JPH02270334A - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device

Info

Publication number
JPH02270334A
JPH02270334A JP4496290A JP4496290A JPH02270334A JP H02270334 A JPH02270334 A JP H02270334A JP 4496290 A JP4496290 A JP 4496290A JP 4496290 A JP4496290 A JP 4496290A JP H02270334 A JPH02270334 A JP H02270334A
Authority
JP
Japan
Prior art keywords
impurity
drain
source
integrated circuit
diffused layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4496290A
Other languages
Japanese (ja)
Inventor
Matsuo Ichikawa
市川 松雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP4496290A priority Critical patent/JPH02270334A/en
Publication of JPH02270334A publication Critical patent/JPH02270334A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the short channel phenomenon and the penetration of a wiring from occurring neither increasing the processes as little as possible nor making the alignment allowance at all by a method wherein the second deep diffused layer formed by leading-in the second impurity through a contact hole is provided by overlapping with the first shallow diffused layer formed by leading-in the first impurity. CONSTITUTION:The title semiconductor integrated circuit device is provided with a gate electrode 34 formed on the first conductivity type semiconductor substrate 31, the first shallow diffused layer 35 to be a source or drain formed by leading the second conductivity type first impurity into the substrate 31 through the intermediary of the first thin insulating film formed on the gate electrode 34 and the gate electrode 34 itself whereon the insulating film is formed, the second insulating film 36 having an impurity and formed so as to make a contact hole on the part to be the source or the drain, the second deep diffused layer 39 to be another source or drain formed by leading the second conductivity type second impurity into the substrate 31 so as to be laminated on the first diffused layer 35 deeper than the layer 35 through the intermediary of the said contact hole as well as a metallic wiring 37 formed so as to be connected to the source or drain through the intermediary of the said contact hole.

Description

【発明の詳細な説明】 本発明はMOB型電界効果トランジスタをVS構成要素
する半導体集積回路装置におけるソース。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a source in a semiconductor integrated circuit device in which a MOB field effect transistor is used as a VS component.

ドレイン拡散層に関する。Regarding the drain diffusion layer.

MOB型電界効果トランジスタを構成要素とする半導体
集積回路装置の技術開発で最も力を入れておこなわれて
いるのが高集積化であり、微細化である。微細化を進め
る中で最もネックになるのはチャンネル長である。現在
、試作では1μ前後のチャンネル長のトランジスタ、又
は集積回路が製作されているが、ffi産段階ではやっ
と5μ程度のチャンネル長の集積回路装置が製造される
にいたったにすぎなく、はとんどの集積回路装置は5μ
程度のチャンネル長で製造されている。
In the technological development of semiconductor integrated circuit devices that use MOB field effect transistors as constituent elements, the most focused efforts are toward high integration and miniaturization. The biggest bottleneck in the process of miniaturization is channel length. Currently, prototype transistors or integrated circuits with a channel length of around 1μ have been manufactured, but at the FFI production stage, integrated circuit devices with a channel length of around 5μ have only been manufactured, which is unprecedented. Which integrated circuit device is 5μ
Manufactured with channel lengths of approximately

チャンネル長を短かくしていくと短チヤンネル現像(ソ
ース、ドレイン間の耐圧不良及びスレッシ1−ルド電圧
の低下)がおこり不良となるが、その対策のおもなもの
として次の点が挙げられる(1)  ゲート膜厚を薄く
する。
As the channel length is shortened, short channel development (poor withstand voltage between the source and drain and decrease in threshold voltage) occurs, leading to defects, but the following are the main countermeasures (1). ) Reduce the gate film thickness.

(2)  基板の濃度を高くする。(2) Increase the concentration of the substrate.

(3)  ソース、ドレインの拡散深さsejを浅くす
る。
(3) Shallow the diffusion depth sej of the source and drain.

この内、ソース、ドレインの拡散深さxjを浅くする方
法としては、イオン打込みによる拡散方法が一般的であ
り、さらに拡散源としてAs 、 Sb等の拡散係数の
小さいものを用いるか、B、Pでも打込みエネルギーを
小さくしたり、打込み量を少なくする事によって対応し
ている。
Among these methods, the diffusion method using ion implantation is generally used to reduce the diffusion depth xj of the source and drain, and furthermore, as a diffusion source, a material with a small diffusion coefficient such as As or Sb is used, or a diffusion source such as B or P is used. However, this can be countered by reducing the impact energy and the amount of impact.

xjを浅くしたり、打込み量を少なくしていくと接続部
における金属の拡散層突き抜は現竺(接合耐圧不良)で
ある。、第1図にその例を示し、第2図、第3図にその
従来の対策例を示す。
If xj is made shallower or the implantation amount is reduced, the penetration of the metal diffusion layer at the connection portion will still occur (poor junction breakdown voltage). An example of this is shown in FIG. 1, and examples of conventional countermeasures are shown in FIGS. 2 and 3.

第1図に示すのは、P型巣結晶81基板1上に、フィー
ルド酸化膜2.ゲイ)M化、膜3.ゲートち極4.M+
拡散層5 、P9G膜6.At配線7゜を形成して成る
Nチャンネルuos%界効果トランジスタのドレイン近
傍の断面略図である。図に示すようにコンタクト部のA
tとのア四イ部分で、コンタクト穴のまわ、りに出やす
るアロイピット8が発生し、そのアロイピット8の先端
までAtか侵入する。そこからAtが81単結晶中に拡
散される。N+拡散層5が浅いと、アロイピット8の先
端又は人tが拡散された先端からN+拡散層5の底辺ま
での距離が短かく、耐圧不良をひきおこす。その対策と
しておもなものは第2図に示すように、コンタクト部に
一致するようにあらかじめN1拡赦19を深く形成して
おく方法がとられたり、第3図に示すようにAt配線の
下に白金層30のような突抜けを防止するバリヤー等を
もうけたりしている。しかし、第2図のようにあらかじ
め深い拡散層をもうけるとマスクズレの余裕を取らなけ
ればならないし、ホトエッチ工程、拡散工程等の工程を
ふやさなければならないという欠点がある。
As shown in FIG. 1, a field oxide film 2. Gay) M, membrane 3. Gate Chikoku 4. M+
Diffusion layer 5, P9G film 6. FIG. 2 is a schematic cross-sectional view of the vicinity of the drain of an N-channel uos% field effect transistor formed with an At wiring of 7°. A of the contact part as shown in the figure.
An alloy pit 8 protruding around the contact hole is generated at the part A4A between T and At enters to the tip of the alloy pit 8. From there, At is diffused into the 81 single crystal. If the N+ diffusion layer 5 is shallow, the distance from the tip of the alloy pit 8 or the tip where the particles are diffused to the bottom of the N+ diffusion layer 5 is short, causing a breakdown voltage failure. The main countermeasures are to form the N1 expansion 19 deep in advance so as to match the contact area, as shown in Figure 2, and to form the At wiring as shown in Figure 3. A barrier, such as a platinum layer 30, is provided underneath to prevent penetration. However, if a deep diffusion layer is formed in advance as shown in FIG. 2, there is a drawback that an allowance must be made for mask misalignment and that steps such as photo-etching and diffusion steps must be increased.

又、第3図に示すようにバリヤー層をもうけると、バリ
ヤー層と81単結晶基板、PSG等との密着不良がおき
やすいし、バリヤー層の蒸着、エツチング等工程も多く
なる。その上、突抜は防止に万全ではない。
Further, when a barrier layer is formed as shown in FIG. 3, poor adhesion between the barrier layer and the 81 single crystal substrate, PSG, etc. tends to occur, and the number of steps such as vapor deposition and etching of the barrier layer is increased. Moreover, breakthrough is not completely preventable.

又、Atの中に31やOu等を混入させて突抜けを防止
しているが、拡散がQ、2〜α5μと浅くなると万全で
はなくなる。
Further, penetration is prevented by mixing 31, O, etc. into At, but this is not perfect when the diffusion becomes shallow as Q, 2 to α5μ.

本発明は上記のような欠点を考慮し改善したものであり
、工程をなるべくふやさず、位置合せの余裕も取る事な
く突抜けを防止する事を目的としたものである。
The present invention is an improvement in consideration of the above-mentioned drawbacks, and aims to prevent punch-through without increasing the number of steps as much as possible and without taking any margin for positioning.

第4図〜第7図に装造工程を追った断面略図を示し、以
下に本発明について説明をする。
The present invention will be explained below with reference to FIGS. 4 to 7 showing schematic cross-sectional views showing the mounting process.

第4図に示すように、P剪単結晶81基板31上に選択
酸化によってフィールド酸、化yJX52を形成し、フ
ィールド酸化膜が形成されなかりた部分にゲート酸化膜
33を、さらにその上にゲート電極34を形成、その上
に薄い酸化膜を形成し、その上から拡散係数の小さいA
@イオン打込みによってドレインとなるN+拡散層35
を浅く形成する。第5図に示すように、その上にPSG
、[36を形成し、コンタクト穴を形成する。
As shown in FIG. 4, a field acid, yJX52, is formed by selective oxidation on a P-sheared single crystal 81 substrate 31, and a gate oxide film 33 is formed on the portion where the field oxide film is not formed. A gate electrode 34 is formed, a thin oxide film is formed on it, and A with a small diffusion coefficient is formed on top of it.
@N+ diffusion layer 35 that becomes a drain by ion implantation
Form shallowly. As shown in Figure 5, PSG
, [36] to form a contact hole.

第6図に示すように、その上からPOO2,と0゜との
反応でP、0.をデtub、Pを熱拡散して1拡散層3
9を形成する。この時、PとAsとの拡散係数のちがい
から、Asによって形成された拡散層35のxjをほと
んど深くしないでPによって形成された拡散層39を深
くする事ができる。
As shown in FIG. 6, the reaction between POO2 and 0° causes P, 0. Detub, P thermally diffuse 1 diffusion layer 3
form 9. At this time, due to the difference in diffusion coefficients between P and As, it is possible to deepen the diffusion layer 39 made of P without deepening xj of the diffusion layer 35 made of As.

この場合、N+のプレデメ工程だけで所定のxjを得る
事もできるし、N+プレデボ後N、アニールして所定の
sejを得る事ができる。又N+プレデボとPSG膜の
りフローをかねると工程をふやす事なく段差部の形状、
コンタクト部の形状−を改善する事ができる。
In this case, the predetermined xj can be obtained only by the N+ predeposition process, or the predetermined sej can be obtained by performing N annealing after the N+ predeposition process. Also, by combining N+ pre-devo and PSG film glue flow, the shape of the step part can be changed without increasing the process.
The shape of the contact part can be improved.

さらに第7図に示すように、ライトエッチした後人を蒸
着し、ホトエツチングしてA/、配線37を形成する。
Further, as shown in FIG. 7, after light etching, a layer is deposited and photoetched to form the wiring 37.

以上のように本発明の方法によると、工程をふやす事な
く、位置合せの余裕もその為に特に取る事なく、フンタ
クト部分だけ拡散を深くして突抜けを防止する構造を取
る事ができた。′なお本発明ではP及びAsについて示
したが他の原素を用いても同様であり、3種以上の原素
を用いても同様である。
As described above, according to the method of the present invention, it was possible to create a structure that prevents penetration by deepening the diffusion only in the contact area without increasing the number of processes and without taking any extra margin for alignment. . 'In the present invention, P and As are shown, but the same effect can be achieved even if other elements are used, and the same effect can be obtained even if three or more types of elements are used.

又、本発明の例ではNチャンネルMOB集積回路につい
て示したがPチャンネルMO9集積回路、相補型MOf
9集積回路についても同様である。
Furthermore, in the example of the present invention, an N-channel MOB integrated circuit is shown, but a P-channel MO9 integrated circuit, a complementary MOF
The same applies to the 9 integrated circuits.

なお、本発明の例では製造方法については深い拡散を後
から形成する方法について示したが、順序がかわっても
同様である。
Incidentally, in the example of the present invention, a manufacturing method in which deep diffusion is formed later is shown, but the same applies even if the order is changed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第3図は従来方法におけるNチャンネルMOI
9[界効果トランジスタの断面略図である第4図〜第7
図は本発明方法におけるNチャンネルMOSg界効果ト
ランジスタの製造工程を追った断面略図である。 以下状のとおりである。 1.11,21.31・・・・・・P凰単結晶81基板
2.12,22.32・・・・・・フィールド酸化膜3
.13,23.33・・・・・・ゲート酸化膜4.14
,24,34・・・・・・ゲートI!!極5.15,1
9,25,55.35’・・・・・・N+拡散層 6.16,26.56・・・・・・PSG膜7.17,
27.37・・・・・・At配線9.18.38・・・
・・・・・・・・・・・・アロイビット30・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・・
白金層う′ 第6図
Figures 1 to 3 show N-channel MOI in the conventional method.
9 [Figures 4 to 7 which are schematic cross-sectional views of field effect transistors]
The figure is a schematic cross-sectional view showing the manufacturing process of an N-channel MOSg field effect transistor according to the method of the present invention. The details are as follows. 1.11, 21.31... P-o single crystal 81 substrate 2.12, 22.32... Field oxide film 3
.. 13,23.33...Gate oxide film 4.14
,24,34...Gate I! ! pole 5.15,1
9, 25, 55.35'...N+ diffusion layer 6.16, 26.56...PSG film 7.17,
27.37...At wiring 9.18.38...
・・・・・・・・・・・・Alloy bit 30・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・
Platinum layer Figure 6

Claims (1)

【特許請求の範囲】[Claims] Si単結晶基板を用いたMOS型電界効果トランジスタ
を構成要素とする半導体集積回路装置において、ソース
、ドレイン拡散層の内すくなくとも該ドレイン拡散層内
の一部は、同一タイプの導電型を示し、かつ拡散係数の
異なる異種原子によって重複し拡散形成されたMOS型
電界効果トランジスタを構成要素とする半導体集積回路
装置。
In a semiconductor integrated circuit device having a MOS field effect transistor using a Si single crystal substrate as a component, at least a part of the source and drain diffusion layers exhibits the same conductivity type, and A semiconductor integrated circuit device whose constituent elements are MOS field effect transistors formed by overlapping and diffusing different atoms having different diffusion coefficients.
JP4496290A 1990-02-26 1990-02-26 Semiconductor integrated circuit device Pending JPH02270334A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4496290A JPH02270334A (en) 1990-02-26 1990-02-26 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4496290A JPH02270334A (en) 1990-02-26 1990-02-26 Semiconductor integrated circuit device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP55163564A Division JPS5787174A (en) 1980-11-20 1980-11-20 Semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPH02270334A true JPH02270334A (en) 1990-11-05

Family

ID=12706107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4496290A Pending JPH02270334A (en) 1990-02-26 1990-02-26 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPH02270334A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5320776A (en) * 1976-08-10 1978-02-25 Mitsubishi Electric Corp Production of metal insulation film semiconductor device
JPS5373081A (en) * 1976-12-11 1978-06-29 Fujitsu Ltd Manufacture of mis-type semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5320776A (en) * 1976-08-10 1978-02-25 Mitsubishi Electric Corp Production of metal insulation film semiconductor device
JPS5373081A (en) * 1976-12-11 1978-06-29 Fujitsu Ltd Manufacture of mis-type semiconductor device

Similar Documents

Publication Publication Date Title
US6365472B1 (en) Semiconductor device and method of manufacturing the same
US4560582A (en) Method of preparing a semiconductor device
JPH02270334A (en) Semiconductor integrated circuit device
JPS6251216A (en) Manufacture of semiconductor device
JPH08130309A (en) Semiconductor device and its manufacture
JPS6038856A (en) Manufacture of semiconductor device
JPH06268057A (en) Manufacture of semiconductor device
JP2582779B2 (en) Method for manufacturing semiconductor device
JP2610906B2 (en) Method for manufacturing BiMOS semiconductor circuit device
JPS61287160A (en) Manufacture of mos type semiconductor device
JPS628553A (en) Semiconductor device
JPS6276666A (en) Complementary semiconductor device
JPS63244666A (en) Manufacture of semiconductor device
JPS6246572A (en) Manufacture of semiconductor device
JPH11150238A (en) Semiconductor device and its manufacture
JPS626664B2 (en)
JPS59121877A (en) Manufacture of mis type transistor
JPS6293929A (en) Manufacture of semiconductor device
JPS60226169A (en) Manufacture of semiconductor device
JPS59124767A (en) Manufacture of semiconductor-integrated circuit device
JPS62147777A (en) Manufacture of mos field effect transistor
JPS6049672A (en) Semiconductor integrated circuit device
JPH05343668A (en) Semiconductor device, semiconductor integrated circuit and manufacturing method thereof
JPH0212925A (en) Semiconductor device and manufacture thereof
JPS60158658A (en) Manufacture of semiconductor device