本発明は、ミラーの損傷防止に関して実験的に次
表の効果を得ている。
It should be noted that the present invention has experimentally obtained the effects shown in the table below regarding the prevention of mirror damage.

上表は、電極とミラー間の距離を全て25mmとして比
較実験したもので、表中の数値は、ミ5−表面ノコーテ
ィング層に小さな欠損点が発生する迄の時間を表わして
いる。
The table above shows a comparative experiment in which the distances between the electrodes and mirrors were all 25 mm, and the numerical values in the table represent the time until small defects appear in the coating layer on the surface of the surface.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、一般的ガスレーザ発′Fi器の外観図、第2
図は従来の共振器のミラー結合部を示す断面図、第3図
は本発明の反射鏡損傷防止機構の一実施態様を示すミラ
ー結合部の断面図、第4図及び第5図は本発明に採用す
る導電性スリーブの一例を示す斜視図である。 3・・・放電管、8・・・出力ミラー、8′・・・全反
射ミラー、11・・・ミラーホルダ、12・・・ミラー
取付プレート、13・・・共振器端部プレート、14・
・・電極カバー、15・・・電極、17.17′・・・
導電性スリーブ、17c、17c’・・・切欠部、19
・・・圧縮スプリング 特許出願人 住y電気工業株式会社 同 代理人 鎌 1) 文 二 第4図 第5図17’ 170′ 7a 7b’
Figure 1 is an external view of a general gas laser generator, and Figure 2 is an external view of a typical gas laser generator.
The figure is a sectional view showing a mirror coupling part of a conventional resonator, FIG. 3 is a sectional view of a mirror coupling part showing an embodiment of the reflector damage prevention mechanism of the present invention, and FIGS. 4 and 5 are sectional views of the mirror coupling part of the present invention. FIG. 3... Discharge tube, 8... Output mirror, 8'... Total reflection mirror, 11... Mirror holder, 12... Mirror mounting plate, 13... Resonator end plate, 14...
...Electrode cover, 15...Electrode, 17.17'...
Conductive sleeve, 17c, 17c'... cutout, 19
... Compression spring patent applicant: Sumi Electric Industry Co., Ltd. Agent: Kama 1) Text 2 Figure 4 Figure 5 17'170' 7a 7b'

Claims (4)

【特許請求の範囲】[Claims] (1)放電管を間にして対向配置された反射鏡と、各反
射鏡に近接する電極との間に、電極又はそれと別電源に
電気的に接続される導電性のスリーブを挿入したことを
特徴とするレーザ共振用反射鏡の損傷防止機構。
(1) A conductive sleeve electrically connected to the electrodes or to a separate power supply is inserted between the reflecting mirrors that are placed facing each other with the discharge tube in between and the electrodes close to each reflecting mirror. Features a damage prevention mechanism for laser resonant reflectors.
(2)上記導電性スリーブを電極と同電位にしたことを
特徴とする特許請求の範囲第(1)項記載のレーザ共振
用反射鏡の損傷防止機構。
(2) A damage prevention mechanism for a laser resonant reflector as set forth in claim (1), wherein the conductive sleeve is at the same potential as the electrode.
(3) 上記導電性スリーブを非軸対称形状にしたこと
を特徴とする特許請求の範囲第(1)項又は第(2)項
記載のレーザ共振用反射鏡の損傷防止機構。
(3) A damage prevention mechanism for a laser resonant reflecting mirror according to claim (1) or (2), characterized in that the conductive sleeve has a non-axisymmetric shape.
(4)上記導電性スリーブを、放電管に対して可動に連
結された反射鏡用ホルダに挿入し、かつこのスリーブと
電極との間にスプリングを圧縮介装したことを特徴とす
る特許請求の範囲第(1)項乃至第(3)項のいずれか
に記載のレーザ共振用反射鏡の損傷防止機構。
(4) The conductive sleeve is inserted into a reflector holder movably connected to the discharge tube, and a spring is compressed and interposed between the sleeve and the electrode. A damage prevention mechanism for a laser resonant reflecting mirror according to any one of the ranges (1) to (3).
JP4632284A 1984-03-09 1984-03-09 Damage preventing mechanism for reflecting mirror for laser resonance Pending JPS60189703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4632284A JPS60189703A (en) 1984-03-09 1984-03-09 Damage preventing mechanism for reflecting mirror for laser resonance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4632284A JPS60189703A (en) 1984-03-09 1984-03-09 Damage preventing mechanism for reflecting mirror for laser resonance

Publications (1)

Publication Number Publication Date
JPS60189703A true JPS60189703A (en) 1985-09-27

Family

ID=12743924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4632284A Pending JPS60189703A (en) 1984-03-09 1984-03-09 Damage preventing mechanism for reflecting mirror for laser resonance

Country Status (1)

Country Link
JP (1) JPS60189703A (en)

Similar Documents

Publication Publication Date Title
KR20110112414A (en) Particle damage protection for high power co2 slab laser mirrors
US3611183A (en) Double-ended ion laser tube
JPS60189703A (en) Damage preventing mechanism for reflecting mirror for laser resonance
US3452295A (en) Gas laser discharge tube having insulator shields
US4912719A (en) Ion laser tube
EP0319898B1 (en) Metal vapor laser apparatus
JPH0337318B2 (en)
JPH02281773A (en) Metal vapor laser oscillating tube
JPH02281772A (en) Metal vapor laser oscillating tube
JPH01228183A (en) Metal vapor laser oscillator
JP2880731B2 (en) Laser oscillation device
JPH02281671A (en) Gas laser oscillation device
JPH01228184A (en) Metal vapor laser oscillator
JPH02194577A (en) Metal steam laser oscillation tube
JPH01214184A (en) Pulse laser oscillation device
JPH104230A (en) Electrode for gas laser
JP2714286B2 (en) Metal vapor laser equipment
JPS5932185A (en) Silent discharge type gas laser device
JPH02224285A (en) Pulse gas laser oscillation apparatus
JPH02150083A (en) Discharge-excition laser
JPH03237781A (en) Metal vapor laser equipment
JPS63252489A (en) Metal vapor laser device
JPH01238079A (en) Metallic vapor laser equipment
JPH05299727A (en) Discharge generator
JPS6226877A (en) Metal vapor laser oscillation tube