JPH02276208A - Permanent magnet - Google Patents

Permanent magnet

Info

Publication number
JPH02276208A
JPH02276208A JP1097773A JP9777389A JPH02276208A JP H02276208 A JPH02276208 A JP H02276208A JP 1097773 A JP1097773 A JP 1097773A JP 9777389 A JP9777389 A JP 9777389A JP H02276208 A JPH02276208 A JP H02276208A
Authority
JP
Japan
Prior art keywords
iron
resin
quenched ribbon
permanent magnet
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1097773A
Other languages
Japanese (ja)
Inventor
Kunihiko Hori
堀 国彦
Toshiyuki Ishibashi
利之 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP1097773A priority Critical patent/JPH02276208A/en
Publication of JPH02276208A publication Critical patent/JPH02276208A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To improve the fluidity and the orientational property when a molding operation is conducted by a method wherein the rare-earth metal containing at least a kind of Nd and Pr, iron, boron and zirconium is formed into a specific thickness using a method of quenching in liquid. CONSTITUTION:The title permanent magnet of 100mum in thickness is formed by an alloy consisting of rare-earth metal (of a rare-earth element containing Y, at least a kind selected from Nd and Pr is included), iron, boron, zirconium and other impurities which is inevitable for the manufacture of the permanent magnet using a liquid quenching method. Also, a part of iron may be replaced with the transition metal group such as cobalt, copper and the like. Moreover, the above-mentioned magnet is pulverized into 100mum or smaller, and it is molded after mixing with resin.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は希土類金属、鉄、ボロン、ジルコニウムを基本
成分とする永久磁石に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a permanent magnet whose basic components are rare earth metals, iron, boron, and zirconium.

〔従来の技術〕[Conventional technology]

従来、希土類−鉄一ボロン系樹脂結合型磁石として以下
のものが考案されている。
Conventionally, the following rare earth-iron-boron resin bonded magnets have been devised.

(1)非晶質合金を製造するのに用いる急冷薄帯製造装
置で、厚さ30μm程度の急冷薄帯を作り、その薄帯を
粉砕し、樹脂と混合後、成形した磁石。
(1) A quenched ribbon with a thickness of about 30 μm is made using a quenched ribbon manufacturing device used to produce an amorphous alloy, the ribbon is crushed, mixed with resin, and then molded into a magnet.

(文献1、文献2) (2)上記(1)の方法で使用した急冷薄帯を2段階ホ
ットプレス法により機械的配向処理を施して得られた圧
密体を粉砕し、樹脂と混合後、磁場中で成形した磁石。
(References 1 and 2) (2) The quenched ribbon used in the method (1) above is subjected to mechanical orientation treatment by a two-step hot press method, the resulting compacted body is crushed, and after mixing with resin, A magnet formed in a magnetic field.

(文献2、文献3)文献1:特開昭59−211549
号公報文献2:R,W、Lee :Appl、Phys
(Reference 2, Reference 3) Reference 1: JP-A-59-211549
Publication document 2: R, W, Lee: Appl, Phys
.

Le t t、Vo 1.46 (8) 15Apri
  l  1985  p790文献3:特開昭60−
100402号公報つぎに上記従来法の詳細について説
明する。
Let t, Vo 1.46 (8) 15 April
l 1985 p790 Document 3: Unexamined Japanese Patent Publication 1986-
No. 100402 Next, details of the above conventional method will be explained.

(1)の方法では、まず急冷薄帯製造装置の最適な回転
数で急冷薄帯を作製する。得られた厚さ約30μmの急
冷薄帯は粒径1μm以下の結晶の集まりであり、脆くて
割れやすく、結晶粒は等方向に分布している。このため
、磁気的にも異方性は得られず等方向になっている。
In the method (1), first, a quenched ribbon is produced at an optimal rotation speed of a quenched ribbon manufacturing apparatus. The obtained quenched ribbon with a thickness of about 30 μm is a collection of crystals with a grain size of 1 μm or less, is brittle and easily cracked, and the crystal grains are distributed in the same direction. Therefore, magnetic anisotropy is not obtained and the direction is isotropic.

しかしIEEE  TRANSACTIONSON  
MAGNETICS  VoloMAG−23、No、
5  SEPTEMBER1987p3605〜360
6に記載されているように、柱状晶が成長した急冷薄帯
は磁化容易方向を持ち、磁気的に配向した急冷薄帯の製
造も不可能ではない。
However, IEEE TRANSACTIONSON
MAGNETICS VoloMAG-23, No.
5 SEPTEMBER1987p3605-360
As described in No. 6, a quenched ribbon in which columnar crystals are grown has an easy magnetization direction, and it is not impossible to produce a magnetically oriented quenched ribbon.

以上の急冷薄帯を粉砕し樹脂と混合後、成形し樹脂結合
型磁石を得ることができる。
The above-mentioned quenched ribbon is pulverized, mixed with a resin, and then molded to obtain a resin-bonded magnet.

(2)の方法は、急冷薄帯を不活性雰囲気中で耐熱用の
プレス型に入れ、所定の温度に達した時に圧縮する。こ
の時の圧力、温度の条件としては、725±25℃、1
.4ton/c−程度が適している。この段階では磁石
の磁化容易軸は、わずかにプレス方向に配向していると
はいえ、全体的には等方向である。2回目のホットプレ
スは大面積を有する型で行われる。一般的には700℃
、0゜7ton/c−で数分間プレスする。磁石の加工
率が50%になると磁化容易軸はプレス方向と平行に配
向して、磁石は異方性化する。以上により得られた圧密
体を粉砕し、樹脂と混合後、磁場中で成形すると異方性
樹脂結合型磁石ができる。
In method (2), the quenched ribbon is placed in a heat-resistant press mold in an inert atmosphere and compressed when it reaches a predetermined temperature. The pressure and temperature conditions at this time are 725±25℃, 1
.. Approximately 4 tons/c- is suitable. At this stage, the axis of easy magnetization of the magnet is generally equidirectional, although it is slightly oriented in the pressing direction. The second hot press is performed in a mold with a large area. Generally 700℃
, 0.7 ton/c- for several minutes. When the processing rate of the magnet reaches 50%, the axis of easy magnetization is oriented parallel to the pressing direction, and the magnet becomes anisotropic. The compacted body obtained above is crushed, mixed with a resin, and then molded in a magnetic field to produce an anisotropic resin-bonded magnet.

また、プレス前の急冷薄帯の結晶粒は、それが最大の保
磁力を示す時の粒径よりも小さめにしておき、後のホッ
トプレス中に結晶粒の粗大化が生じて最適の粒径になる
ようにしておく。
In addition, the crystal grains in the quenched ribbon before pressing should be made smaller than the grain size at which they exhibit their maximum coercive force, and the grains may coarsen during the subsequent hot pressing, resulting in the optimum grain size. Make sure that it becomes .

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前述の従来技術を用いることにより希土類−鉄一ボロン
系樹脂結合型磁石は製造できるが、これらの製造方法は
次の様な欠点を有している。
Although rare earth-iron-boron resin bonded magnets can be manufactured using the prior art described above, these manufacturing methods have the following drawbacks.

(1)の方法では樹脂結合型磁石の素材として用いる急
冷薄帯が30μm程度の厚さであり、これを粉砕すると
粉末は鱗片状になってしまう。
In method (1), the quenched ribbon used as the material for the resin-bonded magnet has a thickness of about 30 μm, and when it is crushed, the powder becomes scaly.

鱗片状粉末を射出成形、押出成形等に用いるとコンパウ
ンドの流動性が低下し、生産性は悪く、複雑な形状のも
の、薄肉形状のものの製造が困難になる。これら問題点
を補うためには樹脂の混合率を高めればよいが、逆に磁
石性能を低下させることになってしまう。
When scaly powder is used in injection molding, extrusion molding, etc., the fluidity of the compound decreases, productivity is poor, and it becomes difficult to manufacture products with complex shapes or thin walls. In order to compensate for these problems, it is possible to increase the mixing ratio of the resin, but this results in a decrease in magnet performance.

(2)の方法ではホットプレスを2段階に行うので、実
際に量産を考えると大変非効率になることは否めないで
あろう。この様に生産性の悪い製造方法ではコストが高
くなってしまい比較的原料の安い希土類−鉄−ボロン系
磁石の長所を生かすことができなくなってしまう。
In method (2), hot pressing is performed in two stages, so it cannot be denied that it will be very inefficient when considering actual mass production. Such a manufacturing method with poor productivity increases costs and makes it impossible to take advantage of the advantages of rare earth-iron-boron magnets, which are made of relatively cheap raw materials.

本発明は以上の従来技術の問題点を解決するもので厚さ
100μm以上の急冷薄帯より磁性粉末を作製し、成形
の際の流動性、配向性を向上させ高性能、低コストな希
土類−鉄−ボロン系樹脂結合型磁石を提供するところに
ある。
The present invention solves the above-mentioned problems of the conventional technology by producing magnetic powder from a quenched ribbon with a thickness of 100 μm or more, improving fluidity and orientation during molding, and achieving high performance and low cost rare earth powder. The present invention provides an iron-boron resin bonded magnet.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の永久磁石は、希土類金属(Yを含む希土類元素
のテちNd、Prの少なくとも1種を含む)、鉄、ボロ
ン、ジルコニウム及びその他製造上不可避な不純物より
なる合金から液体急冷法により作製し、厚さが100μ
m以上であることを特徴とする。また、上記鉄の一部を
コバルト、銅など遍移金属群で置換されていてもよい。
The permanent magnet of the present invention is manufactured by a liquid quenching method from an alloy consisting of a rare earth metal (including at least one of rare earth elements including Y, Nd, and Pr), iron, boron, zirconium, and other impurities that are unavoidable in manufacturing. and the thickness is 100μ
m or more. Further, a part of the above-mentioned iron may be replaced with a transition metal group such as cobalt and copper.

さらに、上記磁石を100μm以下に粉砕し、樹脂と混
合後成形することを特徴とする。
Furthermore, the magnet is pulverized to 100 μm or less, mixed with a resin, and then molded.

〔作 用〕[For production]

従来、希土類−鉄一ボロン系樹脂混合型磁石の素材に用
いられてきた薄帯磁石は厚さ30μm程度のものであっ
たが、以下にその理由を説明する。
The thin ribbon magnets conventionally used as raw materials for rare earth-iron-boron resin mixed magnets have a thickness of about 30 μm, and the reason for this will be explained below.

液体急冷法により作製する急冷薄帯は、作製時の急冷速
度、すなわちロール周速度によって大きく特性が変化す
る。高い保磁力が得られる最適の急冷速度では、急冷薄
帯は、微細な結晶質相と非晶質相の重畳状態にあり、こ
の非晶質相がピンニングサイトとなり高保磁力が得られ
る。
The properties of the quenched ribbon produced by the liquid quenching method vary greatly depending on the quenching speed during production, that is, the circumferential speed of the roll. At the optimum quenching rate that provides a high coercive force, the quenched ribbon is in a superimposed state of a fine crystalline phase and an amorphous phase, and this amorphous phase becomes a pinning site and a high coercive force is obtained.

一方過急冷した急冷薄帯は、非晶質またはそれに近い状
態になっているため、保磁力はほとんど得られず、この
ままでは永久磁石材料として使用することはできない。
On the other hand, the quenched ribbon that has been superquenched is in an amorphous or nearly amorphous state, so it hardly has any coercive force and cannot be used as a permanent magnet material as it is.

また急冷不足の急冷薄帯は、結晶粒の粗大化が進み小さ
な保磁力しか得ることはできない。
In addition, in a quenched ribbon that is insufficiently quenched, the crystal grains become coarser and only a small coercive force can be obtained.

以上述べたように急冷薄帯が高保磁力を有する急冷速度
は、限られた範囲であり、急冷薄帯の厚みは急冷速度に
依存することから今まで樹脂結合型磁石の素材として用
いられたきたものは厚さ30μm程度であった。
As mentioned above, the quenching rate at which the quenched ribbon has a high coercive force is within a limited range, and the thickness of the quenched ribbon depends on the quenching rate, so it has not been used as a material for resin-bonded magnets until now. The thickness was about 30 μm.

本発明では、ジルコニウムを添加することにより、結晶
粒の粗大化を抑制し、高保磁力が得られる急冷速度を低
速度化し、100μm以上の厚みの急冷薄帯でも高保磁
力が得られるようにした。
In the present invention, by adding zirconium, coarsening of crystal grains is suppressed, and the quenching rate at which high coercive force is obtained is lowered, so that high coercive force can be obtained even in a quenched ribbon with a thickness of 100 μm or more.

そして厚さ100μm以上の急冷薄帯を100μm以下
に粉砕することで鱗片状ではない磁性粉末を得ることが
できる。上記粉末を樹脂結合型磁石の素材として用いる
と成形の際のコンパウンドの流動性が向上し複雑な形状
のもの、薄肉形状のものの製造が容易になる。
By pulverizing the quenched ribbon having a thickness of 100 μm or more to 100 μm or less, a non-scaly magnetic powder can be obtained. When the above-mentioned powder is used as a material for resin-bonded magnets, the fluidity of the compound during molding improves, and it becomes easier to manufacture products with complex shapes and thin walls.

また、急冷速度を制御し、柱状晶が成長している配向し
た急冷薄帯を用いれば2段階ホットプレスの様な複雑な
工程を経ずに異方性樹脂結合型磁石が作製できる。この
場合も上記形状の急冷薄帯を100μm以下に粉砕し用
いると、同様に流動性が向上し、さらに磁場中成形時の
配向性も良好なものとなり高性能な磁石が得られる。
Furthermore, by controlling the quenching rate and using an oriented quenched ribbon in which columnar crystals are grown, an anisotropic resin-bonded magnet can be produced without going through a complicated process such as two-step hot pressing. In this case as well, if the quenched ribbon having the above shape is crushed to a size of 100 μm or less and used, the fluidity is similarly improved and the orientation during molding in a magnetic field is also good, resulting in a high-performance magnet.

以下、本発明による永久磁石の好ましい組成について説
明する。
Hereinafter, preferred compositions of the permanent magnet according to the present invention will be explained.

希土類金属としては、YSLa、Ce5Pr。Rare earth metals include YSLa and Ce5Pr.

Nd、Sm5EuSGd、Tb5Dy% HO,ErS
’rm、yb、Luが候補として挙げられ、これらの中
で特にP「、Ndが高い磁気特性を示すので、Nd s
 P rの少なくとも1種を含む1種類、もしくは2種
類以上を組み合わせて用いる。従って実用的には、Nd
、Pr、Pr−Nd5Ce−Pr−Nd等が用いられる
。さらに重希土類元素DY、Tbを少量添加することは
保磁力の向上に有効である。
Nd, Sm5EuSGd, Tb5Dy% HO, ErS
'rm, yb, and Lu are listed as candidates, and among these, P'' and Nd exhibit particularly high magnetic properties, so Nd s
One type including at least one type of P r or a combination of two or more types is used. Therefore, in practical terms, Nd
, Pr, Pr-Nd5Ce-Pr-Nd, etc. are used. Furthermore, adding a small amount of heavy rare earth elements DY and Tb is effective in improving the coercive force.

ジルコニウムについては希土類金属を置換することがで
き低希土類組成でも高エネルギー積が得られ希土類金属
を減らすことによるコストの低減耐食性の改善が期待で
きる。
Zirconium can be substituted for rare earth metals, and a high energy product can be obtained even with a low rare earth composition, so reducing the amount of rare earth metals can be expected to reduce costs and improve corrosion resistance.

また鉄の一部をコバルトで置換することによりキュリー
温度を上昇させることができる。
Moreover, the Curie temperature can be increased by substituting a part of iron with cobalt.

〔実 施 例〕〔Example〕

次に本発明の実施例を示す。 Next, examples of the present invention will be shown.

(実施例1) まず高周波溶解炉を用いアルゴンガス雰囲気中でN d
 1oF e aoB5 Z r 5組成のインゴット
を作製した。次いでアルゴンガス雰囲気中で上記インゴ
ットを石英試験管に封入し誘導加熱により溶解したイン
ゴットの溶湯を高速回転する直径20cmの銅製ロール
上に射出し急冷薄帯を得た。
(Example 1) First, N d was melted in an argon gas atmosphere using a high-frequency melting furnace.
An ingot having a composition of 1oF e aoB5 Z r 5 was produced. Next, the ingot was sealed in a quartz test tube in an argon gas atmosphere, and the molten ingot was melted by induction heating and injected onto a copper roll having a diameter of 20 cm rotating at high speed to obtain a quenched ribbon.

また比較例としてNd+、Fe5oBs組成で同様に急
冷薄帯を作製した。
Further, as a comparative example, a quenched ribbon was similarly produced with Nd+ and Fe5oBs compositions.

第1表にロール周速度と急冷薄帯の保磁力(iHe) 
、厚さを示す。
Table 1 shows the roll peripheral speed and the coercive force (iHe) of the quenched ribbon.
, indicates the thickness.

第   1   表 第1表から明らかなように比較例と比べて本発明は最大
の保磁力が得られる急冷速度が低速度側にシフトしてお
り厚さが100μm以上の急冷薄帯でも高保磁力が得ら
れている。
Table 1 As is clear from Table 1, compared to the comparative example, in the present invention, the quenching speed at which the maximum coercive force is obtained is shifted to the lower speed side, and even a quenched ribbon with a thickness of 100 μm or more has a high coercive force. It has been obtained.

(実施例2) 次に実施例1で作製した、本発明、比較例の急冷薄帯の
うち、それぞれで最高の保磁力が得られたものを100
μm以下に粉砕した。この時本発明で最高の保磁力を示
した急冷薄帯はロール周速度5.2m/sで作製した厚
さ100〜120μmのものであり、比較例では15.
7m/sで作製した厚さ30〜40μmのものである。
(Example 2) Next, among the quenched ribbons of the present invention and the comparative example produced in Example 1, the one with the highest coercive force was 100%
It was ground to micrometers or less. At this time, the quenched ribbon that showed the highest coercive force in the present invention was produced at a roll circumferential speed of 5.2 m/s and had a thickness of 100 to 120 μm, and in the comparative example, the coercive force was 15.
It has a thickness of 30 to 40 μm and was produced at 7 m/s.

この2種類の粉末を40体積%のポリアミド系樹脂と混
合し、240℃で粘度を測定した。本発明のコンパウン
ドの粘度は2.12X10’ poiseであり、比較
例のコンパウンドの粘度2.74X10’poiseと
比べ流動性は良好なものとなっている。
These two types of powder were mixed with 40% by volume of polyamide resin, and the viscosity was measured at 240°C. The viscosity of the compound of the present invention is 2.12X10' poise, which has good fluidity compared to the viscosity of the compound of the comparative example, which is 2.74X10' poise.

(実施例3) 実施例1で作製した本発明のインゴットより、ロール周
速度3.1m/sで柱状晶が成長した異方性急冷薄帯を
作製した。この急冷薄帯の厚さは130〜150μmで
あった。この急冷薄帯を100μm以下に粉砕して、磁
性粉末を得、15体積%のエポキシ樹脂を混合し、15
KOeの印加磁場中で圧縮成形した。
(Example 3) From the ingot of the present invention produced in Example 1, an anisotropic quenched ribbon in which columnar crystals grew at a roll circumferential speed of 3.1 m/s was produced. The thickness of this quenched ribbon was 130 to 150 μm. This quenched ribbon was pulverized to 100 μm or less to obtain magnetic powder, mixed with 15% by volume of epoxy resin,
Compression molding was performed in an applied magnetic field of KOe.

また比較例として同急冷薄帯を150〜250μmに粉
砕し鱗片状の磁性粉末を得、同様な方法で樹脂混合型磁
石を作製した。
Further, as a comparative example, the same quenched ribbon was crushed to a size of 150 to 250 μm to obtain a scale-like magnetic powder, and a resin-mixed magnet was produced in the same manner.

上記2種類の磁石を磁化容易方向と磁化困難方向で測定
し、その結果を第2表に示す。
The above two types of magnets were measured in the easy magnetization direction and the difficult magnetization direction, and the results are shown in Table 2.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、希土類金属、鉄、ボ
ロン、ジルコニウム及びその他製造上不可避な不純物よ
りなる合金から液体急冷法により作製した厚さが100
μm以上である薄帯磁石を100μm以下に粉砕し、樹
脂結合型磁石の素材とすると、コンパウンドの流動性が
増し、複雑な形状の磁石、薄肉の磁石の作製が可能とな
る。
As described above, according to the present invention, a thickness of 100 mm is produced by a liquid quenching method from an alloy made of rare earth metals, iron, boron, zirconium, and other impurities unavoidable in manufacturing.
When a thin strip magnet of 1 μm or more is crushed to 100 μm or less and used as a material for a resin-bonded magnet, the fluidity of the compound increases, making it possible to manufacture magnets with complex shapes and thin walls.

また磁気的に配向した急冷薄帯から作製した上記粉末を
用いることで高性能な樹脂結合型磁石の作製が可能とな
るといった効果を有する。
Further, by using the above-mentioned powder produced from a magnetically oriented quenched ribbon, it is possible to produce a high-performance resin-bonded magnet.

以上 出願人 セイコーエプソン株式会社 代理人 弁理士 鈴 木 喜三部(他1名)磁石は、鱗
片状の粉末を用いた比較例の磁石よりも配向性は良好で
あり高性能なものとなっている。
Applicant Seiko Epson Corporation Representative Patent Attorney Kisabe Suzuki (and one other person) The magnet has better orientation and higher performance than the comparative magnet using scaly powder. There is.

Claims (3)

【特許請求の範囲】[Claims] (1)Nd、Prの少なくとも1種を含む希土類金属、
鉄、ボロン、ジルコニウム及びその他製造上不可避な不
純物よりなる合金から液体急冷法により作製した厚さが
100μm以上であることを特徴とする永久磁石。
(1) A rare earth metal containing at least one of Nd and Pr;
A permanent magnet having a thickness of 100 μm or more and manufactured from an alloy consisting of iron, boron, zirconium, and other impurities unavoidable in manufacturing by a liquid quenching method.
(2)上記鉄の一部をコバルトや銅など遍移金属で置換
した請求項1記載の永久磁石。
(2) The permanent magnet according to claim 1, wherein a part of the iron is replaced with a transitional metal such as cobalt or copper.
(3)請求項1、2記載の薄帯磁石を100μm以下に
粉砕し、樹脂と混合後、成形した永久磁石。
(3) A permanent magnet obtained by pulverizing the ribbon magnet according to claims 1 and 2 to 100 μm or less, mixing it with a resin, and then molding it.
JP1097773A 1989-04-18 1989-04-18 Permanent magnet Pending JPH02276208A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1097773A JPH02276208A (en) 1989-04-18 1989-04-18 Permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1097773A JPH02276208A (en) 1989-04-18 1989-04-18 Permanent magnet

Publications (1)

Publication Number Publication Date
JPH02276208A true JPH02276208A (en) 1990-11-13

Family

ID=14201165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1097773A Pending JPH02276208A (en) 1989-04-18 1989-04-18 Permanent magnet

Country Status (1)

Country Link
JP (1) JPH02276208A (en)

Similar Documents

Publication Publication Date Title
JPH01704A (en) Rare earth-iron permanent magnet
US5930582A (en) Rare earth-iron-boron permanent magnet and method for the preparation thereof
JPH0366105A (en) Rare earth anisotropic powder and magnet, and manufacture thereof
JPS62203302A (en) Cast rare earth element-iron system permanent magnet
JPH01171209A (en) Manufacture of permanent magnet
JPH02276208A (en) Permanent magnet
JPH02125402A (en) Magnetic powder and manufacture thereof
JP2530185B2 (en) Manufacturing method of permanent magnet
JPH02118054A (en) Permanent magnet material
JPS63114106A (en) Permanent magnet and manufacture thereof
JPS63211705A (en) Anisotropic permanent magnet and manufacture thereof
JPH01175207A (en) Manufacture of permanent magnet
JPH01171219A (en) Manufacture of permanent magnet integral with york
JPS6316603A (en) Manufacture of sintered rare-earth magnet
JPS63286515A (en) Manufacture of permanent magnet
JPS63285909A (en) Permanent magnet and manufacture thereof
JPS63287007A (en) Manufacture of permanent magnet
JPH01175211A (en) Manufacture of rare-earth elements-iron-based permanent magnet
JPH02296311A (en) Manufacture of permanent magnet
JPH08250312A (en) Rare earth-fe permanent magnet and manufacture thereof
JPH02156603A (en) Manufacture of magnetic powder
JPS63213317A (en) Rare earth iron permanent magnet
JPH01161802A (en) Manufacture of permanent magnet
JPH033204A (en) Manufacture of magnetic powder
JPS63285911A (en) Permanent magnet and manufacture thereof