JPS606922A - Thin-film optical control element - Google Patents

Thin-film optical control element

Info

Publication number
JPS606922A
JPS606922A JP11451883A JP11451883A JPS606922A JP S606922 A JPS606922 A JP S606922A JP 11451883 A JP11451883 A JP 11451883A JP 11451883 A JP11451883 A JP 11451883A JP S606922 A JPS606922 A JP S606922A
Authority
JP
Japan
Prior art keywords
thin film
film
control element
voltage
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11451883A
Other languages
Japanese (ja)
Inventor
Hideaki Adachi
秀明 足立
Kentaro Setsune
瀬恒 謙太郎
Takao Kawaguchi
隆夫 川口
Kiyotaka Wasa
清孝 和佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11451883A priority Critical patent/JPS606922A/en
Publication of JPS606922A publication Critical patent/JPS606922A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/055Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect the active material being a ceramic

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To obtain an optical control element which has superior reproducibility and high-speed operability by arranging >=1 couples of electrodes on the surface of a thin dielectric film grown on a transparent substrate, and applying voltages to the electrode couples. CONSTITUTION:The thin dielectric film 32 which is, specially, a thin film of a PLZT compound is grown on the transparent substrate 31 of sapphire, etc., to an about 30mum thickness so that 0.14< La and La+Pb<0.4 with regard to the content mol ratio of Pb and La in the film. Then, Comb-shaped type counter electrodes 33 and 33' are fitted onto the film 32 at a narrow interval of about 20mum to form an optical modulating element. Coherent light having an optional image pattern 34 is made incident at right angles to the surface of the film 32 and a voltage is applied between the electrodes 33 and 33' to modulate an output pattern 35 according to the level of the applied voltage. In this example, such fast modulation that a response speed is several n seconds with a 180 deg. modulating voltage 100V is realized. Thus, the thin dielectric film 32 is used to manufacture a high-speed optical shutter, ligical arithmetic element, etc., to small size faster than before.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電界を加えることにより光を制御する光制御
素子に関するものである。特に高速の動作が可能な光制
御素子に関している。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a light control element that controls light by applying an electric field. In particular, it relates to a light control element capable of high-speed operation.

従来例の構成とその問題点 最近の光情報処理分野の発展とともに、光学素子への種
々の要求が高1っている。特に51人力信号に応じて高
速に制御する素子の発展が望1れている。例えば光を入
力信号に応じてON、OFFさせる光シヤツターを考え
た場合、従来機械的な動力を用、いたもの、電気光学性
パルクイ:A旧を用いたもの等があった。機械的な構造
にJ:り光をON。
2. Description of the Related Art Structures of Conventional Examples and Their Problems With the recent development of the field of optical information processing, various demands on optical elements are increasing. In particular, it is desired to develop devices that can be controlled at high speed in response to human input signals. For example, when considering an optical shutter that turns light on and off in response to an input signal, there are conventional shutters that use mechanical power, and those that use electro-optic PLC: Old A. Turn on the light to the mechanical structure.

OFFさせる素子はどうしても装置が大型になり、また
応答速度は速くてm、 secというオーダーで、最近
の高速光情報処理分野においては使用ハ輔しいと考えら
れている。捷た電気光学性パルクイA料を用いた光制御
素子は、例えば第1図に示す構造のものがある。電気光
学性バルク月料11に電界を加えて光学特性を変化させ
、その部分を通過する光15を制御するもので、第1図
aのようにバルク11の両端面に電極12を設けるもの
、あるいは第1図すのようにバルクの片側表面」二に平
行対電極12を設けるもの等の構造がある016は出先
光である。
The device to be turned off inevitably requires a large device, and the response speed is fast, on the order of m, sec, so it is considered difficult to use in the recent field of high-speed optical information processing. An example of a light control element using the spun electro-optic PARCUIA material is shown in FIG. 1. An electric field is applied to the electro-optic bulk material 11 to change its optical characteristics, and the light 15 passing through that part is controlled, and electrodes 12 are provided on both end surfaces of the bulk 11 as shown in FIG. 1a. Alternatively, as shown in FIG. 1, 016 is an outgoing light having a structure in which a parallel counter electrode 12 is provided on one surface of the bulk.

第1図aの構造の素子は制御される光線は一本であるが
バルクの光学特性を一様に変化させることができるので
、効率よく光の制御が行なえる。
In the element having the structure shown in FIG. 1A, only one light beam is controlled, but the optical characteristics of the bulk can be uniformly changed, so that light can be controlled efficiently.

第1図すの構造の素子は電界による光学特性変化が効率
よくいかないが、バルク11の表面上に電対もの電極対
を構成できるので、大面積画像の制御ができる。
Although the element having the structure shown in FIG. 1 does not efficiently change its optical characteristics due to an electric field, it is possible to construct a pair of electrodes on the surface of the bulk 11, so that a large area image can be controlled.

」二記構造を持つ光学素子において高速に動作を行なわ
せるには、電極対間の容量を小さくする必要がある。と
ころで電気光学性バルク材料は通常誘電率が大きい物質
であり、電極対間容量を低減させるにはかなり電極対間
隔13を広げるが幅14を短くするかしなければならな
い。電極対間隔13を広げると動作電圧が大きくなり、
実用上の障害となる。幅14を狭めるのは研摩で実現で
きるが限度は50μm程度で、この位の厚さのものは扱
いに<<才だ厚み分布を少なくとも30μmは持つので
安定な素子の構成は困難である。通常、厚みは数百μm
以上のものが使われる。従ってこの種のバルクを用いた
素子の動作速度としては高速のもので1lSeCのオー
ダに停止す、高速情報処理分野の要求をまだ1だ満たす
ものではない。また電気光学性バルクを用いた光制御素
子はある程度の厚み(幅14)のため透過させる光線の
熱をきわめて多く吸収し、素子の寿命や再現性等の問題
もかかえていた。
In order to operate at high speed in an optical element having the structure described above, it is necessary to reduce the capacitance between the electrode pair. Incidentally, the electro-optic bulk material usually has a high dielectric constant, and in order to reduce the capacitance between the electrode pairs, the electrode pair spacing 13 must be widened considerably, but the width 14 must be shortened. Increasing the electrode pair spacing 13 increases the operating voltage,
This poses a practical obstacle. The width 14 can be narrowed by polishing, but the limit is about 50 .mu.m.Thicknesses of this order are difficult to handle, but since they have a thickness distribution of at least 30 .mu.m, it is difficult to construct a stable element. Usually the thickness is several hundred μm
The above are used. Therefore, the operating speed of an element using this type of bulk is on the order of 11SeC, which still does not meet the requirements of the field of high-speed information processing. Furthermore, since the light control element using the electro-optic bulk has a certain thickness (width 14), it absorbs a large amount of heat from the transmitted light beam, and has problems such as the life span of the element and reproducibility.

本発明者等は、上記構造を持つ光制御素子を透明基板上
に育成された薄膜で構成することにより、音列にも良好
な動作ができるという発見に基づき薄膜光制御素子を発
明した。
The present inventors invented a thin film light control element based on the discovery that by constructing a light control element having the above structure with a thin film grown on a transparent substrate, it can perform well even in a tone sequence.

発明の目的 本発明は、このように従来再現性、高速性が問題とされ
てきた光制御素子においてその改善を行ない、安定で高
速動作が可能な光制御素子を提供することを目的として
いる。
OBJECTS OF THE INVENTION It is an object of the present invention to provide a light control element that is stable and capable of high-speed operation by improving the light control element in which reproducibility and high speed have been problems in the past.

発明の構成 本発明による薄膜光制御素子は、透明基板」二に育成さ
れた誘電性薄膜の表面に一対以上の電極対全配置し、上
記電極対間に電圧を加えることにより薄膜面を横切って
透過する光を制御するものである。従来用いられてきた
電気光学性バルクを使った光制御素子において、光路幅
14を短くしていくと電極対間容量は小さくなるが、逆
に光を変化させる光路幅が短くなり充分な動作ができな
いとされてきた。本発明の薄膜光制御素子の場合、薄膜
の厚みを数十μm以下で均一に作ることができるので、
電極対間隔を極めて短かくしても電極対間容量を小さく
おさえることが可能で、丑だ電対間隔が短かいことから
同じ印加電圧に対しても電界強度が強いものとなる。従
って薄膜の薄いことによる光路長の不足が強い電界強度
により補われ、これまで薄膜のような薄い材料に対して
これを横切って通過する光を制御することは不可能と考
えられていた構成が、以外にも良好であることがわかっ
た。上記構成による薄膜光制御素子は、電極間容量が小
さいことから応答速度がn5lIC以下のもの1で可能
となり、高速光情報処理の応用に適したものとなる。
Structure of the Invention The thin film light control device according to the present invention has at least one pair of electrodes arranged on the surface of a dielectric thin film grown on a transparent substrate, and by applying a voltage between the electrode pairs, the thin film light control element can be applied across the thin film surface. It controls the light that passes through it. In conventionally used light control elements using electro-optic bulk, as the optical path width 14 is shortened, the capacitance between the electrode pairs becomes smaller, but conversely, the optical path width for changing the light becomes shorter, and sufficient operation is not achieved. It has been said that it cannot be done. In the case of the thin film light control element of the present invention, the thickness of the thin film can be made uniform to several tens of micrometers or less.
Even if the distance between the electrode pairs is made extremely short, the capacitance between the electrode pairs can be kept small, and because the distance between the electrode pairs is short, the electric field strength will be strong even for the same applied voltage. Therefore, the lack of optical path length due to the thinness of the thin film is compensated for by the strong electric field strength, and a configuration that was previously thought to be impossible to control light passing across thin materials such as thin films is now possible. , it was found that other things were also good. Since the thin film optical control element having the above structure has a small interelectrode capacitance, a response speed of less than n5lIC can be achieved, making it suitable for application to high-speed optical information processing.

また本発明による薄膜光制御素子は、誘電性薄膜をたと
えばPLZT薄膜で構成している。誘電性薄膜は電気光
学効果の大きいことが必要である。
Further, in the thin film light control element according to the present invention, the dielectric thin film is made of, for example, a PLZT thin film. The dielectric thin film needs to have a large electro-optic effect.

PLZT化合物はこの種の効果を犬きく示すことは知ら
れているが、従来光学素子として用いられてきたものは
セラミックスの形態であり、薄膜化にしたもので電気光
学効果の大きいものは得られてなかった。本発明者等は
PLZT化合物の薄膜化の研究を行ない、ある最適の育
成条件を選ぶと電気光学効果の大きいエピタキシャル薄
膜が得られることを発見した。このような大きな電気光
学効果を持つ薄膜を使用することで上記の薄膜光制御素
子を構成することが可能と々っだ。
It is known that PLZT compounds exhibit this type of effect, but the ones that have been used as optical elements so far have been in the form of ceramics, and it has been difficult to obtain large electro-optic effects by making them into thin films. It wasn't. The present inventors have conducted research on thinning PLZT compounds and have discovered that by selecting certain optimal growth conditions, an epitaxial thin film with a large electro-optic effect can be obtained. By using a thin film with such a large electro-optic effect, it is very possible to construct the above-mentioned thin film light control element.

丑たPLZT化合物薄膜の組成としては、薄膜中の鉛(
pb)とランタン(La)の含有モル比率が○−14<
 LaAa十pb < 0.4の範囲にあるととくに有
効であることを確認した。
The composition of the Ushita PLZT compound thin film is that lead (
If the molar ratio of pb) and lanthanum (La) is ○-14<
It was confirmed that it is particularly effective when LaAa is in the range of 10 pb < 0.4.

すなわち第2図において電気光学効果の組成による変化
全曲線21に示す。同図から領域22に示す組成範囲で
大きな電気光学効果が得られ、上記組成範囲の薄膜で優
れた素子が構成されることがわかる。なお、PLZTに
はバルクとしてセラミックス4J料があるが、これらの
セラミックスでは本発明にかかる組成ではこの種の大き
い電気光学効果は期待されてない領域である。本発明の
組成の薄膜が大きい電気光学効果を持つ理由は明らかで
ないが、多分薄膜形成時の材料合成プロセスが関係して
いると考えられている。
That is, in FIG. 2, a total change curve 21 according to the composition of the electro-optic effect is shown. It can be seen from the figure that a large electro-optical effect can be obtained in the composition range shown in region 22, and that an excellent element can be constructed with a thin film in the above composition range. Note that PLZT has ceramic 4J materials as a bulk material, but these ceramics are not expected to have this type of large electro-optic effect with the composition according to the present invention. The reason why the thin film having the composition of the present invention has a large electro-optic effect is not clear, but it is thought that the material synthesis process during thin film formation is probably involved.

実施例の説明 以下実施例により、本発明にかかる薄膜光制御素子の説
明を行なう。
DESCRIPTION OF EMBODIMENTS The thin film light control device according to the present invention will be explained below with reference to Examples.

実施例1 第3図は本発明の一実施例にかかる薄膜光制御素子を用
いた画像変調器である。サファイア基板31の」二に育
成された厚さ30μmのPLZT薄膜32上に2oμm
間隔の櫛型対向電極33 、33’を付けて素子を形成
する。PLZTの組成は電気光学効果の太きい(La、
/La十Pb )−0,28f用いている。薄膜面と垂
直に任意の画像パターン34を持つコヒーレント光を入
射させ、対向電極33゜33′間に電圧全灯えると、電
圧の大きさに応じて出カバターン35’(i−変調させ
ることが可能である。
Embodiment 1 FIG. 3 shows an image modulator using a thin film light control element according to an embodiment of the present invention. A 30 μm thick PLZT thin film 32 grown on the sapphire substrate 31 has a thickness of 20 μm.
A device is formed by attaching comb-shaped counter electrodes 33 and 33' spaced apart. The composition of PLZT has a strong electro-optic effect (La,
/La0Pb)-0,28f is used. When coherent light having an arbitrary image pattern 34 is incident perpendicularly to the thin film surface and a full voltage is applied between the opposing electrodes 33 and 33', the output pattern 35' (i-modulation can be modulated) depending on the magnitude of the voltage. It is possible.

上記構成によると+、 1 ’8 QO変調電圧は10
0V。
According to the above configuration, +, 1 '8 QO modulation voltage is 10
0V.

応答速度は数n5cCという高速画像変調器が構成でき
た。
A high-speed image modulator with a response speed of several n5cC was constructed.

実施例2 第4図は本発明の薄膜光制御素子で光シヤツター全構成
したものである。実施例1の構成の素子の入射側と出射
側にそれぞれ偏光子34と検光子35を直交ニコルに配
置して構成される。ランダムな光線41は偏光子34を
通って直線偏光され、制御素子の電界印加状態により0
°変調あるいは18♂変調の状態をとるように設定され
ている。
Embodiment 2 FIG. 4 shows an optical shutter entirely constructed using the thin film light control element of the present invention. A polarizer 34 and an analyzer 35 are arranged in crossed nicols on the incident side and the output side of the element having the configuration of Example 1, respectively. The random light beam 41 passes through the polarizer 34 and is linearly polarized, and depending on the electric field application state of the control element, the random light beam 41 becomes 0.
It is set to take the state of ° modulation or 18♂ modulation.

従って検光子を通る出力光42の状態はd変調のとき暗
く1800変調のとき明るい。すなわち電圧100■の
印加によりON、OFFする高速光シャッターが構成で
きた。
Therefore, the state of the output light 42 passing through the analyzer is dark when the modulation is d and bright when the modulation is 1800. In other words, a high-speed optical shutter that turns on and off by applying a voltage of 100 μm was constructed.

実施例3 実施例2に示す高速光シャッターの特性を使うと論理演
算素子を作ることができる。第5図aはOR演算素子を
構成したものである。この素子は第5図すに示す断面図
かられかるように、サファイア基板31の両側にPLZ
T薄膜32を育成して電極対33,33′を付けたもの
で、上記の簡素で小型な構i告で動作を行なわせること
ができる。
Embodiment 3 By using the characteristics of the high-speed optical shutter shown in Embodiment 2, a logic operation element can be manufactured. FIG. 5a shows a configuration of an OR operation element. As can be seen from the cross-sectional view shown in FIG. 5, this element has PLZ on both sides of the sapphire substrate 31.
By growing a T thin film 32 and attaching electrode pairs 33, 33', it is possible to operate with the above-mentioned simple and compact structure.

一つの素子の変調度は、電界印加により900になるよ
うに設定しである。すなわち、片側の電圧入力に対して
は900変調することにより入力光42は明るくなる。
The modulation degree of one element is set to 900 by applying an electric field. That is, the input light 42 becomes brighter by performing 900 modulation for the voltage input on one side.

両側の電圧入力に対しては1800変調によりやはり明
るく、両側の電圧入力がないときのみ出力光はでない。
For voltage inputs on both sides, it is still bright due to 1800 modulation, and there is no output light only when there are no voltage inputs on both sides.

従って2人力の少なくとも一方に信号が入った時に光が
出力するというOR演算が行なわれる。この他にAND
、NAND。
Therefore, an OR operation is performed in which light is output when a signal is input to at least one of the two power sources. AND in addition to this
,NAND.

NOR回路等も偏5Th板と素子の組み合わせて構成す
ることができる。
A NOR circuit or the like can also be constructed by combining a polarized 5Th board and an element.

発明の効果 以−にのように、本発明は誘電性薄膜を横切って透過す
る光を、薄膜上の電極からの電界で制御することにより
、従来のものより高速で小型の光制御素子を実現したも
ので、本発明の工業的価値は高い0
Effects of the Invention As described above, the present invention realizes a light control element that is faster and smaller than conventional ones by controlling the light transmitted across a dielectric thin film using the electric field from the electrode on the thin film. Therefore, the industrial value of the present invention is high.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a、bは従来例の光制御素子の概略図、第2図は
電気光学効果とPLZT薄膜の組成の関係を示すグラフ
、第3図は本発明の一実施例における薄膜画像変調器の
概略図、第4図は本発明の他の実施例における薄膜光シ
ャッターの構成図、第5図aは本発明の他の実施例にお
ける薄膜光演算素子を示す図、第6図すは同aの素子基
板の断面図である。 21・・・・薄膜の組成と電気光学効果の関係を示す曲
線、22・・・・・・電気光学効果の大きい組成領域、
31・・・・サファイア基板、32・・・・・PLZT
薄膜、33.33’・・・・・・平行電極、34・・・
・・入射光パターン、35・・・・・・透過光パターン
、41・・・・・入力元、42・・・・・出力光。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 (θ、) 第2図 16 XIO(nt7v)2 0 0、I O,20,30,40,5簿腰の Lシ 
比 Lo−士Pb 第3図 2 第5図 (α)
Figures 1a and b are schematic diagrams of a conventional light control element, Figure 2 is a graph showing the relationship between the electro-optic effect and the composition of a PLZT thin film, and Figure 3 is a thin film image modulator according to an embodiment of the present invention. 4 is a schematic diagram of a thin film optical shutter according to another embodiment of the present invention, FIG. 5a is a diagram showing a thin film optical operation element according to another embodiment of the present invention, and FIG. It is a sectional view of the element substrate of a. 21... Curve showing the relationship between thin film composition and electro-optic effect, 22... Composition region with large electro-optic effect,
31...Sapphire substrate, 32...PLZT
Thin film, 33.33'...Parallel electrode, 34...
...Incidence light pattern, 35...Transmitted light pattern, 41...Input source, 42...Output light. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure (θ,) Figure 2 16 XIO (nt7v) 2 0 0, IO, 20, 30, 40, 5
Ratio Lo-shi Pb Fig. 3 2 Fig. 5 (α)

Claims (1)

【特許請求の範囲】 (1)透明基板」二に育成された誘電性薄膜の表面に一
対以上の電極対を配置し、上記電極対間に電圧を加える
ことにより、薄膜面を横切って透過する光を制御するこ
とを特徴とする薄膜光制御素子。 翰)誘電性薄膜がPLZT化合物薄膜よりなることを特
徴とする特許請求の範囲第1項記載の薄膜光制御素子。 (3)PLZT化合物薄膜において、薄膜中の鉛(pb
)とランタン(La )の含有モル比率が0・14 <
 ”’/La+Pb (0,4の範囲にあることを特徴
とする特許請求の範囲第2項記載の薄膜光制御素子。
[Claims] (1) One or more pairs of electrodes are arranged on the surface of a dielectric thin film grown on a transparent substrate, and a voltage is applied between the electrode pairs to transmit light across the surface of the thin film. A thin film light control element characterized by controlling light. 3. The thin film light control element according to claim 1, wherein the dielectric thin film is made of a PLZT compound thin film. (3) In the PLZT compound thin film, lead (pb
) and lanthanum (La ) content molar ratio is 0.14 <
3. The thin film light control element according to claim 2, characterized in that ``'/La+Pb (in the range of 0.4).
JP11451883A 1983-06-24 1983-06-24 Thin-film optical control element Pending JPS606922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11451883A JPS606922A (en) 1983-06-24 1983-06-24 Thin-film optical control element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11451883A JPS606922A (en) 1983-06-24 1983-06-24 Thin-film optical control element

Publications (1)

Publication Number Publication Date
JPS606922A true JPS606922A (en) 1985-01-14

Family

ID=14639754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11451883A Pending JPS606922A (en) 1983-06-24 1983-06-24 Thin-film optical control element

Country Status (1)

Country Link
JP (1) JPS606922A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6178018B1 (en) 1999-06-25 2001-01-23 International Business Machines Corporation Process and method employing dynamic holographic display medium
JP2006113475A (en) * 2004-10-18 2006-04-27 Ricoh Co Ltd Optical switch and printer using same
WO2009066728A1 (en) * 2007-11-20 2009-05-28 Rohm Co., Ltd. Light control device, semiconductor wafer, and light control system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6178018B1 (en) 1999-06-25 2001-01-23 International Business Machines Corporation Process and method employing dynamic holographic display medium
JP2006113475A (en) * 2004-10-18 2006-04-27 Ricoh Co Ltd Optical switch and printer using same
WO2009066728A1 (en) * 2007-11-20 2009-05-28 Rohm Co., Ltd. Light control device, semiconductor wafer, and light control system
US8154786B2 (en) 2007-11-20 2012-04-10 Rohm Co., Ltd. Light control device, semiconductor wafer, and light control system
JP5258786B2 (en) * 2007-11-20 2013-08-07 ローム株式会社 Light control device and light control system

Similar Documents

Publication Publication Date Title
US3874782A (en) Light-guiding switch, modulator and deflector employing antisotropic substrate
US3838906A (en) Optical switch
WO1995002205A1 (en) Optical modulator
JP4642356B2 (en) Buffer layer structure for stabilizing lithium niobate devices
JPS606922A (en) Thin-film optical control element
JPS5987B2 (en) Electro-optical switches and modulators
US20040047533A1 (en) Device for contolling polarisation in an optical connection
JPS6038689B2 (en) Method for manufacturing waveguide electro-optic light modulator
US4046455A (en) Irregular ferroelectric element devised for motion of plural domain-walls
JP2005274793A (en) Optical waveguide and optical waveguide device
JPS6097319A (en) Optical waveguide element
JPH0367218A (en) Optical modulator
JPS5993431A (en) Optical switch
JPH02257108A (en) Optical waveguide device
JP2615022B2 (en) Optical waveguide and method of manufacturing the same
JP3969756B2 (en) Optical functional device
JPS63249820A (en) Optical deflector of liquid crystal
JP4495326B2 (en) Chirp control method of light modulation element
JPS61182015A (en) Optical shutter array
JPH0222621A (en) Optical element and optical parts using this element
JPS6236631A (en) Waveguide type optical modulator
JPH0324649B2 (en)
JPH02272505A (en) Optical waveguide device
JPS6211329B2 (en)
JPS58107516A (en) Optical switching array