JPH01228183A - Metal vapor laser oscillator - Google Patents

Metal vapor laser oscillator

Info

Publication number
JPH01228183A
JPH01228183A JP5360688A JP5360688A JPH01228183A JP H01228183 A JPH01228183 A JP H01228183A JP 5360688 A JP5360688 A JP 5360688A JP 5360688 A JP5360688 A JP 5360688A JP H01228183 A JPH01228183 A JP H01228183A
Authority
JP
Japan
Prior art keywords
core tube
center
metal vapor
diameter
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5360688A
Other languages
Japanese (ja)
Inventor
Isao Imamura
功 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5360688A priority Critical patent/JPH01228183A/en
Publication of JPH01228183A publication Critical patent/JPH01228183A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/031Metal vapour lasers, e.g. metal vapour generation

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Discharge Heating (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To obtain an oscillator stable in performance for a long period by a method wherein a core tube is formed in a cylinder whose diameter decreases gradually from both its ends toward its center in the axial direction. CONSTITUTION:Electrodes 2 and 3 are provided facing each other in an axial direction of a core tube 4, a pulse high voltage power source 7 is connected, and the core tube 4 is provided surrounding a discharge region A formed between the electrodes 2 and 3, and the core tube 4 is formed into such a shape that its diameter is smallest at the center as compared with both the ends. Therefore, when an oscillator starts operating, the core tube 4 is kept at a high temperature through the discharge plasma generated inside the core tube 4 and deformed due to the thermal expansion, temperature is distributed in such state that temperature of the center is higher than those of both the ends, so that the center part expands more than the other part in diameter, but the core tube 4 is previously formed so that its center is smaller than the ends in diameter at a normal temperature. Therefore the core tube is made a right circle cylinder at high temperature. By these processes, a metal vapor oscillator 1 capable of operating stably and continuously for a long period can be obtained.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、改良された炉心管を具備する金属蒸気レーザ
発振装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a metal vapor laser oscillation device having an improved reactor core tube.

(従来の技術) レーザ発振装置は、素材切削加工、光通信、医療、化学
産業など広い分野で使用されている。特に化学産業分野
では、同位元素を分離し濃縮するためにたとえば金属の
同位体を選択的に励起するレーザの発光源として採用さ
れている。
(Prior Art) Laser oscillation devices are used in a wide range of fields such as material cutting, optical communications, medical care, and the chemical industry. Particularly in the chemical industry, it is used as a light source for lasers that selectively excite, for example, metal isotopes in order to separate and concentrate isotopes.

第2図は、金属の同位体を分離濃縮する装置に組み込ま
れている従来の金属蒸気レーザ発振装置1の構造を示す
縦断面図であり、レーザの動作物質として銅の蒸気を使
用したものである。この銅蒸気レーザ発振装置1は、中
心軸方向に対向して配設した電極2,3間に形成される
放電領域Aを囲むように炉心管4が配設され、炉心管4
の外側には断熱材として多層金属フォイル5が巻回され
て輻射断熱構造を有している。なお炉心管4の外周に例
えばアルミナ、セラミックファイバ等の断熱材によって
断熱層を形成し、さらに真空断熱層を形成して、二重断
熱構造とすることもある。
FIG. 2 is a vertical cross-sectional view showing the structure of a conventional metal vapor laser oscillation device 1 incorporated in a device for separating and concentrating metal isotopes, which uses copper vapor as the operating substance of the laser. be. In this copper vapor laser oscillation device 1, a furnace tube 4 is arranged so as to surround a discharge region A formed between electrodes 2 and 3 arranged opposite to each other in the central axis direction.
A multilayer metal foil 5 is wound around the outside as a heat insulating material to provide a radiation insulation structure. Note that a heat insulating layer may be formed on the outer periphery of the furnace tube 4 using a heat insulating material such as alumina or ceramic fiber, and a vacuum heat insulating layer may be further formed to provide a double heat insulating structure.

炉心管4内部の放電領域Aにはガス供給系6からヘリウ
ム(He) 、ネオン(Ne)等の放電用緩衝ガスが供
給される。
A discharge buffer gas such as helium (He) or neon (Ne) is supplied from a gas supply system 6 to the discharge region A inside the reactor core tube 4 .

軸方向に対向して配置された電極2,3の間に、パルス
高電圧電源7からのパルス高電圧が印加されると、電極
2,3の間で放電が起り、放電領域Aに放電プラズマが
発生する。ここでパルス高電圧は、一般に電圧が数KV
〜10数KV、繰返し周波数は数KHz〜10数KHz
に設定される。
When a pulsed high voltage from the pulsed high voltage power supply 7 is applied between the electrodes 2 and 3 which are arranged facing each other in the axial direction, a discharge occurs between the electrodes 2 and 3, and discharge plasma is generated in the discharge area A. occurs. Here, the pulse high voltage is generally several KV.
~10-odd KV, repetition frequency is several KHz to 10-odd KHz
is set to

炉心管4内には、金属蒸気源として複数の金属銅粒子8
が予め配置され、この金属銅粒子8が放電プラズマと接
触して、1500℃程度の高温状態に加熱されて蒸発す
ることにより、レーザの動作物質となる金属蒸気が発生
する。金属蒸気は、放電プラズマ中の自由電子により一
時的に励起され、励起準位から基底準位に戻る際に、エ
ネルギー準位の変化に対応して金属特有の波長を有する
レーザ光が発振される。レーザ光は、外筒9の両端部に
配設されたブリュースタ窓10を通り、ブリュースタ窓
10の外方に配置された出力ミラー11と全反射ミラー
12とで構成される共振器を往復する間に増幅され、出
力ミラー11側より単一波長を有するコヒーレントなレ
ーザ光となって出力される。
Inside the reactor core tube 4, a plurality of metal copper particles 8 are provided as a metal vapor source.
are placed in advance, and the metal copper particles 8 come into contact with the discharge plasma and are heated to a high temperature of about 1500° C. and evaporated, thereby generating metal vapor that becomes the operating substance of the laser. Metal vapor is temporarily excited by free electrons in the discharge plasma, and when it returns from the excited level to the ground level, laser light with a wavelength unique to the metal is oscillated in response to the change in energy level. . The laser beam passes through Brewster windows 10 provided at both ends of the outer cylinder 9, and reciprocates through a resonator consisting of an output mirror 11 and a total reflection mirror 12 arranged outside the Brewster window 10. While doing so, it is amplified and output as a coherent laser beam having a single wavelength from the output mirror 11 side.

金属蒸気レーザ発振装置1の運転時においては、炉心管
4を高温度に維持し一定のレーザ出力を確保するために
、炉心管4の外周には、前述したとおり輻射熱を遮断す
る多層金属フォイル5を巻回する一方、真空断熱室13
を形成し、もしこの部分が気体で囲まれていた場合に発
生する気体の対流、および伝導による熱損失の防止を図
っている。
During operation of the metal vapor laser oscillator 1, in order to maintain the core tube 4 at a high temperature and ensure a constant laser output, the outer periphery of the core tube 4 is provided with a multilayer metal foil 5 that blocks radiant heat as described above. While winding the vacuum insulation chamber 13
This is to prevent heat loss due to gas convection and conduction that would occur if this part were surrounded by gas.

真空断熱室13、放電領域Aを形成する空間部には、そ
れぞれロータリポンプ14a、 14bが接続され、一
般に真空断熱室13内の真空度は放電領域Aを形成する
空間部の真空度より高く設定される。
Rotary pumps 14a and 14b are connected to the vacuum insulation chamber 13 and the space forming the discharge area A, respectively, and the degree of vacuum in the vacuum insulation chamber 13 is generally set higher than that of the space forming the discharge area A. be done.

(発明が解決しようとする課題) しかしながら、従来の金属蒸気レーザ発振装置1におい
ては、炉心管4は放電領域Aに発生した放電プラズマに
より1500℃程度の高温状態に保たれることから熱膨
張により、炉心管4は中央部が含らんだたる型形状に変
形する。この炉心管4の変形により炉心管4の内部の温
度分布がかわり、レーザ光の出力が不安定になることが
あった。
(Problem to be Solved by the Invention) However, in the conventional metal vapor laser oscillator 1, the furnace tube 4 is kept at a high temperature of about 1500°C by the discharge plasma generated in the discharge area A, and therefore due to thermal expansion. , the furnace core tube 4 is deformed into a barrel shape including the central portion. This deformation of the furnace core tube 4 changes the temperature distribution inside the furnace core tube 4, and the output of the laser beam may become unstable.

本発明は、上記した問題点を解決するためになされたも
ので、炉心管の変形による影響を低減し、長期間に亘っ
て安定した性能を発揮する金属蒸気レーザ発振装置を提
供することを目的とする。
The present invention was made in order to solve the above-mentioned problems, and an object of the present invention is to provide a metal vapor laser oscillation device that reduces the effects of deformation of the furnace core tube and exhibits stable performance over a long period of time. shall be.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明においては、金属蒸気源が付設された内腔が、放
電加熱されてイオンレーザの発光源となる炉心管を有す
る金属蒸気レーザ発振装置の炉心管を、両端部より漸次
減径されて軸線方向中心部に至る円筒状に形成したこと
を特徴とする。
(Means for Solving the Problems) In the present invention, a core tube of a metal vapor laser oscillator having a core tube in which the inner cavity to which a metal vapor source is attached is heated by discharge and becomes a light emitting source of an ion laser, It is characterized by being formed into a cylindrical shape whose diameter is gradually reduced from both ends to the center in the axial direction.

(作 用) 装置が起動すると、炉心管は内腔に発生した放電プラズ
マにより高温に保たれ、熱膨張して変形を起こす、ここ
で炉心管の軸線方向の温度分布は両端に比べて中心部の
方が高くなり、従って中心部の膨張による拡径量も大き
くなるが、中心部は常温時に予め両端部より少径に形成
されているので、高温時における炉心管の形状はほぼ真
円筒となり、安定したレーザ出力が得られる。
(Function) When the device is started, the core tube is kept at a high temperature by the discharge plasma generated in the inner cavity, causing thermal expansion and deformation. is higher, and therefore the diameter expansion due to expansion of the center part is also larger, but since the center part is formed in advance to have a smaller diameter than both ends at room temperature, the shape of the core tube at high temperatures becomes almost a perfect cylinder. , stable laser output can be obtained.

(実施例) 次に本発明の一実施例について第1図を参照して説明す
る。第1図は本発明に係る金属蒸気レーザ発振装置の一
実施例を示す断面図である。なお、第2図に示す従来の
装置と同一部品、同一要素には同一符号を付している。
(Example) Next, an example of the present invention will be described with reference to FIG. FIG. 1 is a sectional view showing an embodiment of a metal vapor laser oscillation device according to the present invention. Note that the same parts and elements as those of the conventional device shown in FIG. 2 are given the same reference numerals.

第1図において金属蒸気レーザ発振装置1は、本体軸方
向に対向して、電極2,3を配設し、これらにパルス高
電圧電源7が接続されている。しかして電極2,3間に
形成される放電領域Aを囲むように、例えばセラミック
などの断熱材料で形成した炉心管4が設けられている。
In FIG. 1, a metal vapor laser oscillation device 1 has electrodes 2 and 3 arranged opposite to each other in the axial direction of the main body, and a pulsed high voltage power source 7 is connected to these electrodes. A furnace core tube 4 made of a heat insulating material such as ceramic is provided so as to surround the discharge area A formed between the electrodes 2 and 3.

炉心管4の内底部には、金属蒸気源となる複数の金属銅
粒子8が配置されている。
A plurality of metal copper particles 8 serving as a metal vapor source are arranged at the inner bottom of the furnace core tube 4 .

ここで炉心管4は大略円筒状に形成されているが、正確
には両端部の直径に比べ、中心部の直径が最も小さくな
るように、あたかも鼓型の形状をなすように形成されて
いる。
Here, the furnace core tube 4 is formed into a roughly cylindrical shape, but more precisely, it is formed into a drum-shaped shape so that the diameter at the center is the smallest compared to the diameter at both ends. .

炉心管4の最外部には外筒9が取り付けられ、外筒9と
炉心管4との間に真空断熱室13が形成される。真空断
熱室13はロータリポンプ14aに接続され、その吸引
作用により所定の真空度に保持されるようになっている
。また真空断熱室13内の炉心管4の外周部には、例え
ば多層金属フォイル5などの熱遮蔽体が収容されている
An outer cylinder 9 is attached to the outermost part of the furnace core tube 4, and a vacuum insulation chamber 13 is formed between the outer cylinder 9 and the furnace core tube 4. The vacuum insulation chamber 13 is connected to a rotary pump 14a, and is maintained at a predetermined degree of vacuum by its suction action. Further, a heat shield such as a multilayer metal foil 5 is housed in the outer circumference of the core tube 4 in the vacuum insulation chamber 13 .

炉心管4の両端部には、外リング17が装着され、外リ
ング17と外筒9の内周縁とがベローズ18によって接
続されている。このベローズ18によって、炉心管4の
熱による軸方向の伸縮が吸収される。
An outer ring 17 is attached to both ends of the furnace core tube 4, and the outer ring 17 and the inner peripheral edge of the outer cylinder 9 are connected by a bellows 18. This bellows 18 absorbs the expansion and contraction of the furnace core tube 4 in the axial direction due to heat.

また炉心管4の外リング17はシール材19を介して炉
心管4に装着され、真空断熱室13は気密にシールされ
る。
Further, the outer ring 17 of the furnace core tube 4 is attached to the furnace core tube 4 via a sealing material 19, and the vacuum insulation chamber 13 is airtightly sealed.

一方放電領域Aに連通する外筒9の内部空間には、 ガ
ス供給系6およびロータリポンプ14bが接続されてい
る。ガス供給系6は、放電領域A内にヘリウム、ネオン
等の放電用緩衝ガスを供給する。
On the other hand, the internal space of the outer cylinder 9 communicating with the discharge area A is connected to the gas supply system 6 and the rotary pump 14b. The gas supply system 6 supplies a discharge buffer gas such as helium or neon into the discharge area A.

っている。ing.

外筒9の両端には電極2,3と対向してそれぞれブリュ
ースタ窓10.10が設けられ、このブリュースタ窓1
0.10の外側にそれぞれ出力ミラー11と全反射ミラ
ー12とが配置され、両者で光共振器を構成している。
Brewster windows 10 and 10 are provided at both ends of the outer cylinder 9, facing the electrodes 2 and 3, respectively.
An output mirror 11 and a total reflection mirror 12 are arranged on the outer side of 0.10, respectively, and both constitute an optical resonator.

なお、冷水管20を巻回した外筒9は真空断熱室13の
隔壁を構成するとともに、放電電流の帰還路を兼ねる。
The outer cylinder 9 around which the cold water pipe 20 is wound forms a partition wall of the vacuum insulation chamber 13 and also serves as a return path for the discharge current.

また、外筒9に介装された絶縁管21は電極2,3間の
放電状態を良好に維持するための絶縁機能を有する。
Further, the insulating tube 21 interposed in the outer cylinder 9 has an insulating function to maintain a good discharge state between the electrodes 2 and 3.

次にこれの作用を説明する。Next, the effect of this will be explained.

ますロータリポンプ14a、 14bを作動させて、放
電領域Aおよび真空断熱室13内を排気し所定の真空度
に設定する0次にガス供給系6からヘリウム等の緩衝用
ガスを供給する。この状態でパルス高電圧電源7からパ
ルス状の高電圧を印加すると、放電領域Aに放電プラズ
マを生じ、その熱によって炉心管4が加熱され、約15
00℃に加熱された段階で金属銅粒子8が蒸発し、レー
ザの動作物質となる金属蒸気が生成される。
First, the rotary pumps 14a and 14b are operated to evacuate the discharge region A and the vacuum insulation chamber 13, and a predetermined degree of vacuum is set.A buffer gas such as helium is supplied from the zero-order gas supply system 6. When a pulsed high voltage is applied from the pulsed high voltage power supply 7 in this state, discharge plasma is generated in the discharge area A, and the reactor core tube 4 is heated by the heat, and the
At the stage of heating to 00° C., the metal copper particles 8 evaporate, and metal vapor that becomes the operating substance of the laser is generated.

金属蒸気は放電プラズマの自由電子により励起され、所
定波長のレーザ光を発振する。レーザ光は、ブリュース
タ窓10を通過し、出力ミラー11と全反射ミラー12
とを往復する間に増幅されて出力ミラー11を透過し、
コヒーレントなレーザ光として出力される。
The metal vapor is excited by the free electrons of the discharge plasma and oscillates a laser beam of a predetermined wavelength. The laser beam passes through the Brewster window 10, and then passes through the output mirror 11 and the total reflection mirror 12.
While reciprocating, it is amplified and transmitted through the output mirror 11,
It is output as coherent laser light.

二重で加熱後の炉心管4の状態を詳しくみると、その温
度上昇は炉心管4の軸線方向中心部が最も高く、両端部
に近付くほど低くなっている。これにともなって熱膨張
による管径の→拡大も中心部が最も大きくなるが、炉心
管4は常温で中心部の直径が両端部より小さくなるよう
に作製されているので、使用温度(約1500℃)にお
ける中心部直径が両端部とほぼ等しくなるように、常温
における中心部の直径を定めておけば、装置作動時には
炉心管4はほぼ真円筒状に保たれ、炉心管4の不整形状
に基づくレーザ光出力の不安定状態の発生を防止するこ
とができる。
A detailed look at the state of the furnace core tube 4 after double heating shows that the temperature rise is highest at the axial center of the furnace tube 4 and decreases as it approaches both ends. Along with this, the expansion of the tube diameter due to thermal expansion is greatest at the center, but since the core tube 4 is manufactured so that the diameter at the center is smaller than at both ends at room temperature, the operating temperature (approximately 1500 If the diameter of the center at room temperature is determined so that the diameter of the center at 30°F (°C) is approximately the same as that of both ends, the core tube 4 will be maintained in a nearly perfect cylindrical shape when the device is in operation, and the irregular shape of the core tube 4 will be avoided. Accordingly, it is possible to prevent the occurrence of an unstable state of the laser light output.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、使用状態における炉心管内部の温度分
布が変わりレーザ光出力が不安定になることが回避され
、長期間安定した連続運転が可能な金属蒸気レーザ発振
装置を提供することができるという効果がある。
According to the present invention, it is possible to provide a metal vapor laser oscillation device that can avoid the temperature distribution inside the reactor core tube changing during use and that the laser light output becomes unstable, and can operate stably and continuously for a long period of time. There is an effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す断面図、第2図は従来
の金属蒸気レーザ発振装置を示す断面図である。 4・・・炉心管     8・・・金属銅粒子代理人 
弁理士  則 近 憲 佑 同     第子丸   健
FIG. 1 is a sectional view showing an embodiment of the present invention, and FIG. 2 is a sectional view showing a conventional metal vapor laser oscillation device. 4...Reactor core tube 8...Metallic copper particle agent
Patent Attorney Noriyuki Chika Yudo Ken Daishimaru

Claims (1)

【特許請求の範囲】[Claims] 1、金属蒸気源が付設された内腔が放電加熱されてイオ
ンレーザの発光源となる炉心管を有する金属蒸気レーザ
発振装置において、前記炉心管は両端部より漸次減径さ
れて軸線方向中心部に至る円筒状に形成されてなること
を特徴とする金属蒸気レーザ発振装置。
1. In a metal vapor laser oscillator having a core tube, the inner cavity of which is attached with a metal vapor source is discharge-heated and becomes a light emitting source of an ion laser, the diameter of the core tube is gradually reduced from both ends to form a central portion in the axial direction. A metal vapor laser oscillation device characterized by being formed into a cylindrical shape.
JP5360688A 1988-03-09 1988-03-09 Metal vapor laser oscillator Pending JPH01228183A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5360688A JPH01228183A (en) 1988-03-09 1988-03-09 Metal vapor laser oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5360688A JPH01228183A (en) 1988-03-09 1988-03-09 Metal vapor laser oscillator

Publications (1)

Publication Number Publication Date
JPH01228183A true JPH01228183A (en) 1989-09-12

Family

ID=12947549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5360688A Pending JPH01228183A (en) 1988-03-09 1988-03-09 Metal vapor laser oscillator

Country Status (1)

Country Link
JP (1) JPH01228183A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1734360A1 (en) * 2004-03-25 2006-12-20 Japan Advanced Institute of Science and Technology Plasma generating equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1734360A1 (en) * 2004-03-25 2006-12-20 Japan Advanced Institute of Science and Technology Plasma generating equipment
EP1734360A4 (en) * 2004-03-25 2011-05-11 Japan Adv Inst Science & Tech Plasma generating equipment

Similar Documents

Publication Publication Date Title
JPH01228183A (en) Metal vapor laser oscillator
US3452295A (en) Gas laser discharge tube having insulator shields
US4551843A (en) Gas wave-guide laser generator
JP2598009B2 (en) Metal vapor laser oscillation tube
JPH01228184A (en) Metal vapor laser oscillator
JPS63199471A (en) Metallic vapor laser oscillating tube
JPS63234580A (en) Metallic-vapor laser oscillator
JPH01238079A (en) Metallic vapor laser equipment
JPS62101093A (en) Metal vapor laser apparatus
JP2538590B2 (en) Metal vapor laser device
JPS6226877A (en) Metal vapor laser oscillation tube
JP2829118B2 (en) Metal vapor laser device
JP2602919B2 (en) Metal vapor laser device
JPH02148777A (en) Metal vapor laser oscillation tube
JPH02281773A (en) Metal vapor laser oscillating tube
JP2880731B2 (en) Laser oscillation device
JPS63252490A (en) Metal vapor laser device
JPS62113488A (en) Metallic-vapor laser device
JPH05110163A (en) Laser tube
JPS5932185A (en) Silent discharge type gas laser device
JPS60189703A (en) Damage preventing mechanism for reflecting mirror for laser resonance
JPS6226878A (en) Metal vapor laser oscillation tube
JPH02281671A (en) Gas laser oscillation device
JPS62101092A (en) Metal vapor laser apparatus
JPH0621535A (en) Metal vapor laser oscillation device