JPH02148777A - Metal vapor laser oscillation tube - Google Patents

Metal vapor laser oscillation tube

Info

Publication number
JPH02148777A
JPH02148777A JP29974788A JP29974788A JPH02148777A JP H02148777 A JPH02148777 A JP H02148777A JP 29974788 A JP29974788 A JP 29974788A JP 29974788 A JP29974788 A JP 29974788A JP H02148777 A JPH02148777 A JP H02148777A
Authority
JP
Japan
Prior art keywords
tube
laser oscillation
metal vapor
heater
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29974788A
Other languages
Japanese (ja)
Inventor
Shuntaro Hata
秦 俊太郎
Etsuo Noda
悦夫 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP29974788A priority Critical patent/JPH02148777A/en
Publication of JPH02148777A publication Critical patent/JPH02148777A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/031Metal vapour lasers, e.g. metal vapour generation

Abstract

PURPOSE:To obtain a laser output having a high efficiency by disposing an outer tube made of a heat resistant material concentrically with the outside of an inner tube and providing means for uniformly heating the center and the vicinities of both ends of the inner tube at temperatures at the time of oscillation of a laser on the outer surface of the outer tube. CONSTITUTION:When a laser oscillation is conducted, an outer tube 8 is evacuated by a pump 19, and discharging buffer gas is supplied from a gas supply source 20. A heater 26 is electrified, a high voltage pulse is applied from a pulse high voltage power source 14 between an anode 2 and a cathode 3 disposed with metal particles 21 through an outer tube 8, side plates 13a, 13b to generate a discharging plasma to vaporize the particles 21, thereby generating metal vapor to become a laser medium. The metal vapor is excited by free electrons, a laser oscillation is generated by an output mirror 17 and a totally reflecting mirror 18, and a laser light is output from the mirror 17. In this case, a ceramic tube 25 is uniformly heated by the heater 26 which is densely would in the vicinities of both ends and roughly wound in the vicinity of the center.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は金属蒸気レーザ発振管に係り、特に横励起金属
蒸気レーザ発斑管に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Field of Application) The present invention relates to a metal vapor laser oscillator tube, and more particularly to a transversely pumped metal vapor laser oscillator tube.

(従来の技術) この種のレーザ発Jti管は、例えば第5図に示すよう
に構成されている。即ち、耐熱性に優れたセラミックか
ら成る内管1内には、軸方向に沿って板状のモリブデン
等から成る陽極2と陰極3をそれぞれ一体に設けた金属
製の位置決め部材4a。
(Prior Art) This type of laser generating Jti tube is configured as shown in FIG. 5, for example. That is, in the inner tube 1 made of ceramic with excellent heat resistance, a metal positioning member 4a is provided with an anode 2 and a cathode 3 made of plate-shaped molybdenum or the like, respectively, integrally arranged along the axial direction.

4bが配設されている。位置決め部材4aは内管1にね
じ5で固定され、位置決め部材4bは内管1の内壁面1
aに圧接されている。また、内管1の外側には、内管1
を高温に保持するための断熱材6を充填した保護管7が
配設されており、更にその外側には導電体から成る外管
8が配設されている。
4b is arranged. The positioning member 4a is fixed to the inner tube 1 with screws 5, and the positioning member 4b is fixed to the inner wall surface 1 of the inner tube 1.
It is pressed against a. Also, on the outside of the inner tube 1, the inner tube 1
A protective tube 7 filled with a heat insulating material 6 to maintain the temperature at a high temperature is disposed, and an outer tube 8 made of a conductor is disposed outside the protective tube 7.

内管1は断熱板9a、9bを介して外管8に支持されて
おり、内管1を挿入した保護管7はOリング10a、1
0bを介して外管8に支持されている。保護管7と外管
8の間には真空断熱室11がロータリーポンプ12によ
る排気によって形成されている。また、外管8と陽極2
.陽極3は、リード板13a、13bを介して接続され
ており、パルス高電圧電源14からlQi電圧パルス(
電圧が数KV〜10数KVで、繰返し周波数が数KH2
〜10数KHz )が外管8を介して陽極2と陰極3間
に印加される。外管8には、陽極2側と陰極3側とを電
気的に分離する絶縁管15が配設されている。
The inner tube 1 is supported by the outer tube 8 via heat insulating plates 9a and 9b, and the protective tube 7 into which the inner tube 1 is inserted is fitted with O-rings 10a and 1.
It is supported by the outer tube 8 via 0b. A vacuum heat insulating chamber 11 is formed between the protective tube 7 and the outer tube 8 by evacuation by a rotary pump 12. In addition, the outer tube 8 and the anode 2
.. The anode 3 is connected via lead plates 13a and 13b, and receives lQi voltage pulse (
The voltage is several KV to 10-odd KV, and the repetition frequency is several KH2.
~10-odd KHz) is applied between the anode 2 and the cathode 3 via the outer tube 8. The outer tube 8 is provided with an insulating tube 15 that electrically isolates the anode 2 side and the cathode 3 side.

また、外管8の両端面には、ブリュースタ窓15a、1
6bが取付けられており、その外側にはそれぞれ出力ミ
ラー17と全反射ミラー18が配置されている。ブリュ
ースタ窓16a、16bを両端に取付けて密封された外
管8内は、ロータリーポンプ19で排気されて真空状態
に保持され、ガス供給源20からト1eやNa等の放電
用のバッフ7ガスが供給される。
Further, Brewster windows 15a and 1 are provided on both end surfaces of the outer tube 8.
6b is attached, and an output mirror 17 and a total reflection mirror 18 are arranged on the outside thereof, respectively. The inside of the outer tube 8, which is sealed with Brewster windows 16a and 16b attached to both ends, is evacuated by a rotary pump 19 and maintained in a vacuum state, and a discharge buff 7 gas such as To 1e and Na is supplied from a gas supply source 20. is supplied.

従来の金属蒸気レーザ光(辰管は前述のように構成され
ており、レーザ発振を行うには先ず、ロータリーポンプ
19の排気により外管8内を高真空に保持し、ガス供給
源20からHeやNe等の放電用バッファガスを供給す
る。そして、予め所望の金属粒子21が配置されている
陽極2と陰極3間に、高電圧パルスをパルス高電圧電源
14から外管8、リード板13a、13bを介して印加
することにより、陽極2と陰極3間に放電プラズマを発
生させて金属粒子21を蒸気化し、レーザ媒質となる金
属蒸気を生成する。この金属蒸気は、陽極2と陰極3間
に一様に1014〜1QI5n/ cm:lの密度で分
布され、IIl電プラズマ中の自由電子により励起され
ることによって、その金属特有の波長の光を発光し、ブ
リュースタfi16a。
Conventional metal vapor laser light (The cinnabar tube is configured as described above, and in order to perform laser oscillation, the inside of the outer tube 8 is maintained at a high vacuum by exhausting the rotary pump 19, and He is supplied from the gas supply source 20. Then, a high voltage pulse is applied from the high voltage power source 14 to the outer tube 8 and the lead plate 13a between the anode 2 and the cathode 3, where the desired metal particles 21 are arranged in advance. , 13b, a discharge plasma is generated between the anode 2 and the cathode 3, vaporizing the metal particles 21, and producing metal vapor that becomes the laser medium. The metal is uniformly distributed at a density of 1014 to 1QI5n/cm:l, and when excited by the free electrons in the IIl electric plasma, it emits light with a wavelength unique to the metal.

16bを通してその外側に配置した出力ミラー17と全
反射ミラー18で構成される光杖振器で増幅され、出力
ミラー17側よりレーザ光となって出力される。
16b, and is amplified by an optical wave oscillator composed of an output mirror 17 and a total reflection mirror 18 disposed on the outside thereof, and is output as a laser beam from the output mirror 17 side.

(発明が解決しようとする課題) 前記した従来のレーザ発振管では、レーザ発(歴時にl
11極2と陰極3間に高電圧を印加してプラズマ放電を
行うので、内管1内は1500℃程度の高温になる。と
ころで、内管1は両端が開放状態なので、内管1内の熱
は両端から外へ逃げるため、内管1内の温度は、中央部
近傍より両端近傍の方が低くなる。
(Problems to be Solved by the Invention) In the conventional laser oscillation tube described above, the laser oscillation tube
Since plasma discharge is performed by applying a high voltage between the pole 2 and the cathode 3, the inside of the inner tube 1 reaches a high temperature of about 1500°C. By the way, since both ends of the inner tube 1 are open, the heat inside the inner tube 1 escapes to the outside from both ends, so the temperature inside the inner tube 1 is lower near both ends than near the center.

このため、レーザ発振時に陽極2と陰極3間の放電に寄
与する有効な高温領域(約1500℃)は内管1内の中
央部近傍だけとなるので、有効な高温領域が狭くなり、
効率の良いレーザ出力を1qることかできない欠点があ
った。
For this reason, the effective high temperature region (approximately 1500°C) that contributes to the discharge between the anode 2 and cathode 3 during laser oscillation is only near the center of the inner tube 1, so the effective high temperature region becomes narrow.
It had the disadvantage that it could only produce 1q of efficient laser output.

本発明は上記した課題を解決する目的でなされ、内管内
の温度を【よぼ均一にして有効なlOi温順戚を広くと
り、効率の良いレーザ出力を得ることができる金属蒸気
レーザ発振管を促供しようとするしのである。
The present invention was made for the purpose of solving the above-mentioned problems, and provides a metal vapor laser oscillation tube that can make the temperature inside the inner tube almost uniform, widen the effective lOi temperature range, and obtain efficient laser output. I am trying to do that.

[発明の構成] (課題を解決するための手段) 前記した課題を解決するために本発明は、金属粒子を配
置した耐熱材から成る第1の管内に放電用バッファガス
を供給し、前記第1の管内に配設した陽極と陰極間に高
電圧を印加することにより放電プラズマを発生させて前
記金属粒子を蒸気化し、蒸気化された金属粒子を放電プ
ラズマ中の自由電子により励起してレーザ発振を行うレ
ーザ発振管において、前記第1の管の外側にこの管と略
同心円状に耐熱材から成る第2の管を配置し、前記第2
の管の外周面上に、レーザ発j届時に前記第1の管の中
央部近傍と両端部近傍の温度が略均一になるように加熱
する加熱手段を配設する構成とした。
[Structure of the Invention] (Means for Solving the Problems) In order to solve the above problems, the present invention supplies a discharge buffer gas into a first tube made of a heat-resistant material in which metal particles are arranged, and A discharge plasma is generated by applying a high voltage between an anode and a cathode disposed in the tube 1 to vaporize the metal particles, and the vaporized metal particles are excited by free electrons in the discharge plasma to generate a laser beam. In the laser oscillation tube that performs oscillation, a second tube made of a heat-resistant material is arranged approximately concentrically with the first tube outside the first tube, and the second tube is made of a heat-resistant material.
A heating means is disposed on the outer peripheral surface of the first tube so that the temperature near the center and both ends of the first tube becomes substantially uniform when the laser beam is emitted.

(作用) 本発明によれば、レーザ発据時に、加熱手段による加熱
によって第1の管の軸方向の温度が略均一になるので、
陽極と陰極間の放電に寄与する有効な高QCn域を広く
とることができ、効率の良いレーザ出力が得られる。
(Function) According to the present invention, the temperature in the axial direction of the first tube becomes substantially uniform due to the heating by the heating means when the laser is installed.
The effective high QCn region contributing to the discharge between the anode and the cathode can be widened, and efficient laser output can be obtained.

(実施例) 以下、本発明を図示の実施例に基づいて詳細に説明する
。尚、従来と同一部分には同一符号を付し、重複する説
明は省略する。
(Example) Hereinafter, the present invention will be explained in detail based on the illustrated example. Incidentally, the same parts as in the prior art are given the same reference numerals, and redundant explanations will be omitted.

第1図は本発明の第1実施例に係る金属蒸気シー11発
振管を示す概略断面図である。この図に示すように、セ
ラミックから成る第1の管(以後、内管という)1の外
側には、同心円状に保護管7と外管8が配設されている
。内管1はリング状の断熱板9a、9bを介して外管8
に支持され、保i管7はOリングlQa、10bを介し
て外管8に支持されている。
FIG. 1 is a schematic sectional view showing a metal vapor seam 11 oscillation tube according to a first embodiment of the present invention. As shown in this figure, a protective tube 7 and an outer tube 8 are arranged concentrically outside a first tube (hereinafter referred to as an inner tube) 1 made of ceramic. The inner tube 1 is connected to the outer tube 8 via ring-shaped heat insulating plates 9a and 9b.
The storage tube 7 is supported by the outer tube 8 via O-rings lQa and 10b.

内管1には、内管1と同じ材質のセラミックから成り軸
方向を略一致させた2個の短管22a。
The inner tube 1 includes two short tubes 22a made of ceramic, which is the same material as the inner tube 1, and whose axial directions are substantially aligned.

22bが軸方向に移動自在に配置されている。短管22
a、22bは内管1よりやや小径に形成して、内管1と
短管22a、22b間に隙間が設けられており、短管2
2a 、22bの内側には、位置決め部材23a 、2
3bに固着された陽極2と陰極3が対向して支持されて
いる(第2図参照)。
22b is disposed so as to be freely movable in the axial direction. Short tube 22
a and 22b are formed to have a slightly smaller diameter than the inner tube 1, and a gap is provided between the inner tube 1 and the short tubes 22a and 22b.
Positioning members 23a and 2 are located inside of 2a and 22b.
An anode 2 and a cathode 3 fixed to 3b are supported facing each other (see FIG. 2).

位置決め部材23a 、23bは短管22a、22bに
ねじ24で固定されている。
The positioning members 23a, 23b are fixed to the short tubes 22a, 22b with screws 24.

また、11はロータリーポンプ12の排気によって形成
される真空断熱室、13a、13bは陽極2、陰極3と
外管8を接続するリード板、141よ陽極2と陰極3間
に高電圧パルスを印加するパルス高電圧電源、15は絶
縁管、16a、16bはブリュースタ窓、17.18は
出力ミラーと全反射ミラー 19は外管8内を真空にす
るロータリーポンプ、20は陽極2と陰極3間にHe等
の放電用のバッファガスを供給するガス供給源である。
Further, 11 is a vacuum insulation chamber formed by the exhaust of the rotary pump 12, 13a and 13b are lead plates connecting the anode 2 and the cathode 3 and the outer tube 8, and 141 is a high voltage pulse applied between the anode 2 and the cathode 3. 15 is an insulating tube, 16a and 16b are Brewster windows, 17.18 is an output mirror and a total reflection mirror, 19 is a rotary pump that evacuates the inside of the outer tube 8, and 20 is between an anode 2 and a cathode 3. This is a gas supply source for supplying a buffer gas such as He for discharge.

そして、本発明は、内管1と保護管7の間に内管1と略
同心円のセラミックから成る第2の管(以後、セラミッ
ク外管という)25を配設して、保護管7とセラミック
外管25の間に内管1を高温に保持するための断熱材6
を充填すると共に、セラミック管25の外周面上に軸方
向に沿って断面が四角状のヒータ26が巻回されている
。ヒータ26は、レーザ発撮時にその発熱によって内管
1の中央部近傍と両端部近傍の温度が略均一になるよう
に、両端部近傍で密に、中央部近傍で粗に巻回されてい
る。このように、本実施例では、内管1の加熱手段とし
てセラミック外管25の外周面」二にヒータ26が巻回
されている。
In addition, the present invention provides a second tube (hereinafter referred to as a ceramic outer tube) 25 made of ceramic and substantially concentric with the inner tube 1 between the inner tube 1 and the protective tube 7, so that the protective tube 7 and the ceramic A heat insulating material 6 for keeping the inner tube 1 at a high temperature between the outer tube 25
At the same time, a heater 26 having a square cross section is wound around the outer peripheral surface of the ceramic tube 25 along the axial direction. The heater 26 is wound tightly near both ends and loosely wound near the center so that the temperature near the center and both ends of the inner tube 1 is approximately uniform due to the heat generated during laser emission. . As described above, in this embodiment, the heater 26 is wound around the outer peripheral surface of the ceramic outer tube 25 as a heating means for the inner tube 1.

本発明に係る金属蒸気レーザ発振管は上記のように構成
されており、レーザ発1辰を行う時には、外管8内をロ
ータリーポンプ19の排気によって高真空に保持してガ
ス供給源20からHeやNe等の放電用バッファガスを
供給する。その後、ヒータ26に通電すると共に、予め
所望の今風粒子21が配置されている陽極2と陰極3間
に、パルス高電圧電源14から高電圧パルスを外管8、
リード板13a、13bを介して印加することにより、
陽極2と陰極3間に放電プラズマを発生させて金属粒子
21を蒸気化し、レーザ媒質となる金属蒸気を生成する
。そして、この金属蒸気をrJA極2と陰極3間に発生
される放電プラズマ中の自由電子により励起し、出力ミ
ラー17と全反射ミラー18で構成される光共娠器で増
幅して、出力ミラー17側よりレーザ光となって発振さ
れる。
The metal vapor laser oscillation tube according to the present invention is constructed as described above, and when performing laser emission, the inside of the outer tube 8 is maintained at a high vacuum by exhausting the rotary pump 19, and He is supplied from the gas supply source 20. A discharge buffer gas such as or Ne is supplied. Thereafter, the heater 26 is energized, and a high voltage pulse is applied from the pulsed high voltage power source 14 to the outer tube 8,
By applying voltage via lead plates 13a and 13b,
A discharge plasma is generated between the anode 2 and the cathode 3 to vaporize the metal particles 21 to generate metal vapor that becomes a laser medium. Then, this metal vapor is excited by free electrons in the discharge plasma generated between the rJA electrode 2 and the cathode 3, amplified by an optical co-concentrator consisting of an output mirror 17 and a total reflection mirror 18, and then The laser beam is oscillated from the 17 side.

この時、セラミック管25の両端部近傍で密に、中央部
近傍で粗に巻回されているヒータ26への通電による発
熱によりセラミック外管25が加熱され、更に、その内
側の内管1が中央部近傍と両端部近傍の温度が略均一に
なるように加熱される。
At this time, the ceramic outer tube 25 is heated by the heat generated by energizing the heater 26, which is wound tightly near both ends of the ceramic tube 25 and loosely wound near the center, and the inner tube 1 inside the ceramic tube 25 is heated. It is heated so that the temperature near the center and near both ends becomes substantially uniform.

この際、ヒータ26をセラミック外管25の外周面上に
軸方向に巻回したことによって、ヒータ26が巻回され
ている面と巻回されていない面の温度分布が略均一にな
り、また、゛ヒータ26の断面が四角状なのでセラミッ
ク外管25との有効接触面積が広くなり、内管1を効率
良く加熱できる。
At this time, by winding the heater 26 in the axial direction on the outer peripheral surface of the ceramic outer tube 25, the temperature distribution on the surface where the heater 26 is wound and the surface where it is not wound becomes approximately uniform, and Since the cross section of the heater 26 is square, the effective contact area with the ceramic outer tube 25 is increased, and the inner tube 1 can be heated efficiently.

よって、レーザ発振時に陽極2と陰81i3間の放電に
寄与する有効な高温領域(約1500℃)が内管1の両
端部近傍まで広がり、高効率のレーザ発振を行うことが
できる。、 また、レーザ発]歴時に陽極2と陰極3間は放電によっ
て高温状態となるので、内管1、陽極2、陰極3及び短
管22a、22bに熱膨張が生じるが、内管1と短管2
2a、22bに生じる円周方向の熱膨張は内管1と短管
22a、22bが同一材質(セラミック)であることか
ら等しく、円周方向の隙間は常に一定に保たれ、また、
陽極2と陰極3に生じる軸方向の熱膨張は、陽極2と陰
極3を位置決め部材23a 、23bを介して支持して
いる短管22a 、22bが内管1内を軸方向に移動す
ることによって吸収される。
Therefore, an effective high temperature region (approximately 1500° C.) that contributes to the discharge between the anode 2 and the cathode 81i3 during laser oscillation extends to the vicinity of both ends of the inner tube 1, allowing highly efficient laser oscillation. In addition, during laser emission, the temperature between the anode 2 and cathode 3 becomes high due to discharge, so thermal expansion occurs in the inner tube 1, anode 2, cathode 3, and short tubes 22a and 22b. tube 2
Since the inner tube 1 and the short tubes 22a, 22b are made of the same material (ceramic), the thermal expansion in the circumferential direction occurring in the inner tube 1 and the short tubes 22a, 22b is equal, and the gap in the circumferential direction is always kept constant.
Thermal expansion in the axial direction that occurs in the anode 2 and the cathode 3 is caused by the movement of the short tubes 22a and 22b, which support the anode 2 and the cathode 3 via the positioning members 23a and 23b, in the axial direction within the inner tube 1. Absorbed.

このように、内管1と短管22a、22bを同材質のセ
ラミックで形成したことにより、内管1と短管22a、
22b間に熱膨張が生じても焼付き坦采は生じないので
、内管1の破損を防止することができる。また、陽極2
と陰極3に軸方向の熱膨張が生じても、短管22a、2
2bが軸方向に移動することによって陽極2と陰極3の
熱膨張を吸収することができるので、陽極2と陰極3の
相対位置の精度を確保することができる。
In this way, by forming the inner tube 1 and the short tubes 22a, 22b from the same ceramic material, the inner tube 1, the short tubes 22a, 22b,
Even if thermal expansion occurs between the inner tube 1 and the inner tube 1, damage to the inner tube 1 can be prevented. Also, anode 2
Even if axial thermal expansion occurs in the cathode 3, the short tubes 22a, 2
Since thermal expansion of the anode 2 and cathode 3 can be absorbed by moving 2b in the axial direction, the accuracy of the relative position of the anode 2 and cathode 3 can be ensured.

第3図は本発明の第2実施例に係る金属蒸気レーザ発振
管を示す概略断面図である。本例においては、セラミッ
ク外管25の外周面上に軸方向に沿って両端部近傍では
太く、中央部近傍では細い断面が四角状のヒータ26a
を巻回した構成である。他の構成は第1図に示した第1
実施例と同様である。
FIG. 3 is a schematic cross-sectional view showing a metal vapor laser oscillation tube according to a second embodiment of the present invention. In this example, a heater 26a having a rectangular cross section is arranged along the axial direction on the outer peripheral surface of the ceramic outer tube 25 and is thick near both ends and thin near the center.
It has a structure in which it is wound. Other configurations are as shown in Figure 1.
This is similar to the example.

このように、本例では、ヒータ26aはセラミック外管
25の両端部近傍で太く、中央部近傍では細くしたこと
により、ヒータ26aへの通電による発熱はその太さに
比例するので、レーザ発振時に、内管1は中央部近傍と
両端部近傍の419が略均一になるように加熱される。
In this way, in this example, the heater 26a is made thicker near both ends of the ceramic outer tube 25 and thinner near the center, so that the heat generated by energizing the heater 26a is proportional to its thickness. The inner tube 1 is heated so that the area near the center and near both ends 419 are substantially uniform.

第4図は本発明の第3実施例に係る金属蒸気レーザ発振
管を示す概略断面図である。本例においては、セラミッ
ク外管25の外周面上に軸方向に沿って両端部近傍では
熱容量が大きく、中央部近傍では熱容H)が小さい断面
が四角状のヒータ26b、26cをそれぞれ別体にして
巻回した構成である。伯の構成は第1図に示した第1実
施例と同様である。
FIG. 4 is a schematic cross-sectional view showing a metal vapor laser oscillation tube according to a third embodiment of the present invention. In this example, heaters 26b and 26c each having a rectangular cross section and having a large heat capacity near both ends and a small heat capacity H) near the center along the axial direction on the outer peripheral surface of the ceramic outer tube 25 are separately provided. It has a structure in which it is wound in a circular motion. The configuration of the frame is similar to that of the first embodiment shown in FIG.

このように、本例では、セラミック外管25の両端部近
傍では熱容量の大きいヒータ26b1中央部近傍では熱
容量の小さいヒータ26cを巻回したことにより、レー
ザ発振時に、内管1は中央部近傍と両端部近傍の温度が
略均一になるように加熱される。
As described above, in this example, by winding the heater 26b, which has a large heat capacity near both ends of the ceramic outer tube 25, and the heater 26c, which has a small heat capacity near the center, the inner tube 1 can be moved near the center during laser oscillation. It is heated so that the temperature near both ends becomes substantially uniform.

よって、第2、第3実施例においても、レープ発振時に
陽極2と陰極3間のM電に寄与する有効な高温領域(約
1500℃)が内管1の両端部近傍まで広がり、高効率
のレーザ発振を行うことができる。
Therefore, in the second and third embodiments as well, the effective high temperature region (approximately 1500°C) that contributes to the M electric current between the anode 2 and cathode 3 during Lepe oscillation extends to the vicinity of both ends of the inner tube 1, resulting in high efficiency. Laser oscillation can be performed.

また、本発明の他の実施例としては、セラミック外管2
5の両端部にそれぞれコイルを巻回して通電する構成で
も良い。この場合、レーザ発振時に、内管1の両端部近
傍がコイルの発熱によって加熱されるので、内管1は中
央部近傍と両端部近傍の温度が略均一になり、前記同様
高効率のレーザ発振を行うことができる。
In addition, as another embodiment of the present invention, the ceramic outer tube 2
A configuration may also be used in which coils are wound around both ends of the coil 5 and energized. In this case, during laser oscillation, the vicinity of both ends of the inner tube 1 is heated by the heat generated by the coil, so the temperature near the center and both ends of the inner tube 1 become approximately uniform, allowing high-efficiency laser oscillation as described above. It can be performed.

尚、前記した各実施例は横励起金属蒸気レーザ発振管の
場合であったが、縦励起金属蒸気し−ザ発据管において
も適用可能である。
Although each of the above-mentioned embodiments is a case of a horizontally excited metal vapor laser oscillation tube, it is also applicable to a vertically excited metal vapor laser oscillation tube.

[発明の効果] 以上、実施例に基づいて具体的に説明したように本発明
によれば、加熱手段によってレーザ発振時に、内管内の
温度を略均〜にして有効な高温領域を広くとることがで
きるので、効率の良い安定したレーザ発(辰を行うこと
ができる。
[Effects of the Invention] As described above in detail based on the embodiments, according to the present invention, the temperature within the inner tube is approximately equalized by the heating means during laser oscillation, and an effective high temperature region is widened. This enables efficient and stable laser emission.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る金属蒸気レーザ発1辰管を示す概
略断面図、第2図は第1図■−■線所面図、第3図及び
第4図はそれぞれ本発明の他の実施例を示す概略断面図
、第5図は従来の金属蒸気し−ザ発振管を示す概略断面
図である。 1・・・内管(第1の管) 2・・・g!極3・・・陰
極 7・・・保護管 8・・・外管14・・・パルス高
電圧電源 17・・・出力ミラー 18・・・全反射ミラー20・
・・ガス供給源 21・・・金属粒子22a、22b=
・・短管
FIG. 1 is a schematic sectional view showing a metal vapor laser emitting tube according to the present invention, FIG. 2 is a cross-sectional view taken along the line ■-■ in FIG. A schematic sectional view showing an embodiment. FIG. 5 is a schematic sectional view showing a conventional metal vapor oscillator tube. 1...Inner tube (first tube) 2...g! Pole 3... Cathode 7... Protection tube 8... Outer tube 14... Pulse high voltage power supply 17... Output mirror 18... Total reflection mirror 20.
...Gas supply source 21...Metal particles 22a, 22b=
・Short tube

Claims (5)

【特許請求の範囲】[Claims] (1)金属粒子を配置した耐熱材から成る第1の管内に
放電用バッファガスを供給し、前記第1の管内に配設し
た陽極と陰極間に高電圧を印加することにより放電プラ
ズマを発生させて前記金属粒子を蒸気化し、蒸気化され
た金属粒子を放電プラズマ中の自由電子により励起して
レーザ発振を行うレーザ発振管において、前記第1の管
の外側にこの管と略同心円状に耐熱材から成る第2の管
を配置し、前記第2の管の外周面上に、レーザ発振時に
前記第1の管の中央部近傍と両端部近傍の温度が略均一
になるように加熱する加熱手段を配設したことを特徴と
する金属蒸気レーザ発振管。
(1) A discharge buffer gas is supplied into a first tube made of a heat-resistant material in which metal particles are arranged, and a discharge plasma is generated by applying a high voltage between an anode and a cathode arranged in the first tube. In a laser oscillation tube that vaporizes the metal particles and excites the vaporized metal particles with free electrons in the discharge plasma to generate laser oscillation, there is a tube provided on the outside of the first tube approximately concentrically with the tube. A second tube made of a heat-resistant material is arranged, and heated on the outer peripheral surface of the second tube so that the temperature near the center and both ends of the first tube becomes substantially uniform during laser oscillation. A metal vapor laser oscillation tube characterized in that a heating means is provided.
(2)前記加熱手段として、前記第2の管の外周面上を
軸方向に沿つて両端部近傍で密に、中央部近傍で粗に巻
回したヒータを用いることを特徴とする請求項(1)記
載の金属蒸気レーザ発振管。
(2) As the heating means, a heater is used which is wound around the outer circumferential surface of the second tube in the axial direction, densely wound near both ends and loosely wound near the center. 1) The metal vapor laser oscillation tube described above.
(3)前記加熱手段として、前記第2の管の外周面上を
軸方向に沿って両端部近傍で太く、中央部近傍では細い
ヒータを巻回したことを特徴とする請求項(1)記載の
金属蒸気レーザ発振管。
(3) As the heating means, a heater is wound around the outer peripheral surface of the second tube in the axial direction, the heater being thick near both ends and thin near the center. metal vapor laser tube.
(4)前記加熱手段として、前記第2の管の外周面上を
軸方向に沿って両端部近傍で熱容量が大きく、中央部近
傍では熱容量が小さいヒータをそれぞれ巻回したことを
特徴とする請求項(1)記載の金属蒸気レーザ発振管。
(4) As the heating means, a heater having a large heat capacity near both ends and a small heat capacity near the center is wound around the outer peripheral surface of the second tube in the axial direction. The metal vapor laser oscillation tube according to item (1).
(5)前記第1の管及び第2の管はセラミックから成る
ことを特徴とする請求項(1)、(2)、(3)又は(
4)記載の金属蒸気レーザ発振管。
(5) The first tube and the second tube are made of ceramic.
4) The metal vapor laser oscillation tube described above.
JP29974788A 1988-11-29 1988-11-29 Metal vapor laser oscillation tube Pending JPH02148777A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29974788A JPH02148777A (en) 1988-11-29 1988-11-29 Metal vapor laser oscillation tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29974788A JPH02148777A (en) 1988-11-29 1988-11-29 Metal vapor laser oscillation tube

Publications (1)

Publication Number Publication Date
JPH02148777A true JPH02148777A (en) 1990-06-07

Family

ID=17876484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29974788A Pending JPH02148777A (en) 1988-11-29 1988-11-29 Metal vapor laser oscillation tube

Country Status (1)

Country Link
JP (1) JPH02148777A (en)

Similar Documents

Publication Publication Date Title
JPH05198873A (en) Device for pre-ionizing gas in pulse-gas-laser
US5077749A (en) Laser apparatus
JPH02148777A (en) Metal vapor laser oscillation tube
JP2598009B2 (en) Metal vapor laser oscillation tube
JP2633604B2 (en) Metal vapor laser device
JP2880731B2 (en) Laser oscillation device
Bokhan et al. Investigation of a He-Eu+ laser excited by short pumping pulses
JPS63199471A (en) Metallic vapor laser oscillating tube
JP2538590B2 (en) Metal vapor laser device
JPH01228183A (en) Metal vapor laser oscillator
JP2829118B2 (en) Metal vapor laser device
JPS6197879A (en) Metallic vapor laser apparatus
JP2602919B2 (en) Metal vapor laser device
JPS6226877A (en) Metal vapor laser oscillation tube
JPH0369179A (en) Metal vapor laser device
JPH045876A (en) Metal vapor laser device
JP3369210B2 (en) Metal vapor laser oscillation tube
JPH01238079A (en) Metallic vapor laser equipment
JPH01228184A (en) Metal vapor laser oscillator
JPH04174574A (en) Metallic-vapor laser device
JPS63252490A (en) Metal vapor laser device
JPS6226878A (en) Metal vapor laser oscillation tube
JPS62101093A (en) Metal vapor laser apparatus
JPH0341786A (en) Metal vapor laser oscillation device
JPH02281773A (en) Metal vapor laser oscillating tube