JPH02272505A - Optical waveguide device - Google Patents

Optical waveguide device

Info

Publication number
JPH02272505A
JPH02272505A JP9315189A JP9315189A JPH02272505A JP H02272505 A JPH02272505 A JP H02272505A JP 9315189 A JP9315189 A JP 9315189A JP 9315189 A JP9315189 A JP 9315189A JP H02272505 A JPH02272505 A JP H02272505A
Authority
JP
Japan
Prior art keywords
optical waveguide
crystal
thin film
lattice constant
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9315189A
Other languages
Japanese (ja)
Inventor
Kazuhide Okawara
大川原 一秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP9315189A priority Critical patent/JPH02272505A/en
Publication of JPH02272505A publication Critical patent/JPH02272505A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain the inexpensive device which is not limited in the design of the optical waveguide by growing an electrooptical crystal in the form of a thin film on a substrate crystal having the lattice constant nearly equal to the lattice constant of the electrooptical crystal and forming a waveguide on the thin film. CONSTITUTION:The thin film 2 of the electrooptical crystal KTP(KTiOPO4) is grown by a liquid phase epitaxy method on the substrate crystal 1 which has the crystal structure analogous with the crystal structure of the KTP and has the lattice constant nearly equal to the lattice constant thereof. The optical waveguide 3 is formed by an ion exchange or thermal diffusion on this thin film 2. An electrode 5 for applying an electric field to the optical waveguide is formed via a buffer layer 4 on the optical waveguide 3. The buffer layer 4 is needed in order to prevent the absorption of light (TM mode) by the electrode 5 and is formed by using silicon dioxide SiO2 and magnesium fluoride MgF2 or the like. An increase in the degree of freedom in designing the optical waveguide which is heretofore restricted by the infeasibility of growing a large crystal is resulted by widening the area of the substrate crystal surface to be grown with the thin film 2. The high-performance optical waveguide device is thus inexpensively obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光分岐/結合、光分波/合波、光変調、光切
換等を行うために用いられる光導波路デバイスに関する
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an optical waveguide device used for performing optical branching/coupling, optical demultiplexing/combining, optical modulation, optical switching, and the like.

〔従来の技術〕[Conventional technology]

従来、この種の光導波路デバイスとして。 Conventionally, this type of optical waveguide device.

L iNb Osなどの強誘電体基板上に光導波路を形
成し。
An optical waveguide is formed on a ferroelectric substrate such as LiNbOs.

光導波路に光を閉じ込めたまま、光導波路自体の形状や
光導波路間の干渉、さらに電気光学効果や音響光学効果
等を利用して2分岐/結合1分波/合波、変調、切換等
の機能を得るものが知られている。
While the light is confined in the optical waveguide, it is possible to perform 2-branching/combining 1-branching/combining, modulation, switching, etc. by utilizing the shape of the optical waveguide itself, interference between optical waveguides, electro-optic effect, acousto-optic effect, etc. Those that obtain the function are known.

強誘電体基板としては、 LiNb0 の他に°L r
 NbO3よりも電気光学効果の大きなKTP (KT
 r OPO4) も用いられており、第2図に示すよ
うに、 KTP基板6に光導波路3を形成し、光導波路
3上に光導波路に電界を与えるための電極5がバッファ
層4を介して形成され、光導波路デバイスが構成される
In addition to LiNb0, °L r
KTP (KT
As shown in FIG. 2, an optical waveguide 3 is formed on a KTP substrate 6, and an electrode 5 for applying an electric field to the optical waveguide is placed on the optical waveguide 3 via a buffer layer 4. and an optical waveguide device is constructed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、従来の光導波路デバイスでは、光導波路を強
誘電体基板上に熱拡散やイオン交換等の方法により形成
するため、基板には機械的強度が要求される。
By the way, in conventional optical waveguide devices, the optical waveguide is formed on a ferroelectric substrate by a method such as thermal diffusion or ion exchange, so the substrate is required to have mechanical strength.

また1強誘電体基板は、一般にInGaAsPなど半導
体基板に比べて、電気光学効果が小さいため。
Furthermore, a ferroelectric substrate generally has a smaller electro-optic effect than a semiconductor substrate such as InGaAsP.

均質で面積が広く厚さも0.5 xx以上の結晶基板が
必要である。ところが1強誘電体基板の場合、良質で大
きな結晶が得にくくさらに材料として非常に高価なもの
になってしまうということ等の問題点がある。
A homogeneous crystal substrate with a wide area and a thickness of 0.5 xx or more is required. However, in the case of a single ferroelectric substrate, there are problems such as it is difficult to obtain large crystals of good quality and the material is very expensive.

一方、特に電気光学特性の優れたKTP (KT 10
PO4)の場合は、水熱法やフラックス法により育成さ
れているが、良質で大きな結晶を育成することが困難な
ため、光導波路の設計に制約を受けたり、デバイスが高
価なものになってしまうという問題点がある。
On the other hand, KTP (KT 10
In the case of PO4), it is grown by hydrothermal method or flux method, but it is difficult to grow high-quality, large crystals, which limits the design of optical waveguides and makes devices expensive. There is a problem with storing it away.

さらに、光導波路の形成には、数十μmの厚さで十分で
あるのに機械的強度の点から0.5 mm以上という厚
さの結晶基板を用いるため光導波路デ・ぐイスが高価に
なってしまうという問題点がある。
Furthermore, although a thickness of several tens of μm is sufficient for forming an optical waveguide, a crystal substrate with a thickness of 0.5 mm or more is used from the viewpoint of mechanical strength, making the optical waveguide device expensive. The problem is that it becomes.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の光導波路デバイスでは、電気光学結晶KTiO
POがKT 1OPO4と格子定数のほぼ等しい基板結
晶上に液相エピタキシャル成長により薄膜状に育成され
、その電気光学結晶薄膜上に光導波路が形成されている
ことを特徴としている。
In the optical waveguide device of the present invention, electro-optic crystal KTiO
PO is grown into a thin film by liquid phase epitaxial growth on a substrate crystal having approximately the same lattice constant as KT 1OPO4, and an optical waveguide is formed on the electro-optic crystal thin film.

〔実施例〕〔Example〕

次に本発明について実施例によって説明する。 Next, the present invention will be explained with reference to examples.

第1図を参照して、電気光学結晶KTP (KT i 
OPo 4 )薄膜2は、 KTPと同系の結晶構造を
もち、格子定数のほぼ等しい基板結晶1に液相エピタキ
シャル成長により育成されており、この薄膜2上に光導
波路3がイオン交換や熱拡散によって形成されている。
Referring to FIG. 1, electro-optic crystal KTP (KT i
The OPo 4 ) thin film 2 has a similar crystal structure to KTP and is grown by liquid phase epitaxial growth on a substrate crystal 1 with approximately the same lattice constant, and an optical waveguide 3 is formed on this thin film 2 by ion exchange or thermal diffusion. has been done.

光導波路3の上には、光導波路に電界を与えるだめの電
極5がバッファ層4を介して形成されている。バッファ
層4を必要とするのは、電極5による光(TMモード)
の吸収を防ぐためであり。
An electrode 5 for applying an electric field to the optical waveguide is formed on the optical waveguide 3 with a buffer layer 4 interposed therebetween. The buffer layer 4 is required for light from the electrode 5 (TM mode)
This is to prevent the absorption of

二酸化ケイ素S s O2やフ、化マグネンウムMgF
’2等が用いられる。
Silicon dioxide S s O2, Magnenium oxide MgF
'2 mag is used.

なお、電界方向や光の伝搬モードによっては。Note that it depends on the direction of the electric field and the propagation mode of light.

バッファ層4必要としない場合もある。電極5は。The buffer layer 4 may not be necessary in some cases. Electrode 5 is.

kl 、 Cr−Au 、 Ti−Au等が用いられる
kl, Cr-Au, Ti-Au, etc. are used.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明では、光導波路を形成する電
気光学結晶KT P (KT i OPO4)薄膜を結
晶板上に液相エピタキシャル成長により育成することに
より°、わずか数十μm程度の厚さで光導波路が形成で
きるばかりでなく、薄膜を成長させる基板結晶面の面積
を広くすることにより、これまで大きな結晶が育成でき
ずに制約を受けていた光導波路の設計にも自由度も増し
より安価に高性能な光導波路デバイスが作製できるとい
う効果がある。
As explained above, in the present invention, by growing an electro-optic crystal KTP (KT i OPO4) thin film that forms an optical waveguide on a crystal plate by liquid phase epitaxial growth, an optical waveguide can be formed with a thickness of only several tens of μm. Not only can waveguides be formed, but by increasing the area of the substrate crystal plane on which thin films are grown, the design of optical waveguides, which had been limited by the inability to grow large crystals, now has more flexibility and is cheaper. This has the effect that high-performance optical waveguide devices can be manufactured.

第1図Figure 1

【図面の簡単な説明】[Brief explanation of drawings]

第1図は2本発明による光導波路デバイスの一実施例を
示す断面図、第2図″は、従来の光導波路デバイスの例
を示す断面図である。 1・・・基板結晶、2・・・KTP (KT 10P0
4)薄膜、3.・光導波路、4・・・バッファ層、5・
・・電極、6・・・KTP(KTiOPO4)。 第2図
FIG. 1 is a sectional view showing an example of an optical waveguide device according to the present invention, and FIG. 2 is a sectional view showing an example of a conventional optical waveguide device. 1...Substrate crystal, 2...・KTP (KT 10P0
4) Thin film; 3.・Optical waveguide, 4...buffer layer, 5.
... Electrode, 6...KTP (KTiOPO4). Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1、電気光学結晶が該電気光学結晶と格子定数のほぼ等
しい基板結晶上に薄膜状に育成され、前記電気光学結晶
薄膜上に光導波路が形成されていることを特徴とする光
導波路デバイス。
1. An optical waveguide device characterized in that an electro-optic crystal is grown in the form of a thin film on a substrate crystal having substantially the same lattice constant as the electro-optic crystal, and an optical waveguide is formed on the electro-optic crystal thin film.
JP9315189A 1989-04-14 1989-04-14 Optical waveguide device Pending JPH02272505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9315189A JPH02272505A (en) 1989-04-14 1989-04-14 Optical waveguide device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9315189A JPH02272505A (en) 1989-04-14 1989-04-14 Optical waveguide device

Publications (1)

Publication Number Publication Date
JPH02272505A true JPH02272505A (en) 1990-11-07

Family

ID=14074540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9315189A Pending JPH02272505A (en) 1989-04-14 1989-04-14 Optical waveguide device

Country Status (1)

Country Link
JP (1) JPH02272505A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06300994A (en) * 1993-04-13 1994-10-28 Nec Corp Waveguide type optical device
EP0640860A2 (en) * 1993-08-27 1995-03-01 Nec Corporation Waveguide-type optical device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06300994A (en) * 1993-04-13 1994-10-28 Nec Corp Waveguide type optical device
EP0640860A2 (en) * 1993-08-27 1995-03-01 Nec Corporation Waveguide-type optical device
EP0640860A3 (en) * 1993-08-27 1995-08-30 Nec Corp Waveguide-type optical device.
US5479552A (en) * 1993-08-27 1995-12-26 Nec Corporation Waveguide-type optical device

Similar Documents

Publication Publication Date Title
CN106468835A (en) Optical waveguide components and use its photomodulator
JPH11231358A (en) Optical circuit and its production
JP2017129834A (en) Optical waveguide element and optical modulator using the same
JP2008250081A (en) Optical control device
JP6369147B2 (en) Optical waveguide device and optical modulator using the same
JP2574594B2 (en) Optical waveguide device and manufacturing method thereof
US5371812A (en) Waveguide type optical directional coupler
JPH1082921A (en) Optical waveguide substrate, optical waveguide parts, second harmonics generating device and manufacturing method of optical waveguide substrate
JPH02272505A (en) Optical waveguide device
US20220326555A1 (en) Optical device
JPH06289346A (en) Dielectric substance optical waveguide element and its production
Eda et al. Direct heterobonding of lithium niobate onto lithium tantalate
JPH06289347A (en) Optical waveguide element and its manufacture
JP2581486B2 (en) Optical waveguide device and method of manufacturing the same
JPS6038689B2 (en) Method for manufacturing waveguide electro-optic light modulator
JPH0445478A (en) Laser display
JPS61292613A (en) Faraday rotor and its production
CN109491110A (en) High damage threshold Waveguide Phase Modulator
JPH01246529A (en) Waveguide type optical switch
JP2606525B2 (en) Optical waveguide device and manufacturing method thereof
JPH06174908A (en) Production of waveguide type diffraction grating
JPS6020723B2 (en) Method for manufacturing waveguide electro-optic light modulator
JP2982836B2 (en) Manufacturing method of waveguide type isolator
JPH0361912A (en) Semiconductor optical waveguide
JPS606922A (en) Thin-film optical control element