JPH04181151A - Humidity sensitive element - Google Patents

Humidity sensitive element

Info

Publication number
JPH04181151A
JPH04181151A JP31073790A JP31073790A JPH04181151A JP H04181151 A JPH04181151 A JP H04181151A JP 31073790 A JP31073790 A JP 31073790A JP 31073790 A JP31073790 A JP 31073790A JP H04181151 A JPH04181151 A JP H04181151A
Authority
JP
Japan
Prior art keywords
moisture
thin film
sensitive
film
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31073790A
Other languages
Japanese (ja)
Other versions
JP2753653B2 (en
Inventor
Yuji Okunuki
奥貫 祐次
Kiyoshi Takahashi
潔 高橋
Shinichi Takeda
伸一 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RKC Instrument Inc
Original Assignee
Rika Kogyo Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rika Kogyo Inc filed Critical Rika Kogyo Inc
Priority to JP31073790A priority Critical patent/JP2753653B2/en
Publication of JPH04181151A publication Critical patent/JPH04181151A/en
Application granted granted Critical
Publication of JP2753653B2 publication Critical patent/JP2753653B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To improve heat resistance by performing thermal treatment at a specific temperature in a specific vacuum pressure after forming a thin humidity sensitive dielectric film. CONSTITUTION:A lower electrode 2 made of nichrome (NiCr) is formed by a thickness of approximately 1,000Angstrom by means of vacuum evaporation or the like on an upper face of an insulating substrate 1 made of glass, while a thin high polymer humidity sensitive dielectric film 3 is formed flatly by a thickness of approximately 1,500Angstrom by means of plasma copolymerization on the electrode 2. The thin film 3 varies in a dielectric constant as a function of absorbed water content. On a face of the thin film 3 opposite to the electrode 2, an upper electrode 4 is formed by a thickness of 400Angstrom by means of oblique evaporation at an incident angle of 75 deg. with respect to a normal line on the upper face of the thin film 3. The thin film 3 is then subjected to thermal treatment of 250 deg.C or higher in a vacuum of 1 X 10<-6>Torr or less after film formation. Thus heat resistance can be improved.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は感湿素子に関し、さらに詳しくは耐熱性に優れ
、温度特性の経時変化が改善された静電容量形感湿素子
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a humidity sensing element, and more particularly to a capacitive humidity sensing element that has excellent heat resistance and improved temporal change in temperature characteristics.

[従来の技術およびその課題] 従来の感湿素子としては、感湿材料としてセラミンクを
用いて電気抵抗変化を検出するものや、高分子膜を誘電
体として用いて電気容量変化を検出するものが多く使わ
れている。
[Conventional technology and its problems] Conventional moisture-sensitive elements include those that use ceramic as a moisture-sensitive material to detect changes in electrical resistance, and those that use a polymer film as a dielectric to detect changes in capacitance. It is used a lot.

このうち、セラミックを用いたものは測湿範囲が狭く、
応答速度が遅い等の問題が残されているのに対し、高分
子膜を用いたものは測湿範囲がほぼO〜100%RHと
広く、かつ応答速度も速いものが得られてあり、実用性
の高いものである。
Among these, those using ceramic have a narrow humidity measurement range.
While problems such as slow response speed remain, the one using a polymer membrane has a wide humidity measurement range of approximately 0 to 100% RH and a fast response speed, making it suitable for practical use. It is highly sexual.

この高分子を用いた感湿膜は、膜の作成時に基板を加熱
しながら、例えばプラズマ重合等により成膜することが
一般に行われている(特開昭62−217153号公報
、特開昭63−177050号公報、特開平2−114
166号公報他)。
Moisture-sensitive films using this polymer are generally formed by, for example, plasma polymerization while heating the substrate during film formation (Japanese Unexamined Patent Publications No. 62-217153, No. 63 -177050 Publication, JP-A-2-114
166, etc.).

これらのプラズマ重合膜は、優れた感湿特性を示すもの
の、高温高湿下に放置すると温度特性が悪くなったり、
また経時的にも温度特性が劣化するなどの問題点があっ
た。
Although these plasma-polymerized films exhibit excellent moisture-sensitive characteristics, their temperature characteristics deteriorate when left in high temperature and high humidity conditions.
Further, there were also problems such as deterioration of temperature characteristics over time.

本発明は、以上述べたような従来の事情に鑑みてなされ
たもので、温度特性が改善され、経時変化の小さな感湿
素子を提供することを目的とする。
The present invention has been made in view of the conventional circumstances as described above, and an object of the present invention is to provide a moisture-sensitive element with improved temperature characteristics and a small change over time.

[課題を解決するための手段] すなわち本発明は、絶縁性基板と、この基板上に形成さ
れた下部電極と、この下部電極上に形成された高分子の
感湿性誘電体薄膜と、この薄膜上に形成された透湿性の
金属被膜よりなる上部電極とを順次積層してなる感湿素
子において、感湿性誘電体薄膜は、成膜後、1 x 1
0’ Torr以下の真空中で250’C以上の熱処理
を行ったものであることを特徴とする感湿素子である。
[Means for Solving the Problems] In other words, the present invention provides an insulating substrate, a lower electrode formed on this substrate, a moisture-sensitive polymeric dielectric thin film formed on this lower electrode, and this thin film. In a moisture-sensitive element formed by sequentially laminating an upper electrode made of a moisture-permeable metal film formed thereon, the moisture-sensitive dielectric thin film has a 1 x 1 layer after being formed.
The moisture-sensitive element is characterized in that it is heat-treated at 250'C or higher in a vacuum of 0' Torr or lower.

本発明の感湿素子は、実施例を兼ねてその構成を示す第
1図のように、絶縁性基板1上に形成された下部電極2
と、該電極2上に形成された感湿性誘電体薄膜3と、該
薄膜3上に形成された透湿性の金属被膜よりなる上部電
極4とで構成されている。
As shown in FIG. 1, which also serves as an example and shows its structure, the humidity sensing element of the present invention has a lower electrode 2 formed on an insulating substrate 1.
, a moisture-sensitive dielectric thin film 3 formed on the electrode 2, and an upper electrode 4 made of a moisture-permeable metal coating formed on the thin film 3.

本発明の感湿素子の製造方法は、洗浄した絶縁性基板、
例えばガラス、ポリイミドフィルム等の上に耐食性金属
、例えばN i、Ta、Cr、AI。
The method for manufacturing a moisture sensitive element of the present invention includes: a cleaned insulating substrate;
Corrosion resistant metals such as Ni, Ta, Cr, AI on top of glass, polyimide films, etc.

N r Cr、AU等を下部電極として真空蒸着ヤスバ
ッタリングにより、厚さ1000〜5000オングスト
ロームに形成する。次に必要に応じて、絶縁層を形成し
た後、例えばプラズマ重合法によって高分子の感湿性誘
電体薄膜を形成する。感湿性誘電体薄膜の形成法として
は、すでに本出願人が開発した芳香族または脂肪族化合
物をモノマーとするプラズマ重合により形成してもよい
(特開平2−114166号公報)。
A lower electrode of N r Cr, AU, etc. is formed to a thickness of 1000 to 5000 angstroms by vacuum evaporation and Yasbuttering. Next, if necessary, after forming an insulating layer, a moisture-sensitive dielectric thin film of polymer is formed by, for example, plasma polymerization. The moisture-sensitive dielectric thin film may be formed by plasma polymerization using an aromatic or aliphatic compound as a monomer, which has already been developed by the present applicant (Japanese Patent Application Laid-Open No. 114166/1999).

次いで、この高分子膜を’l xlo−6Torr以下
の真空中で、250℃以上の熱処理を行う。この温度に
ついては、望ましくは250〜500’Cであり、25
0℃未満では特性改善の効果が必まり期待できず、50
0’Cより上では、誘電性感湿膜の膜厚の減少か著しく
、実用には適さない。また、さらに、300〜400℃
付近の温度が好ましい。熱処理時間は30分以上である
ことが望ましい。また熱処理は1回のみでもよいが、複
数回のサイクルで行ってもよい。この時は10回程度ま
でであることが作業効率と膜改善とのバランス上、好ま
しい。なあ、この感湿性誘電体薄膜の熱処理は後述する
上部電極を形成した後に行ってもよい。
Next, this polymer film is subjected to heat treatment at 250°C or higher in a vacuum of 1xlo-6 Torr or lower. This temperature is preferably 250 to 500'C, and 25 to 500'C.
At temperatures below 0°C, the effect of improving properties cannot necessarily be expected;
Above 0'C, the thickness of the dielectric moisture sensitive film decreases significantly, making it unsuitable for practical use. Furthermore, 300 to 400℃
Temperatures in the vicinity are preferred. It is desirable that the heat treatment time is 30 minutes or more. Further, the heat treatment may be performed only once, or may be performed in multiple cycles. At this time, it is preferable to repeat the process up to about 10 times from the viewpoint of balance between work efficiency and film improvement. Incidentally, this heat treatment of the moisture-sensitive dielectric thin film may be performed after forming the upper electrode, which will be described later.

次いで、該基板を大気中に取り出した後、真空蒸着ヤス
バッタリングにより透湿性の金属被膜よりなる上部電極
を形成する。上部電極は直接外気にさらされるために、
耐食性のめる金属、例えばN i Cr、Cr、Ta、
N i 、Au、Pd、Pt等を使用するのがよい。
Next, after the substrate is taken out into the atmosphere, an upper electrode made of a moisture-permeable metal film is formed by vacuum evaporation and Yasbuttering. Since the upper electrode is directly exposed to the outside air,
Corrosion-resistant metals such as NiCr, Cr, Ta,
It is preferable to use N i , Au, Pd, Pt, etc.

次に、銀ペーストや超音波はんだ等により、リード線の
はんだ付けを行い、1枚の絶縁基板上でセンサーを多数
個数りにする場合には、絶縁基板のカッティングを行う
Next, lead wires are soldered using silver paste, ultrasonic soldering, etc., and when a large number of sensors are to be provided on one insulating substrate, the insulating substrate is cut.

[作用] 本発明では感湿性誘電体薄膜の安定化あるいは改質処理
として、真空中での熱処理を行う。成膜後の高分子膜中
には、未だ高分子には至らず、比較的低分子のままで残
されている化合物や、化学的に不安定な状態のままで残
されている高分子が多数存在する。そこで、このような
膜に熱を加えることで低分子の化合物については蒸発・
除去され、不安定な状態の高分子等の水素脱離が起こり
、架橋か進行し、化学的に安定なものとなる。その結果
、感湿性誘電体薄膜は緻密な高分子膜となり、温度特性
の経時変化か小さくなると共(、温度特性も改善される
[Function] In the present invention, heat treatment in vacuum is performed as stabilization or modification treatment of the moisture-sensitive dielectric thin film. In the polymer film after film formation, there are compounds that have not yet become polymers and remain as relatively low molecules, and polymers that remain in a chemically unstable state. There are many. Therefore, by applying heat to such a film, low molecular compounds can be evaporated and
When removed, hydrogen desorption occurs in unstable polymers, etc., crosslinking progresses, and it becomes chemically stable. As a result, the moisture-sensitive dielectric thin film becomes a dense polymer film, and changes in temperature characteristics over time are reduced (and temperature characteristics are also improved).

[実施例] 次に本発明の実施例について図面を参照して詳細に説明
する。
[Example] Next, an example of the present invention will be described in detail with reference to the drawings.

第1図は本発明に係る感湿素子の一実施例の断面図であ
る。ガラスよりなる絶縁性基板1の上面にはニクロム(
NiCr)からなる下部電極2が真空蒸着法等によって
膜厚約1000オングストロームに形成されており、こ
の下部電極2上には高分子の感湿性誘電体薄膜3かプラ
ズマ重合法によって膜厚約1500オングストロームに
平坦形成されている。この感湿性誘電体薄膜3は、吸収
される水分量の関数として誘電率が変化するものである
FIG. 1 is a cross-sectional view of an embodiment of a moisture-sensitive element according to the present invention. The upper surface of the insulating substrate 1 made of glass is covered with nichrome (
A lower electrode 2 made of (NiCr) is formed to a thickness of approximately 1000 angstroms by vacuum evaporation, etc., and a moisture-sensitive dielectric thin film 3 made of a polymer is formed on the lower electrode 2 to a thickness of approximately 1500 angstroms by plasma polymerization. It is formed flat. The moisture-sensitive dielectric thin film 3 has a dielectric constant that changes as a function of the amount of moisture absorbed.

なお、基板1、下部電極2および感湿性誘電体薄膜3の
材料・厚みおよび形成方法は、目的に応じて任意に選定
可能である。
Note that the materials, thicknesses, and formation methods of the substrate 1, lower electrode 2, and moisture-sensitive dielectric thin film 3 can be arbitrarily selected depending on the purpose.

感湿性誘電体薄膜3の下部電極2と対向する面(上面)
には、上部電極4が感湿性誘電体薄膜3の上面にあける
法線に対して75°の入射角度で斜方蒸着によって膜厚
約400オングストロームに形成されている。
Surface (top surface) of the moisture-sensitive dielectric thin film 3 facing the lower electrode 2
The upper electrode 4 is formed to a thickness of about 400 angstroms by oblique deposition at an incident angle of 75° to the normal to the upper surface of the moisture-sensitive dielectric thin film 3.

このような上部電極4は、第2図に示すような蒸着装置
によって形成可能である。
Such an upper electrode 4 can be formed using a vapor deposition apparatus as shown in FIG.

すなわち、ペルジャー19の内部上方に、上部電極4を
形成する前の素材21が、支持基台23上に載置されて
いるとともに、後述する蒸着材料の入射角方向に対して
感湿性誘電体簿膜3の法線Aが75°となるような位置
関係で配置される。なあ、支持基台23の支持部材の図
示は省略した。
That is, above the interior of the Pelger 19, a material 21 before forming the upper electrode 4 is placed on a support base 23, and a moisture-sensitive dielectric material is placed on the support base 23, which will be described later. They are arranged in a positional relationship such that the normal A of the membrane 3 is 75°. Note that illustration of the support member of the support base 23 is omitted.

一方、ペルジャー19内における素材21の下方には、
加熱フィラメント27に巻き付けた蒸着材料としてのニ
クロム線25を配置し、ペルジャー19に排気装置(図
示せず)が連結されて構成されている。
On the other hand, below the material 21 in the Pelger 19,
A nichrome wire 25 as a vapor deposition material is arranged around a heating filament 27, and an exhaust device (not shown) is connected to a Pelger 19.

このような斜め蒸着装置において、ペルジャー19内を
真空度5 x IC)−6Torr程度に排気した後、
フィラメント27でニクロム線25を加熱蒸発させて誘
電体薄膜3の上面に75°の入射角度で斜め蒸着される
In such an oblique evaporation apparatus, after evacuating the inside of the Pelger 19 to a degree of vacuum of about 5 x IC)-6 Torr,
The nichrome wire 25 is heated and evaporated with the filament 27 and is obliquely deposited on the upper surface of the dielectric thin film 3 at an incident angle of 75°.

本実施例では上記のようにして上部電極までを形成した
後、真空加熱処理を行う。真空加熱は上部電極形成時の
ペルジャーと同じものを用いてもよいし、別ペルジャー
でもよい。第3図は真空加熱に用いる装置の概略構成図
で、ペルジャー31内に感湿素子素材33を保持する支
持基台34と加熱用のタングステンフィラメント32が
設置され、感湿素子素材33はタングステンフィラメン
ト32により加熱されるようになっている。素材33の
温度は熱電対35によって測定される。このような装置
を用いて、1 xlO−6Torr以下に排気し、至温
と350°C130分保持を3回繰り返して本発明の感
湿素子を得た。
In this example, after forming up to the upper electrode as described above, vacuum heat treatment is performed. For vacuum heating, the same Pel jar used for forming the upper electrode may be used, or a different Pel jar may be used. FIG. 3 is a schematic configuration diagram of a device used for vacuum heating, in which a support base 34 for holding a moisture-sensitive element material 33 and a tungsten filament 32 for heating are installed in a Pel jar 31, and a tungsten filament for the humidity-sensitive element material 33. It is heated by 32. The temperature of the material 33 is measured by a thermocouple 35. Using such an apparatus, the temperature was evacuated to 1 x lO-6 Torr or less, and the temperature was repeated three times at 350 DEG C. for 130 minutes to obtain a moisture-sensitive element of the present invention.

なお本実施例では熱処理を上部電極形成後に行ったが、
感湿膜を成膜後、熱処理を行い、次いて上部電極を形成
してもよい。
Note that in this example, heat treatment was performed after forming the upper electrode, but
After forming the moisture sensitive film, heat treatment may be performed and then the upper electrode may be formed.

次に本実施例で得られた感湿素子と、真空熱処理を行っ
ていない他は実施例と同様にして作成した感湿素子との
40℃における経時変化をそれぞれ第4図および第5図
に示す。これらの図の横軸は経過日数(日)であり、縦
軸はOB1のO%RH容量値(C)を基準とし、((C
x−Co>/Co)×100 (式中のCxは各測定容
量値)より算出される変化率(%)である(以降、変化
率は開式にて計算された値である。)。図中、口はO%
RH1+は10%RH1◇は30%RH1△は60%R
H,Xは90%RHの場合をそれぞれ示す。両図から、
真空熱処理した方が180日経過後も変化率が一定して
おり、経時安定性に優れていることがわかる。
Next, Figures 4 and 5 show the changes over time at 40°C of the humidity sensing element obtained in this example and the humidity sensing element produced in the same manner as in the example except that no vacuum heat treatment was performed. show. The horizontal axis of these figures is the number of elapsed days (days), and the vertical axis is based on the O%RH capacity value (C) of OB1, ((C
The rate of change (%) is calculated from x-Co>/Co)×100 (Cx in the formula is each measured capacitance value) (hereinafter, the rate of change is a value calculated using the open formula). In the figure, the mouth is 0%
RH1+ is 10% RH1◇ is 30% RH1△ is 60% R
H and X respectively indicate the case of 90% RH. From both figures,
It can be seen that the rate of change is constant even after 180 days, and the vacuum heat treatment has better stability over time.

また第6図および第7図は、それぞれ本実施例の感湿素
子と、真空熱処理を行っていない他は上記と同様にして
作成した感湿素子との高温高湿処理(140’C190
%RH112時間放置)前後の感湿特性を示したもので
ある。両図は、横軸を測定湿度(%RH)、縦軸を変化
率(%、!2!l!理前のO%RH基準)にとり、口は
高温高湿処理前にあける測定結果を、+は処理後におけ
る測定結果をそれぞれ示す。両図かられかるように、真
空熱処理を行った素子である第6図では、高温高湿処理
後も、処理前と同様の感湿特性が得られており、高温高
湿を経験しても特性変化のない安定なものであることが
わかる。
Furthermore, FIGS. 6 and 7 show the high-temperature, high-humidity treatment (140'C190
%RH 112 hours) shows the moisture sensitivity characteristics before and after being left for 112 hours. In both figures, the horizontal axis is the measured humidity (%RH) and the vertical axis is the rate of change (%, !2!l! Rizen's O%RH standard).The mouth is opened before the high temperature and high humidity treatment. + indicates the measurement results after treatment. As can be seen from both figures, the device shown in Figure 6, which is a device that has been subjected to vacuum heat treatment, has the same moisture sensitivity characteristics after high temperature and high humidity treatment as before treatment, and even after experiencing high temperature and high humidity. It can be seen that it is stable with no change in characteristics.

さらに、第8図および第9図は、それぞれ真空熱処理を
行った素子と、行っていない素子の20°C(図中口で
示す。)と40℃(図中十で示す。)における感湿特性
図で、横軸に測定湿度(%RH)、縦軸に変化率(%、
20℃、O%RH基準)をプロットしたもの、第10図
および第11図は各素子のO%RH(ロ)、10%RH
(十)、30%RH(◇)、60%RH(△)、90%
RH(X>にあける温度特性の経時変化を示したもので
、縦軸は各測定濁度にあける温度特性を%RHへ変換し
たものをプロットしたものである。第8図および第9図
から本発明の感湿素子の感湿特性は20°Cでも40’
Cでも同一の変化率が得られてあり、熱処理を行ってい
ない従来の素子に比べて優れていることがわかる。また
第10図および第11図から本発明の素子は温度特性の
経時変化についても改善されていることがわかる。
Furthermore, Figures 8 and 9 show the humidity sensitivity at 20°C (indicated by the opening in the figure) and 40°C (indicated by the 10 in the figure) for elements that underwent vacuum heat treatment and for elements that did not undergo vacuum heat treatment, respectively. In the characteristic diagram, the horizontal axis shows the measured humidity (%RH), and the vertical axis shows the rate of change (%,
Figures 10 and 11 are plots of O%RH (20°C, O%RH reference) and 10%RH of each element.
(10), 30%RH (◇), 60%RH (△), 90%
It shows the change over time in the temperature characteristics at RH (X>), and the vertical axis is a plot of the temperature characteristics at each measured turbidity converted to %RH. From Figures 8 and 9. The humidity sensitive element of the present invention has a humidity sensitivity of 40' even at 20°C.
The same rate of change was obtained with C, which indicates that the element is superior to the conventional element that was not subjected to heat treatment. Furthermore, from FIGS. 10 and 11, it can be seen that the element of the present invention also has improved temporal changes in temperature characteristics.

[発明の効果] 以上説明したように、本発明の感湿素子は、感湿膜が成
膜後において真空熱処理されているので、高温高湿下に
放置した後の特性変化が少なく、耐熱性に優れたもので
あると共に、温度特性の経時変化も改善される。また、
真空熱処理は、既存の成膜プロセスを利用して同一装置
内で行えるので、作業効率を損うこともない。
[Effects of the Invention] As explained above, since the moisture sensitive film of the present invention is subjected to vacuum heat treatment after being formed, there is little change in characteristics after leaving it in high temperature and high humidity conditions, and the moisture sensitive element has excellent heat resistance. In addition to being excellent in temperature characteristics, changes over time in temperature characteristics are also improved. Also,
Since the vacuum heat treatment can be performed within the same apparatus using an existing film forming process, there is no loss in work efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の断面図、第2図は本発明の
感湿素子の製造に用いられる蒸着装置の一例の概略構成
図、第3図は真空加熱装置の一例の概略構成図、第4図
および第5図はそれぞれ本発明による感湿素子および従
来例による感湿素子の感湿特性の経時変化を示す図、第
6図および第7図はそれぞれ本発明による感湿素子およ
び従来例による感湿素子の高温高湿環境に放置する前後
の感湿特性図、第8図および第9図はそれぞれ本発明に
よる感湿素子および従来例による感湿素子の20 ’C
および40’Cにおける感湿特性図、第10図および第
11図はそれぞれ本発明による感湿素子および従来例に
よる感湿素子の温度特性の経時変化を示す図である。 1・・・絶縁性基板    2・・・下部電極3・・・
感湿性誘電体薄膜 4・・・上部電極19、31・・・
ペルジャー  21.33・・・感湿素子素材23、3
4・・・支持基台   25・・・ニクロム線27・・
・加熱フィラメント 32・・・タングステンフィラメント 35・・・熱電対
FIG. 1 is a cross-sectional view of an embodiment of the present invention, FIG. 2 is a schematic configuration diagram of an example of a vapor deposition apparatus used for manufacturing the moisture-sensitive element of the present invention, and FIG. 3 is a schematic configuration diagram of an example of a vacuum heating apparatus. 4 and 5 are diagrams showing changes over time in the humidity-sensing characteristics of the humidity-sensing element according to the present invention and a conventional humidity-sensing element, respectively, and FIGS. 6 and 7 are diagrams showing the moisture-sensing characteristics of the humidity-sensing element according to the present invention, respectively. FIG. 8 and FIG. 9 show the moisture sensitivity characteristics of the conventional humidity sensing element before and after being left in a high temperature and high humidity environment, respectively, at 20'C.
FIG. 10 and FIG. 11 are diagrams showing changes over time in temperature characteristics of the humidity sensing element according to the present invention and the humidity sensing element according to the conventional example, respectively. 1... Insulating substrate 2... Lower electrode 3...
Moisture-sensitive dielectric thin film 4... Upper electrodes 19, 31...
Pelger 21.33...Moisture sensitive element material 23, 3
4...Support base 25...Nichrome wire 27...
・Heating filament 32...Tungsten filament 35...Thermocouple

Claims (1)

【特許請求の範囲】[Claims] (1)絶縁性基板と、この基板上に形成された下部電極
と、この下部電極上に形成された高分子の感湿性誘電体
薄膜と、この薄膜上に形成された透湿性の金属被膜より
なる上部電極とを順次積層してなる感湿素子において、
感湿性誘電体薄膜は、成膜後、1×10^−^6Tor
r以下の真空中で250℃以上の熱処理を行つたもので
あることを特徴とする感湿素子。
(1) An insulating substrate, a lower electrode formed on this substrate, a moisture-sensitive polymeric dielectric thin film formed on this lower electrode, and a moisture-permeable metal coating formed on this thin film. In a moisture-sensitive element formed by sequentially laminating upper electrodes,
The moisture-sensitive dielectric thin film is heated to 1×10^-^6 Tor after film formation.
1. A moisture-sensitive element, characterized in that it has been subjected to heat treatment at 250° C. or higher in a vacuum of r or lower.
JP31073790A 1990-11-15 1990-11-15 Moisture sensitive element Expired - Fee Related JP2753653B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31073790A JP2753653B2 (en) 1990-11-15 1990-11-15 Moisture sensitive element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31073790A JP2753653B2 (en) 1990-11-15 1990-11-15 Moisture sensitive element

Publications (2)

Publication Number Publication Date
JPH04181151A true JPH04181151A (en) 1992-06-29
JP2753653B2 JP2753653B2 (en) 1998-05-20

Family

ID=18008885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31073790A Expired - Fee Related JP2753653B2 (en) 1990-11-15 1990-11-15 Moisture sensitive element

Country Status (1)

Country Link
JP (1) JP2753653B2 (en)

Also Published As

Publication number Publication date
JP2753653B2 (en) 1998-05-20

Similar Documents

Publication Publication Date Title
US7270002B2 (en) Humidity sensor element, device and method for manufacturing thereof
JPH0365643A (en) Capacitance humidity sensor
JPS6351501B2 (en)
JP2005031090A (en) Humidity sensor and method of manufacturing the same
JPH04181151A (en) Humidity sensitive element
JPS59173743A (en) Humidity sensible element
JP2753654B2 (en) Moisture sensitive element
JPH02114166A (en) Moisture sensor
JP2529136B2 (en) Moisture-sensitive element and manufacturing method thereof
JPH0514863B2 (en)
JP2959083B2 (en) How to improve the humidity sensor
JPH03122591A (en) Thin film moisture-sensitive element
JP2529137B2 (en) Moisture-sensitive element and manufacturing method thereof
JP2002090329A (en) Humidity sensor and its manufacturing method
JPH0519102B2 (en)
JPH03223648A (en) Thin film moisture sensitive element
JP2622144B2 (en) Method for producing gas-sensitive thin film
JPH04184159A (en) Humidity sensitive element
JPH06118045A (en) Humidity sensor
JPH022912A (en) Thin film moisture sensitive element
JPH0212048A (en) Production of capacity change type moisture sensitive element
JPH06213853A (en) Manufacture of gas detecting element
JPH03202798A (en) Thin film moisture sensitive element
JPH08105855A (en) Nox gas sensing element and its manufacture
JPH02285242A (en) Humidity sensitive element

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees