JPH0227249A - Moisture sensing element - Google Patents
Moisture sensing elementInfo
- Publication number
- JPH0227249A JPH0227249A JP17711488A JP17711488A JPH0227249A JP H0227249 A JPH0227249 A JP H0227249A JP 17711488 A JP17711488 A JP 17711488A JP 17711488 A JP17711488 A JP 17711488A JP H0227249 A JPH0227249 A JP H0227249A
- Authority
- JP
- Japan
- Prior art keywords
- moisture
- film
- humidity
- cab
- sensitive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229920000642 polymer Polymers 0.000 claims abstract description 11
- 229920002301 cellulose acetate Polymers 0.000 claims description 3
- 229920006217 cellulose acetate butyrate Polymers 0.000 abstract description 16
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 abstract description 15
- 239000000758 substrate Substances 0.000 abstract description 11
- 239000010931 gold Substances 0.000 abstract description 8
- 229910052697 platinum Inorganic materials 0.000 abstract description 7
- 229910052737 gold Inorganic materials 0.000 abstract description 6
- 238000000034 method Methods 0.000 abstract description 6
- 125000004063 butyryl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 abstract description 5
- 230000009477 glass transition Effects 0.000 abstract description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 abstract description 4
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 abstract description 3
- 239000012298 atmosphere Substances 0.000 abstract description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 abstract description 2
- 239000011521 glass Substances 0.000 abstract description 2
- 230000008018 melting Effects 0.000 abstract description 2
- 238000002844 melting Methods 0.000 abstract description 2
- 238000003475 lamination Methods 0.000 abstract 1
- 239000011540 sensing material Substances 0.000 abstract 1
- 239000010408 film Substances 0.000 description 22
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 239000000463 material Substances 0.000 description 6
- 239000011651 chromium Substances 0.000 description 5
- 230000035945 sensitivity Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 229910052804 chromium Inorganic materials 0.000 description 3
- 238000002425 crystallisation Methods 0.000 description 3
- 230000008025 crystallization Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 229920000620 organic polymer Polymers 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 238000010897 surface acoustic wave method Methods 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 208000004356 Hysteria Diseases 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 238000005280 amorphization Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- VNNRSPGTAMTISX-UHFFFAOYSA-N chromium nickel Chemical compound [Cr].[Ni] VNNRSPGTAMTISX-UHFFFAOYSA-N 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 208000012839 conversion disease Diseases 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910001120 nichrome Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は有機高分子を感湿材料として用いてなる感湿素
子に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a moisture-sensitive element using an organic polymer as a moisture-sensitive material.
従来よりこの種の感湿素子としては、セルロースアセテ
ートプチレート、セルロースアセテートグロビオネート
、ポリイミドもしくはポリイミドアミドなどの有機高分
子を感湿材料として用い、この感湿材料により形成され
る感湿膜の電気容量値変化を湿度検出に利用した感湿容
量素子が提案されているl開昭62−88951号公報
)。Conventionally, this type of moisture-sensitive element uses organic polymers such as cellulose acetate petylate, cellulose acetate globionate, polyimide, or polyimide amide as a moisture-sensitive material, and the moisture-sensitive film formed from this moisture-sensitive material is A humidity-sensitive capacitive element that utilizes changes in capacitance value for humidity detection has been proposed (Japanese Patent Publication No. 1988-88951).
しかしながら、このように構成される感湿素子は、親水
性(水を引きつける性質)が高く、収着水分量(吸水率
)が大きいため、その化学吸着によって高分子と強固に
結合した水が多分に残留する。この九め、例えば温度4
0℃1g1度90チ程度の高温高湿度雰囲気中で長期間
にわたって使用すると、その出力値がドリフトするなど
長期の安定性に欠けるという問題があった。また、吸湿
過程と脱湿過程とでの感湿特性の差(ヒステリシス)が
低温度側で小さく、高温度側で大きくなり、センサレス
ポンスが遅くなるという問題があった。However, moisture-sensitive elements configured in this way have high hydrophilicity (the property of attracting water) and a large amount of sorbed water (water absorption rate), so water that is tightly bound to polymers due to chemical adsorption may be absorbed. remain in the This ninth, for example, temperature 4
When used for a long period of time in a high-temperature, high-humidity atmosphere with a temperature of about 0° C. 1 g and 90° C., there was a problem that the output value drifted and lacked long-term stability. Furthermore, there is a problem in that the difference in moisture sensitivity characteristics (hysteresis) between the moisture absorption process and the moisture removal process is small at low temperatures and large at high temperatures, resulting in slow sensor response.
さらに結露の発生、水浸漬によプ、その出力値がドリフ
トするという問題があった。Further, there were problems such as the occurrence of dew condensation and the output value drifting due to immersion in water.
したがって本発明は、前述した従来の問題に鑑みてなさ
れ念ものであシ、その目的は、低温度から高温度まで、
また低湿度から高湿度までの使用範囲においてヒステリ
シスが小さく、センサレスポンスの速い感湿素子を提供
することにある。Therefore, the present invention was made in view of the above-mentioned conventional problems, and its purpose is to
Another object of the present invention is to provide a humidity sensing element with low hysteresis and fast sensor response in the usage range from low humidity to high humidity.
本発明の他の目的は、高湿度、高温高湿度、湿度サイク
ル、結露もしくは水浸漬などの条件に長期間にわたって
晒されても安定した出力値が得られる感湿素子を提供す
ることにある。Another object of the present invention is to provide a humidity sensing element that can provide a stable output value even when exposed to conditions such as high humidity, high temperature and high humidity, humidity cycles, dew condensation, or water immersion for a long period of time.
本発明による感湿素子は、結晶化した高分子を用いて感
湿膜を形成するものである。The moisture-sensitive element according to the present invention forms a moisture-sensitive film using a crystallized polymer.
本発明における感湿膜は、結晶化した高分子を用いるこ
とによシ、収着水分量が低くなシ、感湿素子としての感
度の確保を図ってその感湿特性の改善が促される。By using a crystallized polymer, the moisture-sensitive film of the present invention has a low amount of sorbed water, ensures sensitivity as a moisture-sensitive element, and improves its moisture-sensitive characteristics.
以下、図面を用いて本発明の実施例を詳細に説明する。 Embodiments of the present invention will be described in detail below with reference to the drawings.
第1図は本発明による感湿素子の一実施例を示す斜視図
、第2図はその平面図である。これらの図において、1
は例えばアルミナ基板、ガラス基板、熱酸化シリコン基
板などからなる絶縁性基板、2はこの絶縁性基板1の上
面部に形成された例えば白金などからなる下部電極、3
はこの下部電極2に交差するように積層塗着された感湿
膜、4はこの感湿膜3上に形成された例えば金などから
なる上部電極でおる。すなわち、感湿M3を下部電極2
と上部電極4とでサンドインチ状に挾み込み、この感湿
膜3の相対湿度に対する電気容量値変化を検出すべく、
下部電極2および上部電極4にそれぞれリード線2aお
よび4aが接続されている。FIG. 1 is a perspective view showing an embodiment of a moisture-sensitive element according to the present invention, and FIG. 2 is a plan view thereof. In these figures, 1
2 is an insulating substrate made of, for example, an alumina substrate, a glass substrate, a thermally oxidized silicon substrate, etc.; 2 is a lower electrode made of, for example, platinum, formed on the upper surface of the insulating substrate 1; 3 is a lower electrode made of, for example, platinum;
4 is a moisture-sensitive film laminated and coated so as to cross this lower electrode 2, and 4 is an upper electrode formed on this moisture-sensitive film 3 and made of, for example, gold. That is, the humidity sensitive M3 is connected to the lower electrode 2.
and the upper electrode 4 in a sandwich-like manner, and in order to detect the change in the capacitance value of the moisture sensitive membrane 3 with respect to relative humidity,
Lead wires 2a and 4a are connected to the lower electrode 2 and the upper electrode 4, respectively.
このように構成される感0!素子において、この感湿膜
3は、高分子を結晶化した感湿材料により形成されてい
る。The feeling of being configured like this is 0! In the device, the moisture sensitive film 3 is formed of a moisture sensitive material made of crystallized polymer.
次にこの感湿素子の具体的な製造方法について説明する
。Next, a specific method of manufacturing this moisture sensitive element will be explained.
まず、高分子として例えばブチリル基を17チ含むセル
ロースアセテートプチレート(以下CABと称する)を
3〜15g用意し、これをジオキサン溶液100ac中
に溶解してCAB溶液を得る。次にこのCAB溶液を絶
縁性基板1上に形成された下部電極2上にスピンコード
法によ)塗布した後、室温の窒素雰囲気中で乾燥させて
感湿膜を得る。First, 3 to 15 g of cellulose acetate butyrate (hereinafter referred to as CAB) containing, for example, 17 butyryl groups is prepared as a polymer, and this is dissolved in 100 ac of a dioxane solution to obtain a CAB solution. Next, this CAB solution is applied onto the lower electrode 2 formed on the insulating substrate 1 by a spin-coating method, and then dried in a nitrogen atmosphere at room temperature to obtain a moisture-sensitive film.
このときのスピンナーの回転数ハ1000〜5000r
p□とし、膜厚0.5〜10μmの膜を得る。次に予備
加熱として約90℃で1時間程度加熱した後、高分子感
湿材料のガラス転移点(180〜200℃)以上融点以
下の温度で1〜数時間加熱し、結晶化させて膜厚0.5
〜10μmの感湿膜3を得る。次にこの感湿膜3を積層
塗着した絶縁性基板1上に例えば金を蒸着法もしくはス
パッタリング法により付着させて膜厚50〜500A程
度の上部電極4を形成する。なお、付着金属は全以外に
もパラジウム白金、クロムなどの耐蝕性金属でらればど
のような金属を用いても良い。また、絶縁性基板1上の
下部電極2は白金を蒸着法もしくはスパッタリング法な
どにより1000〜10000 Aの厚さで薄膜状に形
成することKより得る。The rotation speed of the spinner at this time is 1000 to 5000 r.
p□ to obtain a film with a thickness of 0.5 to 10 μm. Next, after preheating at about 90℃ for about 1 hour, heating is performed for 1 to several hours at a temperature above the glass transition point (180 to 200℃) of the polymeric moisture-sensitive material and below the melting point to crystallize and thicken the film. 0.5
A moisture sensitive membrane 3 of ~10 μm is obtained. Next, on the insulating substrate 1 on which the moisture-sensitive film 3 is laminated and coated, gold is deposited, for example, by vapor deposition or sputtering to form an upper electrode 4 having a thickness of about 50 to 500 Å. Note that the deposited metal may be any other corrosion-resistant metal such as palladium, platinum, and chromium. The lower electrode 2 on the insulating substrate 1 is obtained by forming platinum into a thin film with a thickness of 1,000 to 10,000 Å by vapor deposition or sputtering.
このような構成によると、感湿膜3は、CABをジオキ
サン溶液に溶解し、これを予め絶縁性基板1上に形成し
九下部電極2上に薄くコーティングし、乾燥させた後、
加熱処理を行なって形成したことにより、CABがその
分子配列が規則的に並んで結晶化され、緻密な膜となり
、安定した感湿特性を得ることができた。According to such a configuration, the moisture-sensitive film 3 is prepared by dissolving CAB in a dioxane solution, forming it on the insulating substrate 1 in advance, coating it thinly on the lower electrode 2, and drying it.
By performing heat treatment to form the CAB, the molecular arrangement of CAB was regularly arranged and crystallized, resulting in a dense film and stable moisture sensitivity characteristics.
第3図はこのように構成された感7!l素子の感湿膜4
のXs回折チャートを示したものであシ、同図において
、曲線Aが結晶化を、曲線Bが非結晶化をそれぞれ示し
ておシ、曲線人のピークが多数個存在することから、結
晶化されていることが明らかでめる。Figure 3 looks like this: 7! l element moisture sensitive film 4
This figure shows an Xs diffraction chart of 2. In the same figure, curve A indicates crystallization, and curve B indicates amorphization. It is clear that this has been done.
第4図はこのように構成された感湿素子の相対湿度−電
気容量特性を測定した結果を示したものである。なお、
この測定にはLCZメータを使用し、周波数100KH
zで温度25℃について行なった。FIG. 4 shows the results of measuring the relative humidity-capacitance characteristics of the humidity sensing element constructed in this way. In addition,
An LCZ meter was used for this measurement, and the frequency was 100KH.
The test was carried out at a temperature of 25°C.
同図から明らかなように恒湿槽安定後、約5分間隔で測
定した場合のヒステリは約24RH前後であシ、極めて
良好であつな。As is clear from the figure, the hysteria when measured at approximately 5 minute intervals after the humidity chamber stabilized was approximately 24 RH, which was extremely good.
第5図は本実施例で作製した結晶CAB感湿素子を約4
0℃、90%RHの高温高湿度雰囲気中に放置した後の
各10.30,50.60,70,90%RHKおける
各出力のトリ°フトを示したものであ夛、また第6図は
比較例として従来の非晶質CAD 感湿素子の同一条
件における各出方のドリフトを示したものである。これ
らの図から明らかなように本実施例による結晶CAB感
湿素子の10%RHにおける出力容量CIOは安定して
おシ、これよ)も高湿度側の出力容量は100時間以内
にドリフトが飽和しておシ、安定している。Figure 5 shows the crystalline CAB moisture sensing element produced in this example.
Figure 6 shows the drift of each output at 10.30, 50.60, 70, and 90% RHK after being left in a high-temperature, high-humidity atmosphere of 0°C and 90% RH. As a comparative example, the following shows the drift of each appearance under the same conditions of a conventional amorphous CAD moisture sensitive element. As is clear from these figures, the output capacitance CIO at 10% RH of the crystalline CAB humidity sensing element according to this example is stable, and the output capacitance on the high humidity side also reaches saturation drift within 100 hours. Well, it's stable.
なお、前述した実施例において、高分子として例えばブ
チリル基を17チ含むCABを用いたが、このブチリル
基を例えば38係と504とのCAHについても同様に
結晶化が可能であり、結晶化のための温度範囲は例えば
ブチリル基50%では140〜160℃程度であシ、ガ
ラス転移点(Tg)以上でタルトレンジ以下の温度範囲
にある。以下、表1に3種類のCABのガラス転移点お
よびメルトレンジを示す。In the above-mentioned example, CAB containing 17 butyryl groups was used as the polymer, but it is also possible to crystallize CAH containing 38 and 504 butyryl groups in the same way, and the crystallization process is For example, the temperature range for 50% butyryl group is about 140 to 160° C., which is a temperature range of above the glass transition point (Tg) and below the Tartrange range. Table 1 below shows the glass transition points and melt ranges of three types of CAB.
表 1
また、前述した実施例においては、結晶CAB感湿素子
を水中に浸漬し、約2000時間後に再度X線回折を行
なったが、初期のデータとの差は全くなく、安定である
ことが確認された。Table 1 In addition, in the above-mentioned example, the crystalline CAB moisture-sensitive element was immersed in water and X-ray diffraction was performed again after about 2000 hours, but there was no difference from the initial data, indicating that it was stable. confirmed.
また、前述し九実施例においては、結晶化のための熱処
理を上部電極4の形成前に行なつ九が、これは上部電極
4の形成時に真空室内で実施しても良く、同様の効果が
得られる。Further, in the ninth embodiment described above, heat treatment for crystallization is performed before forming the upper electrode 4, but this may be performed in a vacuum chamber at the time of forming the upper electrode 4, and the same effect can be obtained. can get.
また、前述した実施例においては、下部電極として白金
を用いたが、その材質は白金に@られるものではなく、
金、クロム、タンタルなどの耐蝕性金属ならばどのよう
な金属を用いてもよい。また、Cr/Au 、Cr/N
l/Au、Ti/Au、NiCr/Au。In addition, in the above-mentioned embodiment, platinum was used as the lower electrode, but the material is not platinum.
Any corrosion-resistant metal such as gold, chromium, tantalum, etc. may be used. Also, Cr/Au, Cr/N
l/Au, Ti/Au, NiCr/Au.
Cr/P t + T ’/Ptr等の多層構造であっ
てもよい。A multilayer structure such as Cr/Pt+T'/Ptr may also be used.
また、前述した実施例においては、サンドインチ構造の
感湿素子を例にとって説明したが、本発明はこれに限定
されるものではなく、絶縁性基板面上に対向して一対の
櫛形状薄膜電極を形成し、この櫛形状薄膜電極を覆うよ
うに感湿膜を積層形成して得られる櫛形構造の感湿素子
に適用しても同様の効果が得られることは言うまでもな
い。Further, in the above-mentioned embodiments, a sandwich-structured moisture-sensitive element was explained as an example, but the present invention is not limited to this. It goes without saying that similar effects can be obtained even when applied to a moisture-sensitive element having a comb-shaped structure obtained by forming a comb-shaped thin film electrode and laminating a moisture-sensitive film to cover the comb-shaped thin film electrode.
さらに前述し九実施例においては、感湿膜の相対湿度に
対する電気容量値の変化に着目して湿度検出を行なうも
のとし九が、その相対湿度に対するインピーダンスの変
化に着目して湿度検出を行なうような方法を採用しても
良い。Furthermore, in the ninth embodiment described above, humidity is detected by focusing on the change in the capacitance value of the humidity sensitive film with respect to the relative humidity. You may also use other methods.
また、前述した実施例における感湿膜は、水晶振動子上
に形成し、その感湿膜の吸着に伴う共振周波数のずれか
ら湿度を検出する構成をとる湿度センサの感湿膜として
も好適であり、ま九、表面弾性波素子上に感湿膜を形成
し、その表面弾性波素子を通過する速度の変化により、
湿度を検出する構成をとる湿度センサの感湿膜としても
好適である。Furthermore, the moisture-sensitive film in the above-described embodiment is suitable as a humidity-sensitive film for a humidity sensor that is formed on a crystal resonator and detects humidity from the shift in resonance frequency caused by adsorption of the moisture-sensitive film. Yes, a moisture-sensitive film is formed on the surface acoustic wave element, and by changing the speed of passing through the surface acoustic wave element,
It is also suitable as a humidity sensitive film of a humidity sensor configured to detect humidity.
以上説明したように本発明による感湿素子によれば、感
湿膜を結晶化した高分子を用いて形成したことにより、
その分子配列が規則的に並んだ緻密な膜となるので、収
着水分量が低くな)、ドリフトが少なく安定した感湿特
性をヒステリシスが少なく、さらにレスポンス良く得る
ことができる。As explained above, according to the moisture-sensitive element according to the present invention, since the moisture-sensitive film is formed using a crystallized polymer,
Since the molecular arrangement is regularly arranged to form a dense film, the amount of sorbed water is low), and stable moisture sensitivity characteristics with little drift and less hysteresis can be obtained with better response.
第1図は本発明による感湿素子の一実施例を示す斜視図
、第2図はこの感湿素子の平面図、第3図は本発BAK
よる感湿素子のX11回折チャートを示す図、第4図は
本発明による感湿素子の相対湿度−電気容量特性を示す
図、第5図は本発明による感湿素子の感湿特性を示す図
、第6図は従来の感湿素子の感湿特性を示す図である。
1・・・・絶縁性基板、2・・・・下部電極、3・・・
・感湿膜、4・・・φ上部電極、2&、4m・ 拳 ・
・ リード線。
特許出願人 山武ハネウェル株式会社
代 理 人 山 川 政情(ほか2名)第1区
2θ
〔膚〕
罵4図
オ目ヤヤラ箋ン駐
r’/、RH)FIG. 1 is a perspective view showing one embodiment of the humidity sensing element according to the present invention, FIG. 2 is a plan view of this humidity sensing element, and FIG. 3 is a BAK of the present invention.
FIG. 4 is a diagram showing the relative humidity-capacitance characteristics of the humidity-sensing element according to the present invention, and FIG. 5 is a diagram showing the humidity-sensing characteristics of the humidity-sensing element according to the present invention. , FIG. 6 is a diagram showing the humidity sensitivity characteristics of a conventional humidity sensing element. 1... Insulating substrate, 2... Lower electrode, 3...
・Moisture sensitive membrane, 4...φ upper electrode, 2&, 4m・Fist ・
· Lead. Patent Applicant: Yamatake Honeywell Co., Ltd. Agent: Yamakawa Political Affairs (and 2 others) 1st Ward 2θ [Skin]
Claims (2)
えてなる感湿素子。(1) A moisture-sensitive element comprising a moisture-sensitive film formed using a crystallized polymer.
ートを主成分とする高分子を結晶化した感湿膜とする感
湿素子。(2) The moisture-sensitive element according to claim 1, which is a moisture-sensitive film formed by crystallizing a polymer whose main component is cellulose acetate ptylate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17711488A JPH0227249A (en) | 1988-07-18 | 1988-07-18 | Moisture sensing element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17711488A JPH0227249A (en) | 1988-07-18 | 1988-07-18 | Moisture sensing element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0227249A true JPH0227249A (en) | 1990-01-30 |
Family
ID=16025405
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17711488A Pending JPH0227249A (en) | 1988-07-18 | 1988-07-18 | Moisture sensing element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0227249A (en) |
-
1988
- 1988-07-18 JP JP17711488A patent/JPH0227249A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0675052B2 (en) | Capacitance type humidity sensor | |
JP5112639B2 (en) | Humidity sensor | |
EP0395349B2 (en) | Moisture sensitive element | |
US5161085A (en) | Moisture sensitive element and method of manufacturing the same | |
JPH0227249A (en) | Moisture sensing element | |
JP3047137B2 (en) | Manufacturing method of humidity sensor | |
JPH0692953B2 (en) | Moisture sensitive element | |
JP2529136B2 (en) | Moisture-sensitive element and manufacturing method thereof | |
JPH06105235B2 (en) | Humidity detection element | |
JP2529137B2 (en) | Moisture-sensitive element and manufacturing method thereof | |
JPH06118045A (en) | Humidity sensor | |
JPH02285247A (en) | Humidity sensitive element | |
JPH088445Y2 (en) | Capacitive humidity converter | |
JP2783628B2 (en) | Resistance change type humidity sensitive element | |
JP2753653B2 (en) | Moisture sensitive element | |
JPH04318450A (en) | Electrostatic capacitance-type humidity sensor | |
JPS6288951A (en) | Moisture sensitive element and its production | |
JPH05119010A (en) | Moisture sensor | |
JPH022912A (en) | Thin film moisture sensitive element | |
JPH01313752A (en) | Moisture sensitive element | |
JP2002090329A (en) | Humidity sensor and its manufacturing method | |
JPH05119009A (en) | Moisture sensor | |
JPS58179345A (en) | Humidity sensor | |
JPH0257955A (en) | Humidity sensor | |
JPH0658901A (en) | Hygrometer |