JPH0228034B2 - - Google Patents

Info

Publication number
JPH0228034B2
JPH0228034B2 JP58019445A JP1944583A JPH0228034B2 JP H0228034 B2 JPH0228034 B2 JP H0228034B2 JP 58019445 A JP58019445 A JP 58019445A JP 1944583 A JP1944583 A JP 1944583A JP H0228034 B2 JPH0228034 B2 JP H0228034B2
Authority
JP
Japan
Prior art keywords
refrigerant
expansion valve
opening
temperature
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58019445A
Other languages
Japanese (ja)
Other versions
JPS59151682A (en
Inventor
Fumio Matsuoka
Hitoshi Iijima
Eiji Saito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP58019445A priority Critical patent/JPS59151682A/en
Publication of JPS59151682A publication Critical patent/JPS59151682A/en
Publication of JPH0228034B2 publication Critical patent/JPH0228034B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/32Expansion valves having flow rate limiting means other than the valve member, e.g. having bypass orifices in the valve body
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • F25B41/345Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators by solenoids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • F25B41/35Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators by rotary motors, e.g. by stepping motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/38Expansion means; Dispositions thereof specially adapted for reversible cycles, e.g. bidirectional expansion restrictors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Description

【発明の詳細な説明】 この発明は、冷凍サイクルにおいて冷房・暖房
兼用のヒートポンプ式空気調和機等に使われる電
気式膨張弁に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electric expansion valve used in a heat pump type air conditioner for both cooling and heating in a refrigeration cycle.

第1図は従来の電気式膨張弁を利用した空気調
和装置の冷凍サイクル構成図であり、図中1は圧
縮機、2は四方弁、3は室外側熱交換器、4は電
気式膨張弁、5は室内側熱交換器である。圧縮機
で圧縮された高温・高圧の冷媒ガスの流出先は、
冷房あるいは暖房運転に応じて四方弁2により室
外側熱交換器3側、あるいは室内側熱交換器5側
に切り換えられる。第1図は冷房運転例を示し、
四方弁2を通つた高温・高圧の冷媒ガスは室外側
熱交換器3で凝縮し、電気式膨張弁4に至る。こ
こで断熱膨張し、低圧の気液二相になつた冷媒は
室内側熱交換器5で蒸発ガス化して、再び四方弁
2を通つてアキユームレーター6に至り、ここか
ら吸入配管12を通つて再び圧縮機1に戻る。以
上のサイクルで運転される冷凍サイクルにおい
て、電気式膨張弁4の開度を制御する方法は、吸
入配管12の途中に設けられた温度センサー7
と、同じく吸入配管12の途中に設けられた圧力
センサー8の信号とが制御器11に送られ、制御
器11においてこの両信号からスーパーヒート量
を演算し、この結果による信号で制御されるよう
になつていた。
Figure 1 is a diagram of the refrigeration cycle of an air conditioner using a conventional electric expansion valve. In the figure, 1 is a compressor, 2 is a four-way valve, 3 is an outdoor heat exchanger, and 4 is an electric expansion valve. , 5 is an indoor heat exchanger. The destination of the high temperature and high pressure refrigerant gas compressed by the compressor is
Depending on the cooling or heating operation, the four-way valve 2 switches to the outdoor heat exchanger 3 side or the indoor heat exchanger 5 side. Figure 1 shows an example of cooling operation.
The high-temperature, high-pressure refrigerant gas that passes through the four-way valve 2 is condensed in the outdoor heat exchanger 3 and reaches the electric expansion valve 4. Here, the refrigerant expands adiabatically and becomes a low-pressure gas-liquid two-phase evaporated gas in the indoor heat exchanger 5, passes through the four-way valve 2 again, reaches the accumulator 6, and from there passes through the suction pipe 12. Then, it returns to the compressor 1 again. In the refrigeration cycle operated according to the above cycle, the opening degree of the electric expansion valve 4 is controlled by using a temperature sensor 7 provided in the middle of the suction pipe 12.
and the signal from the pressure sensor 8, which is also provided in the middle of the suction pipe 12, are sent to the controller 11, and the controller 11 calculates the amount of superheat from these two signals. I was getting used to it.

また他の方法としては圧力センサー8の代りに
蒸発器(第1図の場合は室内側熱交換器5)の配
管に設けられた温度センサー9で蒸発器飽和温度
を検出し、この信号と吸入配管12の温度センサ
ー7の信号とでスーパーヒート量を演算して制御
していた。この場合、冷凍サイクルの運転が逆転
し、暖房になつた場合は室外側熱交換器3に取り
付けられた温度センサー10と吸入配管12の温
度センサー7とが使われていた。
Another method is to detect the evaporator saturation temperature with a temperature sensor 9 installed in the piping of the evaporator (the indoor heat exchanger 5 in the case of Figure 1) instead of the pressure sensor 8, and use this signal and the The amount of superheat was calculated and controlled based on the signal from the temperature sensor 7 of the pipe 12. In this case, when the operation of the refrigeration cycle is reversed and heating is started, the temperature sensor 10 attached to the outdoor heat exchanger 3 and the temperature sensor 7 of the suction pipe 12 are used.

ところがこのような従来のものでは前者の場
合、圧縮機1への吸入圧力を検出する圧力センサ
ーが高価で信頼性に乏しく実用には適さなかつ
た。また後者の場合、蒸発器飽和温度を検出する
ためには室外側熱交換器と室内側熱交換器との両
者に温度センサーを設けなければならない。さら
に過度運転時や起動時には温度センサーで検知し
ている部分が定常的な飽和状態になつているとは
限らず制御温度として使いにくい欠点を有してい
た。
However, in the former case, the pressure sensor for detecting the suction pressure to the compressor 1 is expensive and unreliable, making it unsuitable for practical use. In the latter case, temperature sensors must be provided in both the outdoor heat exchanger and the indoor heat exchanger in order to detect the evaporator saturation temperature. Furthermore, during excessive operation or startup, the area detected by the temperature sensor is not necessarily in a steady saturated state, making it difficult to use as a temperature control.

この発明は以上の欠点をなくし、過度運転時や
起動時も正確に圧縮機吸入圧力の飽和温度を検出
可能にする機能を付加した電気式可逆膨張弁を提
供することにあり、その構成は、冷媒を常に膨張
弁の低圧側からアキユムレータの冷媒吸入側へバ
イパスするように、膨張弁の冷媒流路の高圧側、
低圧側にそれぞれ開口する開口部から、アキユム
レータ冷媒吸入側へ接続される冷媒出口にかけて
形成されるバイパス路を設け、上記2つの開口部
のうち低圧側を開し、高圧側を閉する開閉手段を
備えたものである。
The object of the present invention is to eliminate the above-mentioned drawbacks and provide an electric reversible expansion valve that has an additional function of accurately detecting the saturation temperature of the compressor suction pressure even during excessive operation or startup. The high pressure side of the refrigerant flow path of the expansion valve so that the refrigerant is always bypassed from the low pressure side of the expansion valve to the refrigerant suction side of the accumulator.
A bypass path is formed from each opening on the low pressure side to a refrigerant outlet connected to the refrigerant suction side of the accumulator, and opening/closing means for opening the low pressure side and closing the high pressure side of the two openings is provided. It is prepared.

以下図示実施例を参照して詳細に述べる。 The following will be described in detail with reference to illustrated embodiments.

第2図はこの発明の電気式可逆膨張弁24の断
面図であり、13は本体のボデイー、14は室外
側熱交換器3からの配管に接続される冷媒流入
口、15は室内側熱交換器5からの配管に接続さ
れる冷媒流出口で、冷媒流入口14、冷媒流出口
15間に冷媒流路が形成されている。なお、ここ
では冷房運転の場合を示すが、暖房運転時には1
4が冷媒流出口、15が冷媒流入口となる。16
はこの流入口14と流出口15との間に設けられ
た弁口16aを形成する絞り弁部としてのバルブ
ポート、17は弁口16aの開度を調節するバル
ブピンで磁性体でできている。18はボデイ13
の蓋兼バルブピンのストツパーで同じく磁性体で
できている。19はこのストツパー18とバルブ
ピン17の間に設けられたスプリングで常時バル
ブピン17が弁口16aを閉塞するよう付勢して
いる。20は電磁コイルで、21はそのリード線
である。22はバルブポート16に設けられたバ
イパス路で、冷媒流入口14および冷媒流出口1
5の両方に開口し、バイパス冷媒出口22aを有
している。23はこのバイパス路22の2つの開
口部を開閉する開閉手段としての2コの弁球で、
互に連結されており、冷媒の流入圧力によつて高
圧側である冷媒流入口14側の開口を閉塞し、低
圧側である冷媒流出口15側は開放するようにな
つている。従つて、冷房運転時と暖房運転時とで
は冷媒流入側と冷媒流出側が入れ換わるので、弁
球による開放、閉塞も逆になる。
FIG. 2 is a sectional view of the electric reversible expansion valve 24 of the present invention, where 13 is the main body, 14 is the refrigerant inlet connected to the pipe from the outdoor heat exchanger 3, and 15 is the indoor heat exchanger. A refrigerant flow path is formed between the refrigerant inlet 14 and the refrigerant outlet 15 at the refrigerant outlet connected to the piping from the container 5 . Note that although the case of cooling operation is shown here, during heating operation, 1
4 is a refrigerant outlet, and 15 is a refrigerant inlet. 16
Reference numeral 17 indicates a valve port as a throttle valve portion forming a valve port 16a provided between the inlet 14 and the outlet 15, and 17 indicates a valve pin made of a magnetic material to adjust the opening degree of the valve port 16a. 18 is body 13
The lid and valve pin stopper is also made of magnetic material. A spring 19 is provided between the stopper 18 and the valve pin 17 and always urges the valve pin 17 to close the valve port 16a. 20 is an electromagnetic coil, and 21 is its lead wire. 22 is a bypass path provided in the valve port 16, which connects the refrigerant inlet 14 and the refrigerant outlet 1.
5, and has a bypass refrigerant outlet 22a. 23 are two valve balls serving as opening/closing means for opening and closing the two openings of this bypass passage 22;
They are connected to each other, and the opening on the high-pressure side of the refrigerant inlet 14 is closed by the inflow pressure of the refrigerant, and the opening on the low-pressure side of the refrigerant outlet 15 is opened. Therefore, since the refrigerant inflow side and the refrigerant outflow side are switched during cooling operation and heating operation, opening and closing by the valve ball are also reversed.

このような構成になる電気式可逆膨張弁はリー
ド線21からの電気信号に応じてバルブピン17
がスプリング19の付勢力に抗して移動し、弁口
16aの開度を調節する。従つて電気信号により
開度を調節できる。バイパス路22は弁球23に
よつて冷媒流入側が閉塞され、流出側が開口して
いるので、常に断熱膨張後の冷媒、即ち低圧側の
冷媒がバイパス路22に流入する。
The electric reversible expansion valve having such a configuration operates the valve pin 17 in response to an electric signal from the lead wire 21.
moves against the biasing force of the spring 19 to adjust the opening degree of the valve port 16a. Therefore, the opening degree can be adjusted by electrical signals. Since the refrigerant inflow side of the bypass passage 22 is closed by the valve ball 23 and the outflow side thereof is open, the refrigerant after adiabatic expansion, that is, the refrigerant on the low pressure side always flows into the bypass passage 22.

以上のような電気式可逆膨張弁を用いた冷凍サ
イクル装置について第3図をもとに説明する。こ
の第3図において1は圧縮機、2は四方弁、3は
室外側熱交換器、5は室内側熱交換器、6はアキ
ユームレーター、7は吸入温度センサーでこれら
は第1図に示す従来の装置と同じものである。2
5は一端が第2図で示した電気式可逆膨張弁24
のバイパス路22のバイパス冷媒出口22aに接
続された冷媒配管でアキユームレーター6の冷媒
吸入管に他端が接続されている。26はこの配管
25のアキユームレーター吸入側近傍に設けられ
た温度センサー、11は制御器でその構成は第4
図に示す如く三菱電機製マイクロコンピユータ
M8748を主体に構成されている。即ち吸入配管1
2の温度センサー7はA/D変換器27を介して
マイクロコンピユータ28の入力ポートに接続さ
れている。同様にして温度センサー26もA/D
変換器27を介してマイクロコンピユータ28に
接続される。電気式可逆膨張弁24の電磁コイル
20にはホトカプラー29の受光部を通して直流
電源30から電流が流れる。マイクロコンピユー
タ28の出力ポートからの制御信号は反転器31
で反転され、ホトカプラー29の発光部に制御信
号に応じた電流を流し、この発光部は電流に応じ
た発光をし、受光部を介して制御信号に応した電
流を電磁コイル20に流す。
A refrigeration cycle device using the electric reversible expansion valve as described above will be explained based on FIG. 3. In Fig. 3, 1 is a compressor, 2 is a four-way valve, 3 is an outdoor heat exchanger, 5 is an indoor heat exchanger, 6 is an accumulator, and 7 is an intake temperature sensor, which are shown in Fig. 1. It is the same as the conventional device. 2
5 is an electric reversible expansion valve 24 whose one end is shown in FIG.
The other end of the refrigerant pipe is connected to the bypass refrigerant outlet 22a of the bypass passage 22, and the other end thereof is connected to the refrigerant suction pipe of the accumulator 6. 26 is a temperature sensor installed near the intake side of the accumulator of this pipe 25, and 11 is a controller whose configuration is similar to the fourth one.
As shown in the figure, a microcomputer manufactured by Mitsubishi Electric
It is mainly composed of M8748. That is, suction pipe 1
The second temperature sensor 7 is connected to an input port of a microcomputer 28 via an A/D converter 27. Similarly, the temperature sensor 26 is also A/D.
It is connected to a microcomputer 28 via a converter 27. Current flows from the DC power source 30 to the electromagnetic coil 20 of the electric reversible expansion valve 24 through the light receiving portion of the photocoupler 29 . The control signal from the output port of the microcomputer 28 is sent to the inverter 31.
A current corresponding to the control signal is passed through the light emitting section of the photocoupler 29, the light emitting section emits light according to the current, and a current corresponding to the control signal is passed through the electromagnetic coil 20 via the light receiving section.

このような構成からなる冷凍サイクル装置にあ
つて、冷媒は電気式可逆膨張弁24で断熱膨張し
た後の冷媒の一部がバイパス路22を通つてアキ
ユームレーター6の冷媒吸入管にバイパスする以
外は第1図に示す従来装置と同じ冷媒回路を形成
する。
In a refrigeration cycle device having such a configuration, the refrigerant is adiabatically expanded by the electric reversible expansion valve 24, and then a part of the refrigerant is bypassed to the refrigerant suction pipe of the accumulator 6 through the bypass path 22. forms the same refrigerant circuit as the conventional device shown in FIG.

第5図は第3図の実施例による冷凍サイクルの
動きをモリエル線図上で示したもので、横軸はエ
ンタルピーHを、縦軸は圧力Pを示す。図中Aは
圧縮機1の吸入冷媒状態を、Bは吐出冷媒状態
を、Cは膨張弁入口の冷媒状態を、Dは膨張弁出
口冷媒状態を示す。またEはバイパス路22から
の冷媒配管25の出口の冷媒状態を示し、破線は
冷媒(フレオンR−22)のモリエル線図上、等
圧・等温線を示す。
FIG. 5 shows the movement of the refrigeration cycle according to the embodiment of FIG. 3 on a Mollier diagram, where the horizontal axis shows enthalpy H and the vertical axis shows pressure P. In the figure, A indicates the suction refrigerant state of the compressor 1, B the discharge refrigerant state, C the refrigerant state at the expansion valve inlet, and D the expansion valve outlet refrigerant state. Further, E indicates the state of the refrigerant at the outlet of the refrigerant pipe 25 from the bypass path 22, and the broken line indicates an isobaric/isothermal line on the Mollier diagram of the refrigerant (Freon R-22).

第6図は蒸発器、例えば冷房運転時の室内側熱
交換器5内の冷媒の流動様式のモデル図であり、
冷媒の流れ方向を矢印で示し、aは波状流、bは
環状流、cは噴霧流、dはガス流を示す。
FIG. 6 is a model diagram of the flow pattern of the refrigerant in the evaporator, for example, the indoor heat exchanger 5 during cooling operation,
The flow direction of the refrigerant is indicated by an arrow, where a indicates a wavy flow, b indicates an annular flow, c indicates a spray flow, and d indicates a gas flow.

第7図と第8図は冷凍サイクル起動時の蒸発器
内の冷媒の物性変化の実験結果による特性図であ
り、第7図は蒸発器の冷媒入口から出口まで順に
伝熱管に番号を付したときのそれぞれの場所の管
壁温度を測定した特性図で、起動時から定常時ま
でのそれぞれの温度の変化を示しており、また第
8図は冷媒のかわき度xに対する圧損△Pの特性
図である。
Figures 7 and 8 are characteristic diagrams based on experimental results of changes in the physical properties of the refrigerant in the evaporator when the refrigeration cycle is started. Figure 7 shows the heat transfer tubes numbered in order from the refrigerant inlet to the outlet of the evaporator. Figure 8 is a characteristic diagram of the temperature of the pipe wall measured at each location during the time, and shows the change in temperature from startup to steady state. Figure 8 is a characteristic diagram of pressure drop △P against refrigerant permeability x. It is.

第1図に示す従来の冷凍サイクルのようにスー
パーヒート量の検出に、温度センサー9又は10
によつて、第7図に示す蒸発器の管壁温度を把握
しようとすると、正確なスーパーヒート量が検出
できない。即ち、正確なスーパーヒート量は、圧
縮機吸入圧力に対応した冷媒の飽和温度と、実際
の圧縮機吸入温度との差により求められるもので
あるが、第6図のように冷媒の流動様式の変遷に
ともなつて蒸発器内で第8図のような圧損分布が
発生し、蒸発器出口では入口よりも圧力が低下し
ていることから、蒸発器の配管に設けられた温度
センサー9または10により検出される飽和温度
は圧損による圧力低下前の蒸発器の圧力に相当す
る飽和温度であり、実際に圧縮機に吸入される冷
媒の圧力に相当する飽和温度ではないため、この
検出温度と温度センサー7による圧縮機吸入冷媒
温度(A点)とからは正確なスーパーヒート量が
検出できない。ところが第3図の実施例によれ
ば、電気式可逆膨張弁24のバイパス路22から
飽和冷媒が流出し、この冷媒が第3図のE点付近
の圧力、即ち圧縮機吸入圧力に相当する飽和温度
をE点付近に発生させる。従つて、このE点付近
の温度を温度センサー26により検出することに
より正確に圧縮機吸入圧力に対する飽和温度が検
出でき、温度センサー7の検出温度との差を演算
することで、圧縮機への冷媒ガスのスーパーヒー
ト量が正確に演算でき、これによつて電気式可逆
膨張弁の開度を制御するのでスーパーヒート量が
一定にでき最大成績係数の運転が可能となる。
As in the conventional refrigeration cycle shown in FIG. 1, a temperature sensor 9 or 10 is used to detect the amount of superheat.
Therefore, when attempting to ascertain the tube wall temperature of the evaporator shown in FIG. 7, an accurate amount of superheat cannot be detected. In other words, the exact amount of superheat is determined by the difference between the saturation temperature of the refrigerant corresponding to the compressor suction pressure and the actual compressor suction temperature. As the temperature changes, a pressure drop distribution as shown in Figure 8 occurs in the evaporator, and the pressure is lower at the evaporator outlet than at the inlet. The saturation temperature detected by An accurate amount of superheat cannot be detected from the compressor suction refrigerant temperature (point A) measured by sensor 7. However, according to the embodiment shown in FIG. 3, saturated refrigerant flows out from the bypass passage 22 of the electric reversible expansion valve 24, and this refrigerant reaches a pressure near point E in FIG. The temperature is generated near point E. Therefore, by detecting the temperature near this point E with the temperature sensor 26, the saturation temperature for the compressor suction pressure can be accurately detected, and by calculating the difference between the temperature detected by the temperature sensor 7, the temperature to the compressor can be determined. The amount of superheat of the refrigerant gas can be calculated accurately, and since the opening degree of the electric reversible expansion valve is controlled based on this, the amount of superheat can be kept constant and operation with the maximum coefficient of performance possible.

つぎに制御装置11内における演算および判断
機能の一実施例について第9図のフローチヤート
により説明する。この第9図においてT1は温度
センサー7で検出した圧縮機1への冷媒吸入温
度、TSは温度センサー26で検出した圧縮機吸
入圧力相当の飽和温度、SHはスーパヒート量、
SH1,SH2は設定値、Eは検出時の電気式可逆膨
張弁の開度、△Eは開度巾、Kは定数を示す。
Next, one embodiment of the calculation and judgment functions within the control device 11 will be described with reference to the flowchart of FIG. In FIG. 9, T 1 is the refrigerant suction temperature into the compressor 1 detected by the temperature sensor 7, T S is the saturation temperature corresponding to the compressor suction pressure detected by the temperature sensor 26, SH is the amount of superheat,
SH 1 and SH 2 are set values, E is the opening degree of the electric reversible expansion valve at the time of detection, ΔE is the opening width, and K is a constant.

この第9図において、ステツプAである一定時
間△t毎に、第3図に示す温度センサ26による
飽和温度TSと、温度センサ7による吸入温度Ti
を読み込む。
In this FIG. 9, at every fixed time Δt in step A, the saturation temperature T S measured by the temperature sensor 26 shown in FIG.
Load.

次に、ステツプBにおいて、上記吸入温度Ti
と飽和温度TSとの差をスーパヒート量SHとして
演算する。
Next, in step B, the above suction temperature Ti
The difference between and the saturation temperature T S is calculated as the superheat amount SH.

そこで、ステツプCに移行し、演算されたスー
パヒート量SHが設定値SH1より大でSH2より小
の場合はステツプCからステツプAに戻り電気式
可逆膨張弁24の開度E※はそのままで再び△t
時間後の測定をする。
Therefore, the process moves to step C, and if the calculated superheat amount SH is larger than the set value SH1 but smaller than SH2, the process returns from step C to step A, leaving the opening degree E* of the electric reversible expansion valve 24 as it is again. t
Take measurements after hours.

また、ステツプCにおいて、演算されたスーパ
ヒート量が設定値SH2より大きいときはステツプ
CからステツプFに移行し、電気式可逆膨張弁2
4の開度E※は開く方向の信号△Eを出す。
Further, in step C, when the calculated super heat amount is larger than the set value SH2, the process moves from step C to step F, and the electric reversible expansion valve 2
Opening degree E* of 4 outputs a signal △E in the opening direction.

逆に、演算されたスーパヒート量のSHが設定
値SH1以下(ステツプD)のときは電気式可逆膨
張弁24の開度E※はステツプEで閉じる方向の
信号−K・△Eを出す。
Conversely, when the computed superheat amount SH is less than the set value SH1 (step D), the opening degree E* of the electric reversible expansion valve 24 outputs a signal -K.ΔE in the closing direction at step E.

ここで特色があるのは電気式可逆膨張弁24の
開度を開く巾の信号が△Eであるのに対して電気
式可逆膨張弁24を閉じる巾の信号が−K・△E
(K>1)というように閉じる巾が大きいことで
ある。
What is special about this case is that the signal for opening the electric reversible expansion valve 24 is △E, while the signal for closing the electric reversible expansion valve 24 is -K・△E.
(K>1), which means that the closing width is large.

これは、圧縮機1を保護する意味から液圧縮を
極力避けるため、閉じるスピードまたは閉じる量
を大きくしたことである。
This is because the closing speed or closing amount is increased in order to avoid liquid compression as much as possible in order to protect the compressor 1.

第10図は電気式可逆膨張弁24の他の実施例
を示すもので、第2図に示すものが電磁式である
のに対し、これはパルスモータを用いたものであ
り、リード線21から制御装置11よりの制御信
号パルスがステータコイル20に入力されるとこ
のパルス数に応じてバルブピン17と一体化され
たロータ32が回転し弁口の開度を調節する。3
4は均圧孔であり、その他は第2図に示すものと
略同一のものである。
FIG. 10 shows another embodiment of the electric reversible expansion valve 24. Whereas the one shown in FIG. 2 is an electromagnetic type, this uses a pulse motor, When control signal pulses from the control device 11 are input to the stator coil 20, the rotor 32 integrated with the valve pin 17 rotates in accordance with the number of pulses to adjust the opening degree of the valve port. 3
4 is a pressure equalizing hole, and the other parts are substantially the same as those shown in FIG.

以上のべたようにこの発明によれば、膨張弁内
の冷媒流路に設けられた2つの開口部のうち、常
に低圧側の開口部を開し、高圧側の開口部を閉す
る開閉手段を設け、この開口部からの冷媒をバイ
パスするバイパス路を設けているので、断熱膨張
した後の低圧冷媒が冷凍サイクルのアキユムレー
タにバイパスすることができ、冷凍サイクルの冷
媒の圧縮機吸入圧力に相当する飽和温度を正確に
測ることができる冷凍サイクルを形成することが
可能となり、冷媒の飽和温度と圧縮機への吸入温
度とでスーパヒート量を正確に演算して、このス
ーパヒート量を用いた制御が確実に行えるように
できるという効果がある。
As described above, according to the present invention, of the two openings provided in the refrigerant flow path in the expansion valve, the opening/closing means always opens the opening on the low pressure side and closes the opening on the high pressure side. Since a bypass path is provided to bypass the refrigerant from this opening, the low-pressure refrigerant after adiabatic expansion can bypass the refrigeration cycle accumulator, which corresponds to the compressor suction pressure of the refrigerant in the refrigeration cycle. It is now possible to create a refrigeration cycle that can accurately measure the saturation temperature, accurately calculate the amount of superheat based on the saturation temperature of the refrigerant and the intake temperature to the compressor, and ensure control using this amount of superheat. This has the effect of making it easier to perform.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の冷凍サイクル構成図、第2図は
この発明の一実施例の電気式可逆膨張弁の縦断面
図、第3図は第2図の電気式可逆膨張弁を用いた
一実施例を示す冷凍サイクル構成図、第4図は第
3図の制御装置部の回路図、第5図は第3図の装
置のモリエル線図、第6図は蒸発管内の冷媒の流
動様式のモデル図、第7図は蒸発器管壁の温度分
布を示す特性図、第8図は蒸発管内の圧力損失分
布を示す特性図、第9図は制御装置のプログラム
の一例を示すフローヤヤート、第10図はこの発
明の他の実施例を示す電気式可逆膨張弁の縦断面
図である。 図中同一符号は同一または相当部分を示し、1
は圧縮機、2は四方弁、3は室外側熱交換器、5
は室内側熱交換器、6はアキユームレータ、7は
吸入温度センサー、11は制御装置、13はボデ
イー、14は冷媒流入口、15は冷媒流出口、1
6はバルブポート、16aは弁口、17はバルブ
ピン、20は電磁コイル、22はバイパス路、2
2aはバイパス冷媒出口、23は弁球、24は電
気式可逆膨張弁、26は飽和温度センサー、28
はマイクロコンピユータ、29はホトカプラー、
32はローターである。
Fig. 1 is a configuration diagram of a conventional refrigeration cycle, Fig. 2 is a longitudinal sectional view of an electric reversible expansion valve according to an embodiment of the present invention, and Fig. 3 is an embodiment using the electric reversible expansion valve of Fig. 2. A refrigeration cycle configuration diagram showing an example, Fig. 4 is a circuit diagram of the control unit shown in Fig. 3, Fig. 5 is a Mollier diagram of the device shown in Fig. 3, and Fig. 6 is a model of the refrigerant flow pattern in the evaporator tube. Figure 7 is a characteristic diagram showing the temperature distribution on the evaporator tube wall, Figure 8 is a characteristic diagram showing the pressure loss distribution in the evaporator tube, Figure 9 is a flow chart showing an example of the program of the control device, and Figure 10 is FIG. 2 is a longitudinal cross-sectional view of an electric reversible expansion valve showing another embodiment of the present invention. The same symbols in the figures indicate the same or corresponding parts, 1
is a compressor, 2 is a four-way valve, 3 is an outdoor heat exchanger, 5
1 is an indoor heat exchanger, 6 is an accumulator, 7 is a suction temperature sensor, 11 is a control device, 13 is a body, 14 is a refrigerant inlet, 15 is a refrigerant outlet, 1
6 is a valve port, 16a is a valve port, 17 is a valve pin, 20 is an electromagnetic coil, 22 is a bypass path, 2
2a is a bypass refrigerant outlet, 23 is a valve ball, 24 is an electric reversible expansion valve, 26 is a saturation temperature sensor, 28
is a microcomputer, 29 is a photocoupler,
32 is a rotor.

Claims (1)

【特許請求の範囲】[Claims] 1 冷凍サイクル中に設けられる電気式可逆膨張
弁において、膨張弁本体内に形成された冷媒流路
と、この冷媒流路に設けられた絞り弁部と、この
絞り弁部により区分けされた上記冷媒流路の両方
の流路途中にそれぞれ開口する2つの開口部か
ら、冷凍サイクル中のアキユムレータ冷媒吸入側
と配管接続される冷媒出口にかけて形成されたバ
イパス路と、上記2つの開口部のうち、低圧側開
口部を開し、高圧側開口部を閉する開閉手段とを
備えたことを特徴とする電気式可逆膨張弁。
1. In an electric reversible expansion valve provided in a refrigeration cycle, a refrigerant flow path formed within the expansion valve body, a throttle valve section provided in this refrigerant flow path, and the above-mentioned refrigerant divided by this throttle valve section. A bypass path is formed from two openings that open in the middle of both flow paths to a refrigerant outlet that is connected via piping to the refrigerant suction side of the accumulator in the refrigeration cycle, and a An electric reversible expansion valve characterized by comprising an opening/closing means for opening a side opening and closing a high pressure side opening.
JP58019445A 1983-02-08 1983-02-08 Electric reversible expansion valve Granted JPS59151682A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58019445A JPS59151682A (en) 1983-02-08 1983-02-08 Electric reversible expansion valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58019445A JPS59151682A (en) 1983-02-08 1983-02-08 Electric reversible expansion valve

Publications (2)

Publication Number Publication Date
JPS59151682A JPS59151682A (en) 1984-08-30
JPH0228034B2 true JPH0228034B2 (en) 1990-06-21

Family

ID=11999502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58019445A Granted JPS59151682A (en) 1983-02-08 1983-02-08 Electric reversible expansion valve

Country Status (1)

Country Link
JP (1) JPS59151682A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01196460A (en) * 1988-02-02 1989-08-08 Ebara Corp Freezer
JP3742853B2 (en) * 1999-05-12 2006-02-08 ダイキン工業株式会社 Electric needle valve for refrigeration circuit and refrigeration apparatus provided with the same

Also Published As

Publication number Publication date
JPS59151682A (en) 1984-08-30

Similar Documents

Publication Publication Date Title
US4499739A (en) Control device for refrigeration cycle
JP4503646B2 (en) Air conditioner
US20130227978A1 (en) Air conditioner
JP4462435B2 (en) Refrigeration equipment
WO2006047072A2 (en) Method for estimating inlet and outlet air conditions of an hvac system
JP2006177597A (en) Freezing equipment, and air conditioner using it
JP3982557B2 (en) Air conditioner
JP3890870B2 (en) Air conditioner
JP3985092B2 (en) Air conditioner
JPH0565779B2 (en)
GB2130747A (en) Control device for refrigeration cycle
JP2007101177A (en) Air conditioner or refrigerating cycle device
JPH0228034B2 (en)
JP7386886B2 (en) air conditioner
JP3560497B2 (en) Refrigeration compressor test equipment
JP2893844B2 (en) Air conditioner
CN219415274U (en) Outdoor unit and air conditioning system
KR880000935B1 (en) Control device for refrigeration cycle
JPH11201572A (en) Multiroom air conditioner
KR100292496B1 (en) Method for preventing inflow of compressor liquid refrigerant in heat pump air conditioner and its device
JP3395449B2 (en) Air conditioner
JPH11201561A (en) Heat pump type air conditioner
JPH0340296B2 (en)
JPH08128747A (en) Controller for air conditioner
JPH035826Y2 (en)