JP2753653B2 - Moisture sensitive element - Google Patents

Moisture sensitive element

Info

Publication number
JP2753653B2
JP2753653B2 JP31073790A JP31073790A JP2753653B2 JP 2753653 B2 JP2753653 B2 JP 2753653B2 JP 31073790 A JP31073790 A JP 31073790A JP 31073790 A JP31073790 A JP 31073790A JP 2753653 B2 JP2753653 B2 JP 2753653B2
Authority
JP
Japan
Prior art keywords
moisture
sensitive
sensitive element
thin film
humidity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31073790A
Other languages
Japanese (ja)
Other versions
JPH04181151A (en
Inventor
祐次 奥貫
潔 高橋
伸一 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RKC Instrument Inc
Original Assignee
Rika Kogyo Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rika Kogyo Inc filed Critical Rika Kogyo Inc
Priority to JP31073790A priority Critical patent/JP2753653B2/en
Publication of JPH04181151A publication Critical patent/JPH04181151A/en
Application granted granted Critical
Publication of JP2753653B2 publication Critical patent/JP2753653B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は感湿素子に関し、さらに詳しくは耐熱性に優
れ、温度特性の経時変化が改善された静電容量形感湿素
子に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a moisture-sensitive element, and more particularly, to a capacitance-type moisture-sensitive element which has excellent heat resistance and has improved temperature characteristics over time.

[従来の技術およびその課題] 従来の感湿素子としては、感湿材料としてセラミック
を用いて電気抵抗変化を検出するものや、高分子膜を誘
導体として用いて電気容量変化を検出するものが多く使
われている。
[Prior art and its problems] Many conventional moisture-sensitive elements detect a change in electric resistance by using ceramic as a moisture-sensitive material, and those that detect a change in electric capacity by using a polymer film as a derivative. It is used.

このうち、セラミックを用いたものは測湿範囲が狭
く、応答速度が遅い等の問題が残されているのに対し、
高分子膜を用いたものは測湿範囲がほぼ0〜100%RHと
広く、かつ応答速度も速いものが得られており、実用性
の高いものである。
Among them, those using ceramics have problems such as narrow humidity measurement range and slow response speed,
The one using the polymer film has a wide humidity measurement range of approximately 0 to 100% RH and a high response speed, and is highly practical.

この高分子を用いた感湿膜は、膜の作成時に基板を加
熱しながら、例えばプラズマ重合等により成膜すること
が一般に行われている(特開昭62−217153号公報、特開
昭63−177050号公報、特開平2−114166号公報他)。
A moisture-sensitive film using this polymer is generally formed by, for example, plasma polymerization while heating the substrate at the time of forming the film (Japanese Patent Application Laid-Open Nos. Sho 62-217153 and 63-217153). -177050, JP-A-2-114166 and others).

これらのプラズマ重合膜は、優れた感湿特性を示すも
のの、高温高湿下に放置すると温度特性が悪くなった
り、また経時的にも温度特性が劣化するなどの問題点が
あった。
Although these plasma polymerized films exhibit excellent moisture-sensitive properties, they have problems such as deterioration of temperature properties when left under high temperature and high humidity, and deterioration of temperature properties over time.

本発明は、以上述べたような従来の事情に鑑みてなさ
れたもので、温度特性が改善され、経時変化の小さな感
湿素子を提供することを目的とする。
The present invention has been made in view of the above-described conventional circumstances, and an object of the present invention is to provide a moisture-sensitive element having improved temperature characteristics and small change with time.

[課題を解決するための手段] すなわち本発明は、絶縁性基板と、この基板上に形成
された下部電極と、この下部電極上に形成された高分子
の感湿性誘導体薄膜と、この薄膜上に形成された透湿性
の金属被膜よりなる上部電極とを順次積層してなる感湿
素子において、感湿性誘導体薄膜は、プラズマ重合法に
よって成膜後、1×10-6Torr以下の真空中で250℃〜500
℃の熱処理を行ったものであることを特徴とする感湿素
子である。
[Means for Solving the Problems] That is, the present invention provides an insulating substrate, a lower electrode formed on the substrate, a polymer moisture-sensitive derivative thin film formed on the lower electrode, In a moisture-sensitive element, which is formed by sequentially laminating an upper electrode made of a moisture-permeable metal film formed on a substrate, a moisture-sensitive derivative thin film is formed by a plasma polymerization method, and then, in a vacuum of 1 × 10 −6 Torr or less. 250 ℃ ~ 500
It is a moisture-sensitive element characterized by being subjected to a heat treatment at a temperature of ℃.

本発明の感湿素子は、実施例を兼ねてその構成を示す
第1図のように、絶縁性基板1上に形成された下部電極
2と、該電極2上に形成された感湿性誘導体薄膜3と、
該薄膜3上に形成された透湿性の金属被膜よりなる上部
電極4とで構成されている。
As shown in FIG. 1 showing the structure of an example of a moisture-sensitive element according to the present invention, a lower electrode 2 formed on an insulating substrate 1 and a moisture-sensitive derivative thin film formed on the electrode 2 3 and
And an upper electrode 4 made of a moisture-permeable metal film formed on the thin film 3.

本発明の感湿素子の製造方法は、洗浄した絶縁性基
板、例えばガラス、ポリイミドフィルム等の上に耐食性
金属、例えばNi,Ta,Cr,Al,NiCr,Au等を下部電極として
真空蒸着やスパッタリングにより、厚さ1000〜5000オン
グストロームに形成する。次に必要に応じて、絶縁層を
形成した後、プラズマ重合法によって高分子の感湿性誘
導体薄膜を形成する。感湿性誘導体薄膜の形成法として
は、すでに本出願人が開発した芳香族または脂肪族化合
物をモノマープラズマ重合により形成してもよい(特開
平2−114166号公報)。
The method of manufacturing the moisture-sensitive element of the present invention is a method for manufacturing a vapor-deposited or sputtered substrate using a corrosion-resistant metal such as Ni, Ta, Cr, Al, NiCr, Au or the like as a lower electrode on a cleaned insulating substrate, such as glass or a polyimide film. To a thickness of 1000 to 5000 Å. Next, if necessary, an insulating layer is formed, and then a polymer moisture-sensitive derivative thin film is formed by a plasma polymerization method. As a method of forming the moisture-sensitive derivative thin film, an aromatic or aliphatic compound already developed by the present applicant may be formed by monomer plasma polymerization (JP-A-2-114166).

次いで、この高分子膜を1×10-6Torr以下の真空中
で、250℃以下の熱処理を行う。この温度については、
望ましくは250〜500℃であり、250℃未満では特定改善
の効果があまり期待できず、500℃より上では、誘電性
感湿膜の膜厚の減少が著しく、実用には適さない。ま
た、さらに、300〜400℃付近の温度が好ましい。熱処理
時間は30分以上であることが望ましい。また熱処理は1
回のみでもよいが、複数回のサイクルで行ってもよい。
この時は10回程度までであることが作業効率と膜改善と
のバランス上、好ましい。なお、この感湿性誘電体薄膜
の熱処理は後述する上部電極を形成した後に行ってもよ
い。
Next, the polymer film is subjected to a heat treatment at 250 ° C. or less in a vacuum of 1 × 10 −6 Torr or less. For this temperature,
Desirably, the temperature is from 250 to 500 ° C. If the temperature is lower than 250 ° C., the effect of the specific improvement cannot be expected much. If the temperature is higher than 500 ° C., the thickness of the dielectric moisture-sensitive film is remarkably reduced, which is not suitable for practical use. Further, a temperature around 300 to 400 ° C. is more preferable. The heat treatment time is desirably 30 minutes or more. Heat treatment is 1
It may be performed only once, but may be performed in a plurality of cycles.
At this time, it is preferable that the number is about 10 times in view of the balance between the work efficiency and the film improvement. The heat treatment of the moisture-sensitive dielectric thin film may be performed after forming an upper electrode described later.

次いで、該基板を大気中に取り出した後、真空蒸着や
スパッタリングにより透湿性の金属被膜よりなる上部電
極を形成する。上部電極は直接外気にさらされるため
に、耐食性のある金属、例えばNiCr,Cr,Ta,Ni,Au,Pd,Pt
等を使用するのがよい。
Next, after taking out the substrate into the atmosphere, an upper electrode made of a moisture-permeable metal film is formed by vacuum evaporation or sputtering. Since the upper electrode is directly exposed to the outside air, it has a corrosion-resistant metal such as NiCr, Cr, Ta, Ni, Au, Pd, Pt.
It is better to use etc.

次に、銀ペーストや超音波はんだ等により、リード線
のはんだ付けを行い、1枚の絶縁基板上でセンサーを多
数個取りにする場合には、絶縁基板のカッティングを行
う。
Next, when the lead wires are soldered by silver paste or ultrasonic soldering or the like and a large number of sensors are formed on one insulating substrate, the insulating substrate is cut.

[作用] 本発明では感湿性誘電体薄膜の安定化あるいは改質処
理として、真空中での熱処理を行う。成膜後の高分子膜
中には、今だ高分子には至らず、比較的低分子のままで
残されている化合物や、化学的に不安定な状態のままで
残されている高分子が多数存在する。そこで、このよう
な膜に熱を加えることで低分子の化合物については蒸発
・除去され、不安定な状態の高分子等の水素脱離が起こ
り、架橋が進行し、化学的に安定なものとなる。その結
果、感湿性誘電体薄膜は緻密な高分子膜となり、温度特
性の経時変化が小さくなると共に、温度特性も改善され
る。
[Operation] In the present invention, heat treatment in a vacuum is performed as stabilization or modification of the moisture-sensitive dielectric thin film. In the polymer film after film formation, compounds that have not yet reached polymers and remain relatively low molecules, or polymers that remain chemically unstable There are many. Therefore, by applying heat to such a film, low-molecular compounds are evaporated and removed, and desorption of hydrogen from unstable polymers and the like occurs, cross-linking progresses, and it becomes chemically stable. Become. As a result, the moisture-sensitive dielectric thin film becomes a dense polymer film, and the change over time in temperature characteristics is reduced, and the temperature characteristics are also improved.

[実施例] 次に本発明の実施例について図面を参照して詳細に説
明する。
Example Next, an example of the present invention will be described in detail with reference to the drawings.

第1図は本発明に係る感湿素子の一実施例の断面図で
ある。ガラスよりなる絶縁性基板1の上面にはニクロム
(NiCr)からなる下部電極2が真空蒸着法等によって膜
厚約1000オングストロームに形成されており、この下部
電極2上には高分子の感湿性誘電体薄膜3がプラズマ重
合法によって膜厚約1500オングストロームに平坦形成さ
れている。この感湿性誘電体薄膜3は、吸収される水分
量の関数として誘電率が変化するものである。
FIG. 1 is a sectional view of one embodiment of a moisture-sensitive element according to the present invention. A lower electrode 2 made of nichrome (NiCr) is formed on the upper surface of an insulating substrate 1 made of glass to a thickness of about 1000 angstroms by a vacuum deposition method or the like. The body thin film 3 is flatly formed to a thickness of about 1500 angstroms by a plasma polymerization method. The dielectric constant of the moisture-sensitive dielectric thin film 3 changes as a function of the amount of absorbed moisture.

なお、基板1、下部電極2および感湿性誘電体薄膜3
の材料・厚みおよび形成方法は、目的に応じて任意に選
定可能である。
The substrate 1, the lower electrode 2, and the moisture-sensitive dielectric thin film 3
Can be arbitrarily selected according to the purpose.

感湿性誘電体薄膜3の下部電極2と対向する面(上
面)には、上部電極4が感湿性誘電体薄膜3の上面にお
ける法線に対して75゜の入射角度で斜方蒸着によって膜
厚約400オングストロームに形成されている。
On the surface (upper surface) of the moisture-sensitive dielectric thin film 3 facing the lower electrode 2, the upper electrode 4 is formed by oblique deposition at an incident angle of 75 ° with respect to the normal to the upper surface of the moisture-sensitive dielectric thin film 3. It is formed at about 400 angstroms.

このような上部電極4は、第2図に示すような蒸着装
置によって形成可能である。
Such an upper electrode 4 can be formed by a vapor deposition device as shown in FIG.

すなわち、ベルジャー19の内部上方に、上部電極4を
形成する前の素材21が、支持基台23上に載置されている
とともに、後述する蒸着材料の入射角方向に対して感湿
性誘電体薄膜3の方線Aが75゜となるような位置関係で
配置される。なお、支持基台23の支持部材の図示は省略
した。
That is, the material 21 before forming the upper electrode 4 is placed on the support base 23 above the inside of the bell jar 19, and a moisture-sensitive dielectric thin film is formed in the incident angle direction of a vapor deposition material described later. 3 are arranged in a positional relationship such that the direction A is 75 °. The illustration of the support members of the support base 23 is omitted.

一方、ベルジャー19内における素材21の下方は、加熱
フィラメント27に巻き付けた蒸着材料としてのニクロム
線25を配置し、ベルジャー19に排気装置(図示せず)が
連結されて構成されている。
On the other hand, below the raw material 21 in the bell jar 19, a nichrome wire 25 as a vapor deposition material wound around the heating filament 27 is arranged, and the bell jar 19 is connected to an exhaust device (not shown).

このような斜め蒸着装置において、ベルジャー19内を
真空度5×10-6Torr程度に排気した後、フィラメント27
でニクロム線25を加熱蒸発させて誘電体薄膜3の上面に
75゜の入射角度で斜め蒸着される。
In such an oblique deposition apparatus, the inside of the bell jar 19 is evacuated to a degree of vacuum of about 5 × 10 −6 Torr, and then the filament 27 is evacuated.
To heat and evaporate the nichrome wire 25 on the upper surface of the dielectric thin film 3.
Deposited obliquely at an incident angle of 75 °.

本実施例では上記のようにして上部電極までを形成し
た後、真空加熱処理を行う。真空加熱は上部電極形成時
のベルジャーと同じものを用いてもよいし、別ベルジャ
ーでもよい。第3図は真空加熱に用いる位置の概略構成
図で、ベルジャー31内に感湿素子素材33を保持する支持
基台34と加熱用のタングステンフィラメント32が設置さ
れ、感湿素子素材33はタングステンフィラメント32によ
り加熱されるようになっている。素材33の温度は熱電対
35によって測定される。このような装置を用いて、1×
10-6Torr以下に排気し、室温と350℃、30分保持を3回
繰り返して本発明の感湿素子を得た。
In this embodiment, after forming up to the upper electrode as described above, vacuum heat treatment is performed. For vacuum heating, the same bell jar as used when forming the upper electrode may be used, or another bell jar may be used. FIG. 3 is a schematic configuration diagram of a position used for vacuum heating, in which a support base 34 for holding a moisture-sensitive element material 33 and a tungsten filament 32 for heating are installed in a bell jar 31, and the moisture-sensitive element material 33 is a tungsten filament. It is heated by 32. Material 33 temperature is thermocouple
Measured by 35. Using such a device, 1 ×
The moisture was evacuated to 10 −6 Torr or less, and the holding at room temperature and 350 ° C. for 30 minutes was repeated three times to obtain a moisture-sensitive element of the present invention.

なお本実施例では熱処理を上部電極形成後に行った
が、感湿膜を成膜後、熱処理を行い、次いで上部電極を
形成してもよい。
In this embodiment, the heat treatment is performed after the formation of the upper electrode. However, the heat treatment may be performed after forming the moisture-sensitive film, and then the upper electrode may be formed.

次に本実施例で得られた感湿素子と、真空熱処理を行
っていない他は実施例と同様にして作成した感湿素子と
の40℃における経時変化をそれぞれ第4図および第5図
に示す。これらの図の横軸は経過日数(日)であり、縦
軸は0日目の0%RH容量値(C0)を基準とし、{(Cx
C0)/C0}×100(式中のCxは各測定容量値)より算出さ
れる変化率(%)である(以降、変化率は同式にて計算
された値である)。図中、□は0%RH、+は10%RH、◇
は30%RH、△は60%RH、×は90%RHの場合をそれぞれ示
す。両図から、真空熱処理した方が、180日経過後も変
化率が一定しており、経時安定性に優れていることがわ
かる。
Next, the time-dependent changes at 40 ° C. of the moisture-sensitive element obtained in this example and the humidity-sensitive element prepared in the same manner as in the example except that the vacuum heat treatment was not performed are shown in FIGS. 4 and 5, respectively. Show. The horizontal axis of these figures is the number of elapsed days (days), and the vertical axis is based on the 0% RH capacity value (C 0 ) on day 0, and {(C x
C 0 ) / C 0 } × 100 (C x in the equation is each measured capacity value), and is a change rate (%) (hereinafter, the change rate is a value calculated by the same equation). In the figure, □ is 0% RH, + is 10% RH, ◇
Indicates a case of 30% RH, Δ indicates a case of 60% RH, and X indicates a case of 90% RH. From both figures, it can be seen that the rate of change is more constant after 180 days after vacuum heat treatment, and the stability with time is superior.

また第6図および第7図は、それぞれ本実施例の感湿
素子と、真空熱処理を行っていない他は上記と同様にし
て作成した感湿素子との高温高湿処理(140℃、90%R
H、12時間放置前後の感湿特性を示したものである。両
図は、横軸を測定湿度(%RH)、縦軸を変化率(%、処
理前の0%RH基準)にとり、□は高温高湿処理前におけ
る測定結果を、+は処理後における測定結果をそれぞれ
示す。両図からわかるように、真空熱処理を行った素子
である第6図では、高温高湿処理後も、処理前と同様の
感湿特性が得られており、高温高湿を経験しても特性変
化のない安定なものであることがわかる。
FIGS. 6 and 7 show the high-temperature and high-humidity treatment (140 ° C., 90%) of the humidity-sensitive element of this example and a humidity-sensitive element prepared in the same manner as described above except that the vacuum heat treatment was not performed. R
H shows the moisture sensitivity before and after standing for 12 hours. In both figures, the horizontal axis is the measured humidity (% RH), the vertical axis is the rate of change (%, 0% RH before treatment), □ is the measurement result before high temperature and high humidity treatment, + is the measurement after treatment The results are shown respectively. As can be seen from both figures, in FIG. 6, which is a device subjected to the vacuum heat treatment, the same humidity sensitivity as before the treatment was obtained after the high-temperature and high-humidity treatment. It can be seen that it is stable without any change.

さらに、第8図および第9図はそれぞれ真空熱処理を
行った素子と、行っていない素子の20℃(図中□で示
す。)と40℃(図中+で示す。)における感湿特性図
で、横軸に測定湿度(%RH)、縦軸に変化率(%、20
℃、0%RH基準)をプロットしたもの、第10図および第
11図は各素子の0%RH(□)、10%RH(+)、30%RH
(◇)、60%RH(△)、90%RH(×)における温度特性
の経時変化を示したもので、縦軸は各測定湿度における
温度特性を%RHへ変換したものをプロットたものであ
る。第8図および第9図から本発明の感湿素子の感湿特
性は20℃でも40℃でも同一の変化率が得られており、熱
処理を行っていない従来の素子に比べて優れていること
がわかる。また第10図および第11図から本発明の素子は
温度特性の経時変化についても改善されていることがわ
かる。
Further, FIGS. 8 and 9 show the moisture sensitivity characteristics of the device subjected to the vacuum heat treatment and the device not subjected to the vacuum heat treatment at 20 ° C. (indicated by □ in the figure) and 40 ° C. (indicated by + in the figure), respectively. The horizontal axis indicates the measured humidity (% RH), and the vertical axis indicates the rate of change (%, 20
C, 0% RH basis), FIG. 10 and FIG.
Figure 11 shows 0% RH (□), 10% RH (+), 30% RH for each element
(◇), 60% RH (△), 90% RH (×) shows the change over time of the temperature characteristics, the vertical axis plots the temperature characteristics at each measured humidity converted to% RH is there. FIGS. 8 and 9 show that the moisture-sensitive element of the present invention has the same rate of change at both 20 ° C. and 40 ° C., which is superior to the conventional element without heat treatment. I understand. From FIGS. 10 and 11, it can be seen that the element of the present invention is also improved in the change over time in temperature characteristics.

[発明の効果] 以上説明したように、本発明の感湿素子は、感湿膜が
プラズマ重合法によって成膜法において1×10-6Torr以
下の真空中で250〜500℃の熱処理されているので、高温
高湿下に放置した後の特性変化が少なく、耐熱性に優れ
たものであると共に、温度特性の経時変化も改善され
る。また、真空熱処理は、既存の成膜プロセスを利用し
て同一装置内で行えるので、作業効率を損うこともな
い。
[Effects of the Invention] As described above, in the moisture-sensitive element of the present invention, the moisture-sensitive film is subjected to heat treatment at 250 to 500 ° C in a vacuum of 1 × 10 -6 Torr or less by a plasma polymerization method in a film forming method. Therefore, there is little change in characteristics after being left under high temperature and high humidity, and the heat resistance is excellent, and the change over time in temperature characteristics is also improved. In addition, the vacuum heat treatment can be performed in the same apparatus by using the existing film forming process, so that the working efficiency is not impaired.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例の断面図、第2図は本発明の
感湿素子の製造に用いられる蒸着装置の一例の概略構成
図、第3図は真空加熱装置の一例の概略構成図、第4図
および第5図はそれぞれ本発明による感湿素子および従
来例による感湿素子の感湿特性の経時変化を示す図、第
6図および第7図はそれぞれ本発明による感湿素子およ
び従来例による感湿素子の高温高湿環境に放置する前後
の感湿特性図、第8図および第9図はそれぞれ本発明に
よる感湿素子および従来例による感湿素子の20℃および
40℃における感湿特性図、第10図および第11図はそれぞ
れ本発明による感湿素子および従来例による感湿素子の
温度特性の経時変化を示す図である。 1……絶縁性基板、2……下部電極 3……感湿性誘電体薄膜、4……上部電極 19,31……ベルジャー、21,33……感湿素子素材 23,34……支持基台、25……ニクロム線 27……加熱フィラメント 32……タングステンフィラメント 35……熱電対
FIG. 1 is a cross-sectional view of one embodiment of the present invention, FIG. 2 is a schematic diagram of an example of a vapor deposition device used for manufacturing a moisture-sensitive element of the present invention, and FIG. 3 is a schematic structure of an example of a vacuum heating device. FIGS. 4 and 5 are diagrams showing changes over time in the humidity sensitivity of the humidity sensor of the present invention and the conventional humidity sensor, respectively. FIGS. 6 and 7 are each a diagram showing the humidity sensor of the present invention. 8 and 9 show the humidity-sensitive characteristics of the humidity-sensitive element according to the prior art before and after being left in a high-temperature and high-humidity environment, respectively.
FIG. 10 and FIG. 11 are diagrams showing time-dependent changes in temperature characteristics of the humidity-sensitive element according to the present invention and the humidity-sensitive element according to the conventional example at 40 ° C., respectively. DESCRIPTION OF SYMBOLS 1 ... Insulating substrate, 2 ... Lower electrode 3 ... Moisture sensitive dielectric thin film, 4 ... Upper electrode 19,31 ... Bell jar, 21,33 ... Moisture sensitive element material 23,34 ... Support base , 25… Nichrome wire 27… Heating filament 32… Tungsten filament 35… Thermocouple

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭60−188835(JP,A) 特開 昭57−141546(JP,A) 特開 平1−121745(JP,A) ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-60-188835 (JP, A) JP-A-57-141546 (JP, A) JP-A-1-121745 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】絶縁性基板と、この基板上に形成された下
部電極と、この下部電極上に形成された高分子の感湿性
誘導体薄膜と、この薄膜上に形成された透湿性の金属被
膜よりなる上部電極とを順次積層してなる感湿素子にお
いて、感湿性誘導体薄膜は、プラズマ重合法によって成
膜後、1×10-6Torr以下の真空中で250〜500℃の熱処理
を行ったものであることを特徴とする感湿素子。
1. An insulating substrate, a lower electrode formed on the substrate, a polymer moisture-sensitive derivative thin film formed on the lower electrode, and a moisture-permeable metal film formed on the thin film In the moisture-sensitive element obtained by sequentially laminating the upper electrode made of the above, the moisture-sensitive derivative thin film was heat-treated at 250 to 500 ° C. in a vacuum of 1 × 10 −6 Torr or less after being formed by the plasma polymerization method. A moisture-sensitive element, characterized in that:
JP31073790A 1990-11-15 1990-11-15 Moisture sensitive element Expired - Fee Related JP2753653B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31073790A JP2753653B2 (en) 1990-11-15 1990-11-15 Moisture sensitive element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31073790A JP2753653B2 (en) 1990-11-15 1990-11-15 Moisture sensitive element

Publications (2)

Publication Number Publication Date
JPH04181151A JPH04181151A (en) 1992-06-29
JP2753653B2 true JP2753653B2 (en) 1998-05-20

Family

ID=18008885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31073790A Expired - Fee Related JP2753653B2 (en) 1990-11-15 1990-11-15 Moisture sensitive element

Country Status (1)

Country Link
JP (1) JP2753653B2 (en)

Also Published As

Publication number Publication date
JPH04181151A (en) 1992-06-29

Similar Documents

Publication Publication Date Title
JP2620804B2 (en) Constant temperature operated adsorption hygrometer
JPH0365643A (en) Capacitance humidity sensor
GB2220074A (en) Humidity sensor
CN1043987A (en) A kind of warm and humid difunctional sensitive film element and manufacture method thereof
US5161085A (en) Moisture sensitive element and method of manufacturing the same
JP2753653B2 (en) Moisture sensitive element
CN1007764B (en) Film resistance temp. sensor and manufacturing method
CN1384354A (en) Compound polymer resistor type film humidity-sensitive element and its making process
JPH0242428B2 (en)
JPS5999343A (en) Gas detecting element
JP2700949B2 (en) Moisture sensitive element
JP3314509B2 (en) NOx gas sensing semiconductor and method of manufacturing the same
JP2996922B2 (en) Tin oxide thin film sensor for sensing hydrogen and method of manufacturing the same
JP2529136B2 (en) Moisture-sensitive element and manufacturing method thereof
JP2753654B2 (en) Moisture sensitive element
JP2622144B2 (en) Method for producing gas-sensitive thin film
JP2529137B2 (en) Moisture-sensitive element and manufacturing method thereof
JPH06118045A (en) Humidity sensor
JPH0519102B2 (en)
JP2959083B2 (en) How to improve the humidity sensor
JP3047138B2 (en) Manufacturing method of humidity sensor
JPH03122591A (en) Thin film moisture-sensitive element
JPH0611474A (en) Humidity sensor
JPH02190754A (en) Humidity sensor
JPH01124755A (en) Humidity sensor made of thin organic high-polymer film

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees