JPH0324649B2 - - Google Patents

Info

Publication number
JPH0324649B2
JPH0324649B2 JP56031703A JP3170381A JPH0324649B2 JP H0324649 B2 JPH0324649 B2 JP H0324649B2 JP 56031703 A JP56031703 A JP 56031703A JP 3170381 A JP3170381 A JP 3170381A JP H0324649 B2 JPH0324649 B2 JP H0324649B2
Authority
JP
Japan
Prior art keywords
optical
crystal
light
optical modulator
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56031703A
Other languages
Japanese (ja)
Other versions
JPS57146221A (en
Inventor
Mitsukazu Kondo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP3170381A priority Critical patent/JPS57146221A/en
Publication of JPS57146221A publication Critical patent/JPS57146221A/en
Publication of JPH0324649B2 publication Critical patent/JPH0324649B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/0327Operation of the cell; Circuit arrangements

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Description

【発明の詳細な説明】 本発明は結晶の電気光学効果を用いて光波の偏
光状態を変調するための光変調方式に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical modulation method for modulating the polarization state of a light wave using the electro-optic effect of a crystal.

光通信システムや光メモリ装置、レーザ記録装
置等の光情報処理システムでは、レーザや発光ダ
イオードから発生した光波ビームの振幅を高速に
電気的に変調する光変調器が必要である。また、
光通信システムでは高速で光路を切換える光スイ
ツチが必要とされている。従来、光変調器として
は音響光学効果や磁気光学効果、電気光学効果を
使つた光変調器が使われているが、結晶の電気光
学効果を使つた光変調器が最も高速である。光ス
イツチにはミラー等の光学部品を機械的に動かし
て光路を切換える方法、音響光学効果によつて光
を回折させて光路を切換える方法、電気光学効果
を用いた光変調器によつて光の偏光状態を変換
し、複屈折性物質を用いた偏光分離器によつて光
路を切換える方法がある。このうち、結晶の電気
光学効果を用いた光変調器と偏光分離器とを使つ
た光スイツチが最も高速である。
Optical information processing systems such as optical communication systems, optical memory devices, and laser recording devices require optical modulators that electrically modulate the amplitude of light wave beams generated from lasers and light emitting diodes at high speed. Also,
Optical communication systems require optical switches that can switch optical paths at high speed. Conventionally, optical modulators that use the acousto-optic effect, magneto-optic effect, or electro-optic effect have been used as optical modulators, but the optical modulator that uses the electro-optic effect of crystals is the fastest. Optical switches include methods that change the optical path by mechanically moving optical parts such as mirrors, methods that change the optical path by diffracting the light using the acousto-optic effect, and methods that use an optical modulator that uses the electro-optic effect to change the optical path. There is a method of converting the polarization state and switching the optical path using a polarization separator using a birefringent material. Among these, an optical switch using an optical modulator and a polarization separator using the electro-optic effect of a crystal is the fastest.

結晶の電気光学効果を使つた光変調器には(1)電
気光学結晶の2つの主軸方向の偏光成分間の位相
遅延量を電気的に制御して光の偏光状態を変換す
る光変調器、(2)屈折率楕円体の回転を生じせしめ
る電気光学効果を使い、光透過方向に周期的な電
界を印加することによつて入射直線偏光を直交す
る偏光成分に変換する光変調器等がある。なお、
(1),(2)のいずれの光変調器も、入射光の振幅を変
調するときには偏光子を用いる。上記の光変調器
のうち、(1)の変調器は普通ADP結晶、KDP結
晶、Bi12SiO20結晶、タンタル酸リチウム
(LiTaO3)結晶等の電気光学定数が比較的大き
い結晶を用いて作られる。しかし、ADP結晶や
KDP結晶には潮解性があるため、取扱いが難し
い。また、ADP結晶、KDP結晶、Bi12SiO20結晶
を用いた場合は、高電圧が必要であるという欠点
がある。LiTaO3結晶を用いた場合は印加電圧は
低くてよいが周囲温度が変化したときに電圧を加
えなくても偏光状態が変化してしまうので高い消
光比が得られないという欠点がある。この
LiTaO3結晶を用いた(1)の光変調器では、2つの
結晶を縦続して用いることにより温度補償を行な
う方法が知られているが、結晶の均質性や高い製
精度を必要とするので実用的ではない。
Optical modulators using the electro-optic effect of crystals include (1) an optical modulator that converts the polarization state of light by electrically controlling the amount of phase delay between the polarization components in the two main axis directions of the electro-optic crystal; (2) There are optical modulators that convert incident linearly polarized light into orthogonal polarized light components by applying a periodic electric field in the light transmission direction using the electro-optic effect that causes rotation of the refractive index ellipsoid. . In addition,
Both of the optical modulators (1) and (2) use a polarizer when modulating the amplitude of incident light. Among the above optical modulators, the modulator (1) is usually made using a crystal with a relatively large electro-optic constant, such as an ADP crystal, a KDP crystal, a Bi 12 SiO 20 crystal, or a lithium tantalate (LiTaO 3 ) crystal. It will be done. However, ADP crystals
KDP crystals are difficult to handle due to their deliquescent nature. Furthermore, when ADP crystal, KDP crystal, or Bi 12 SiO 20 crystal is used, there is a drawback that high voltage is required. When using LiTaO 3 crystal, the applied voltage may be low, but the drawback is that a high extinction ratio cannot be obtained because the polarization state changes when the ambient temperature changes even without applying a voltage. this
In the optical modulator (1) using LiTaO 3 crystals, a method is known in which temperature compensation is achieved by using two crystals in series, but this requires crystal homogeneity and high manufacturing precision. Not practical.

一方、(2)の光変調器はやはりLiTaO3結晶等を
用いて構成することができるので比較的低電圧で
動作し、しかも電圧を印加しないときの偏光状態
は温度によらず常に一定であるので比較的高い消
光比が得られるという特長がある。そこで、(2)の
光変調器は単なる光変調器として、また、前記の
ように光スイツチを構成するための光変調器とし
ても優れている。さらに(2)の光変調器は設置する
電極の構造を選ぶことにより動作する波長範囲を
任意に設定できるという特長がある。そこで例え
ば電極の光透過方向の長さを長くし、その全体に
わたつて電極周期を一定にすると非常にせまい範
囲の波長だけを変調するような波長フイルタ効果
を兼ね備えた光変調が得られる。上記光変調器を
偏光分離器と組合わせると、特定波長だけを切換
える光スイツチが得られ、複数の波長光を扱う波
長多重通信システムに用いることができる。ま
た、動作波長範囲をさらに狭くするためには、電
極を長くして電極周期の数を増せばよい。この目
的にはニオブ酸リチウム(LiNbO3)結晶上に光
導波路を設置し、その上に微小な周期をもつた電
極を設置することにより小形の光変調器が得られ
る。以上のように(2)の光変調器は他の光変調器に
はみられない特有の機能をも有しているのであ
る。前述のように光通信システムや光情報処理シ
ステムで光変調器又は光スイツチを使用すると
き、高速に駆動できるという条件の他に、ある光
出力状態又はある光スイツチング状態を一定に保
てることが要求される場合がある。例えばレーザ
写真記録装置に用いる光変調器では調整や基準レ
ベルの設定を行なうために白、黒又は一定濃度の
画面を記録するときに光出力を長時間一定に保つ
必要がある。また、光通信システムで光スイツチ
により切換えた光路を長時間一定に保つ場合にも
光変調器の出力は一定であることが必要である。
上記の如く、光変調器の出力をあるレベルに保つ
場合、従来は光変調器に直流電圧を印加していた
が、このとき直流電界ドリフトという現象が生
じ、結晶の内部電界が徐々に変化してしまうので
0.5秒程度以上の時間ある光出力レベルを保つこ
とはできなかつた。そこで、この点を解消するた
め、単に印加電圧の極性を周期的に反転する方
法、即ち交流矩形電圧を印加して定常状態を保つ
方法が考えられるが、極性を反転するときに電圧
0の点をよぎるので光量がその瞬間0になつてし
まうという問題が生じる。前述のように(2)の光変
調器は優れた性質をもつているが従来は上記のド
リフト状態のためにその用途は大幅に狭められて
いた。
On the other hand, the optical modulator in (2) can be constructed using LiTaO 3 crystal, etc., so it operates at a relatively low voltage, and the polarization state is always constant regardless of temperature when no voltage is applied. Therefore, it has the advantage of being able to obtain a relatively high extinction ratio. Therefore, the optical modulator (2) is excellent not only as a simple optical modulator but also as an optical modulator for configuring an optical switch as described above. Furthermore, the optical modulator (2) has the advantage that the operating wavelength range can be set arbitrarily by selecting the structure of the electrodes installed. Therefore, for example, by increasing the length of the electrode in the light transmission direction and making the electrode period constant over the entire length, it is possible to obtain light modulation that also has a wavelength filter effect that modulates only a very narrow range of wavelengths. When the above-mentioned optical modulator is combined with a polarization splitter, an optical switch that switches only a specific wavelength can be obtained, which can be used in a wavelength division multiplexing communication system that handles light of a plurality of wavelengths. Furthermore, in order to further narrow the operating wavelength range, the electrodes may be made longer to increase the number of electrode periods. For this purpose, a compact optical modulator can be obtained by installing an optical waveguide on a lithium niobate (LiNbO 3 ) crystal and placing an electrode with a minute period on top of the optical waveguide. As described above, the optical modulator (2) also has unique functions not found in other optical modulators. As mentioned above, when using an optical modulator or optical switch in an optical communication system or optical information processing system, in addition to being able to drive at high speed, there is also a requirement that a certain optical output state or a certain optical switching state can be maintained constant. may be done. For example, in an optical modulator used in a laser photographic recording device, it is necessary to keep the optical output constant for a long time when recording a white, black, or constant density screen for adjustment and setting of a reference level. Further, in an optical communication system, when an optical path switched by an optical switch is kept constant for a long time, the output of the optical modulator needs to be constant.
As mentioned above, in order to maintain the output of an optical modulator at a certain level, conventionally a DC voltage was applied to the optical modulator, but at this time a phenomenon called DC electric field drift occurs, and the internal electric field of the crystal gradually changes. Because it ends up
It was not possible to maintain a certain light output level for more than about 0.5 seconds. Therefore, in order to solve this problem, a method of simply reversing the polarity of the applied voltage periodically, that is, a method of maintaining a steady state by applying an AC rectangular voltage, can be considered, but when reversing the polarity, the point where the voltage is 0 A problem arises in that the amount of light instantly drops to 0 as the light passes through the light. As mentioned above, the optical modulator (2) has excellent properties, but in the past, its applications were greatly limited due to the above-mentioned drift state.

本発明は上記(2)の光変調器を用いた光変調方式
において、光量の変化がない定常的な光出力状態
を長時間保持できる光変調方式を提供するもの
で、結晶の屈折率楕円体の主軸の回転を生じさせ
る電気光学効果を有する結晶、例えばLiTaO3
晶やLiNbO3結晶上に光透過方向に等しい周期を
有する複数個の電極を光透過方向に縦続して設置
し、それぞれの電極に互いに位相の異なる交流電
圧又は矩形電圧を印加することを特徴とするもの
である。
The present invention provides an optical modulation method using an optical modulator as described in (2) above, which can maintain a steady light output state for a long time without any change in the amount of light. A plurality of electrodes having a period equal to the light transmission direction are installed in series in the light transmission direction on a crystal that has an electro-optic effect that causes rotation of the main axis, such as LiTaO 3 crystal or LiNbO 3 crystal. This is characterized by applying alternating current voltages or rectangular voltages having different phases to each other.

本発明の実施例を図によつて説明する。 Embodiments of the present invention will be described with reference to the drawings.

第1図は本発明による光変調方式の一実施例を
示すものである。第1図aは本発明に用いる光変
調器の一例であり、第1図b,cは印加電圧の一
例を示す。第1図aにおいてY軸方向に光を透過
するように形成したX板LiTaO3結晶1上にy方
向に周期Λをもち、Y方向に縦続して設置された
くし形電極2及び3と、それらにかみ合つたくし
形電極4によつてインターデイジタル電極が構成
されている。くし形電極2及び3はそれぞれ信号
発生器5及び6に接続され、くし形電極4と
LiTaO3結晶1の下面に蒸着された電極は接地さ
れている。本実施例において結晶1の厚さは0.05
〜0.3μm程度であり、周期Λは結晶1の厚さより
十分大きい。第1図aの光変調器においてくし形
電極4とくし形電極2又は3との間に電圧を印加
したときは+X,−X方向の電界がY方向に交互
にΛの周期で生じ、ポツケルス定数γ51によつて
入射光7のX方向の偏波成分がZ方向偏波成分に
変換されて出射光9となる。ここでLiTaO3結晶
の常光及び異常光に対する屈折率をそれぞれnp
neとし、光波長をλとすると周期Λは(1)式を満足
するように選ばれる。
FIG. 1 shows an embodiment of the optical modulation system according to the present invention. FIG. 1a shows an example of an optical modulator used in the present invention, and FIGS. 1b and 1c show examples of applied voltages. In FIG. 1a, on the X-plate LiTaO 3 crystal 1 formed to transmit light in the Y-axis direction, comb-shaped electrodes 2 and 3 having a period Λ in the y-direction and installed in series in the Y-direction, and The interdigitated electrodes 4 constitute an interdigital electrode. The comb-shaped electrodes 2 and 3 are connected to signal generators 5 and 6, respectively, and the comb-shaped electrodes 4 and 3 are connected to signal generators 5 and 6, respectively.
The electrode deposited on the lower surface of the LiTaO 3 crystal 1 is grounded. In this example, the thickness of crystal 1 is 0.05
The period Λ is approximately 0.3 μm, and the period Λ is sufficiently larger than the thickness of the crystal 1. When a voltage is applied between the comb-shaped electrode 4 and the comb-shaped electrode 2 or 3 in the optical modulator shown in FIG. The X-direction polarization component of the incident light 7 is converted into a Z-direction polarization component by γ 51 and becomes the output light 9. Here, the refractive index of LiTaO 3 crystal for ordinary light and extraordinary light is n p
Letting n e and the optical wavelength be λ, the period Λ is selected so as to satisfy equation (1).

2π/Λ(2π/λ)(ne−np) (1) 印加電圧の大きさによつてX,Z両偏波成分間
の変換効率が決定され、印加電圧を調整すること
により100%に近い変換効率が得られる。上記光
変調器により入射光の強度を変調する場合には出
射側又は入側と出射側との両方に偏光子を挿入
し、光スイツチを構成する場合には偏光方向によ
つて光路を分離するための偏光分離器、例えば複
屈折性物質を挿入する。ところで従来の光変調器
では、くし形電極2と3とはつながつており、光
出力レベルを一定に保つときにはくし形電極2,
3にある一定電圧を印加していたため、前記のよ
うに直流電界ドリフト現象によつて出射光が変化
してしまい、長時間一定に保つことはできなかつ
たのであるが、本発明の実施例では、くし形電極
2には第1図bに示す矩形電圧を印加し、くし形
電極3には第1図cのように第1図bと振幅が同
じで位相がπ異なる矩形電圧を印加するものであ
る。したがつて本実施例では上述のようにくし形
電極2と3とに交互に電圧が印加され、くし形電
極2と3とのY方向の長さを等しくすることによ
り一方のみに電圧が印加されるとき、例えば第1
図b,cで時間t1又はt3のときの変換効率を等し
くできる。またそれらの中間の時間t2において
は、くし形電極2,3にはそれぞれ半分(V/
2)の電圧が印加されるが、光変調器の変換効率
は印加電圧と電圧が印加される部分のY方向の長
さの積で決められるので、時間t2の変換効率は時
間t1,t3のときに等しい。よつて本実施例で第1
図b,cのような電圧を印加することにより常に
一定の光出力が得られる。
2π/Λ (2π/λ) ( ne −n p ) (1) The conversion efficiency between the X and Z polarization components is determined by the magnitude of the applied voltage, and can be increased to 100% by adjusting the applied voltage. A conversion efficiency close to . When modulating the intensity of incident light with the above optical modulator, a polarizer is inserted on the output side or on both the input and output sides, and when configuring an optical switch, the optical path is separated depending on the polarization direction. Insert a polarization separator, for example a birefringent material, for this purpose. By the way, in the conventional optical modulator, the comb-shaped electrodes 2 and 3 are connected, and when keeping the optical output level constant, the comb-shaped electrodes 2 and 3 are connected.
3, since the constant voltage was applied, the emitted light changed due to the DC electric field drift phenomenon as described above, and it was not possible to keep it constant for a long time. However, in the embodiment of the present invention, , a rectangular voltage shown in FIG. 1b is applied to the comb-shaped electrode 2, and a rectangular voltage shown in FIG. It is something. Therefore, in this embodiment, voltage is applied alternately to the comb-shaped electrodes 2 and 3 as described above, and by making the lengths of the comb-shaped electrodes 2 and 3 in the Y direction equal, voltage is applied to only one of the comb-shaped electrodes 2 and 3. For example, when the first
In Figures b and c, the conversion efficiency at time t 1 or t 3 can be made equal. Also, at time t 2 intermediate between them, the comb-shaped electrodes 2 and 3 each have half (V/
2) voltage is applied, but since the conversion efficiency of the optical modulator is determined by the product of the applied voltage and the length of the part to which the voltage is applied in the Y direction, the conversion efficiency at time t 2 is equal to the conversion efficiency at time t 1 , Equal when t 3 . Therefore, in this example, the first
By applying voltages as shown in Figures b and c, a constant optical output can be obtained at all times.

なお、第1図aの光変調器の動作波長λは(1)式
によつて決められ、その波長範囲は電極指本数が
増加するほど狭くなる。そこで同じ長さの結晶を
使つて波長フイルタのように狭い動作波長幅の光
変調器を得ようとする場合には複屈折(ne−np
の値の大きい結晶を使つてΛを小さくすればよ
い。LiNbO3結晶はLiTaO3結晶に比べて複屈折
が20倍以上であるので上記の目的に適している。
第2図は本発明に用いる光変調器の他の実施例で
あり、上記の目的に使用するためX板LiNbO3
晶11を用いている。LiNbO3結晶11の上には
第1図aと同様にくし形電極12,13が設置さ
れさらに、それらにかみ合つたくし形電極14が
設置されインターデイジタル電極を構成してい
る。但、くし形電極12,13,14の周期Λ1
は第1図aの光変調器の周期Λの1/20以下であ
る。また、上記の如く微小な周期の電極により電
界が生ずるのは表面付近だけであるので光波中に
有効に電界を印加するために入射光はLiNbO3
晶1の表面にTi拡散法などによつて形成された
光導波路15中に閉込められて伝搬する。本実施
例の光変調器の動作は第1図aとほぼ同じであ
る。本実施例においてもくし形電極12及び13
にはそれぞれ第1図b,cのような互いに位相が
π異なる矩形電圧が印加され、光出力が一定に保
たれる。
The operating wavelength λ of the optical modulator shown in FIG. 1a is determined by equation (1), and the wavelength range becomes narrower as the number of electrode fingers increases. Therefore, when trying to obtain an optical modulator with a narrow operating wavelength width like a wavelength filter using crystals of the same length, birefringence (n e − n p )
Λ can be made small by using a crystal with a large value of . LiNbO 3 crystal has birefringence 20 times or more than LiTaO 3 crystal, so it is suitable for the above purpose.
FIG. 2 shows another embodiment of the optical modulator used in the present invention, in which an X-plate LiNbO 3 crystal 11 is used for the above purpose. On the LiNbO 3 crystal 11, comb-shaped electrodes 12 and 13 are placed as in FIG. However, the period Λ 1 of the comb-shaped electrodes 12, 13, 14
is less than 1/20 of the period Λ of the optical modulator shown in FIG. 1a. In addition, as mentioned above, an electric field is generated only near the surface by electrodes with a minute period, so in order to effectively apply an electric field to the light wave, the incident light is applied to the surface of the LiNbO 3 crystal 1 by Ti diffusion method etc. The light is confined in the formed optical waveguide 15 and propagates. The operation of the optical modulator of this embodiment is almost the same as that shown in FIG. 1a. In this embodiment, the comb-shaped electrodes 12 and 13
Rectangular voltages having phases different by π from each other as shown in FIG. 1b and c are applied to each of them, and the optical output is kept constant.

第3図は本発明に用いることの出来る光変調器
のさらに他の実施例である。本実施例においても
第2図と同様にLiNbO3結晶を用いているが、本
実施例ではZ板LiNbO3結晶21を用い、上面に
平行な方向(Y方向)に電界を生じさせるためく
し形電極22及び23とくし形電極24が対向す
るように配置されている。また第2図と同様に光
導波路25が設置されている。本実施例の動作原
理も第1図、第2図と全く同じであり、光透過方
向に縦続して配置したくし形電極22及び23に
第1図b及びcの電極をそれぞれ印加することに
より定常的な光出力状態を保持することができ
る。
FIG. 3 shows yet another embodiment of an optical modulator that can be used in the present invention. In this example, a LiNbO 3 crystal is used as in FIG. 2, but in this example, a Z-plate LiNbO 3 crystal 21 is used, and a comb-shaped crystal is used to generate an electric field in a direction parallel to the upper surface (Y direction). Electrodes 22 and 23 and a comb-shaped electrode 24 are arranged to face each other. Further, an optical waveguide 25 is installed as in FIG. 2. The operating principle of this embodiment is exactly the same as that of FIGS. 1 and 2, and by applying the electrodes b and c of FIG. A steady light output state can be maintained.

以上のように、本発明によれば、光量の変化が
ない定常的な光出力状態を長時間保持できる光変
調方式を得ることができるものである。
As described above, according to the present invention, it is possible to obtain a light modulation method that can maintain a steady light output state for a long time without any change in the amount of light.

なお、本発明に用いる光変調器の形態及び印加
電圧波形は上述の実施例に限定されるものではな
い。例えば第1図aの光変調器において、その下
面に上面と同様な電極パターンが形成されていて
もよい。また、光透過方向に設置する電極の数は
上述の実施例のように2つに限定されない。3個
の電極を継続して配置し、互いに2π/3位相の
異なる矩形電圧を印加してもよい。印加電圧波形
は第1図b,cの代わりにそれぞれsin2ωt,
cos2ωtに比例する電圧であつてもよい。ここで
ωは周波数、tは時間である。印加電圧波形は直
流ドリフト現象が生じない0.5秒以下の周期をも
つ交流電圧又は矩形電圧であればよい。なお、用
いる光変調器の材料としてはチタン酸バリウム結
晶、ニオブ酸バリウム・ナトリウム結晶、ニオブ
酸ストロンチウム・バリウム結晶等を用いること
ができる。
Note that the form of the optical modulator and the applied voltage waveform used in the present invention are not limited to the above-mentioned embodiments. For example, in the optical modulator shown in FIG. 1a, an electrode pattern similar to that on the upper surface may be formed on the lower surface. Further, the number of electrodes installed in the light transmission direction is not limited to two as in the above embodiment. Three electrodes may be arranged in succession and rectangular voltages having different phases of 2π/3 may be applied to each other. The applied voltage waveforms are sin 2 ωt and
It may be a voltage proportional to cos 2 ωt. Here, ω is frequency and t is time. The applied voltage waveform may be an alternating current voltage or a rectangular voltage having a period of 0.5 seconds or less without causing a direct current drift phenomenon. Note that as the material of the optical modulator used, barium titanate crystal, barium/sodium niobate crystal, strontium/barium niobate crystal, etc. can be used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図aは本発明に用いる光変調器の実施例を
示す斜視図、第1図b,cは本発明による印加電
圧波形の一例を示す図、第2図、第3図はそれぞ
れ本発明に用いる光変調器の他の実施例を示す斜
視図である。 図において1,11,21は結晶、2,3,
4,12,13,14,22,23,24はくし
形電極、5,6は信号発生器、15,25は光導
波路である。
FIG. 1a is a perspective view showing an embodiment of the optical modulator used in the present invention, FIGS. 1b and c are diagrams showing an example of the applied voltage waveform according to the present invention, and FIGS. 2 and 3 are respectively in accordance with the present invention. FIG. 3 is a perspective view showing another embodiment of the optical modulator used in the present invention. In the figure, 1, 11, 21 are crystals, 2, 3,
4, 12, 13, 14, 22, 23, and 24 are comb-shaped electrodes, 5 and 6 are signal generators, and 15 and 25 are optical waveguides.

Claims (1)

【特許請求の範囲】[Claims] 1 結晶の屈折率楕円体の主軸の回転を生じさせ
る電気光学効果を有する結晶上に、光透過方向に
等しい周期を有する複数個の電極を光透過方向に
縦続して設置し、それぞれの電極に互いに位相が
180゜異なる同一周期で同極性の周期状電圧を印加
することを特徴とする光変調方式。
1. On a crystal that has an electro-optical effect that causes rotation of the principal axis of the refractive index ellipsoid of the crystal, a plurality of electrodes having a period equal to the light transmission direction are installed in series in the light transmission direction, and each electrode is out of phase with each other
An optical modulation method characterized by applying periodic voltages of the same polarity with the same period differing by 180 degrees.
JP3170381A 1981-03-05 1981-03-05 Optical modulation system Granted JPS57146221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3170381A JPS57146221A (en) 1981-03-05 1981-03-05 Optical modulation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3170381A JPS57146221A (en) 1981-03-05 1981-03-05 Optical modulation system

Publications (2)

Publication Number Publication Date
JPS57146221A JPS57146221A (en) 1982-09-09
JPH0324649B2 true JPH0324649B2 (en) 1991-04-03

Family

ID=12338420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3170381A Granted JPS57146221A (en) 1981-03-05 1981-03-05 Optical modulation system

Country Status (1)

Country Link
JP (1) JPS57146221A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4542422B2 (en) * 2004-12-10 2010-09-15 富士通株式会社 Optical device and drive voltage supply apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54158951A (en) * 1978-06-05 1979-12-15 Nec Corp Light wavelength separating modulator and light wavelength multiple signal transmitter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54158951A (en) * 1978-06-05 1979-12-15 Nec Corp Light wavelength separating modulator and light wavelength multiple signal transmitter

Also Published As

Publication number Publication date
JPS57146221A (en) 1982-09-09

Similar Documents

Publication Publication Date Title
JPH0435732B2 (en)
US5317666A (en) Waveguide nonlinear optical frequency converter with integral modulation and optimization means
EP4028829A1 (en) Integrated electro-optic frequency comb generator
US4776656A (en) TE-TM mode converter
US4359268A (en) Light quantity control apparatus
US6584260B2 (en) Electro-optical device and a wavelength selection method utilizing the same
US4773732A (en) Optical interferometric apparatus with an electrically controllable intensity transmission factor
JPH0375848B2 (en)
JPH0375847B2 (en)
JPH0713111A (en) Apparatus and method for modulation of polarized-light optical signal
JPS6149649B2 (en)
JPH0324649B2 (en)
JP2002062516A (en) Electro-optic ssb optical modulator and optical frequency shifter having cyclic domain inversion structure
JPH04172316A (en) Wave guide type light control device
GB2151806A (en) An optical frequency converter device and a rate gyro containing such a device
JP2980996B2 (en) Light switch
JPS6227698B2 (en)
JPS6150288B2 (en)
JPS6211329B2 (en)
JP2606552B2 (en) Light control device
RU2109313C1 (en) Modulator
JPS6144293B2 (en)
JPS6212487B2 (en)
JPS5928894B2 (en) electro-optic light modulator
JP2002296632A (en) Wavelength converting device