JPH02270270A - Operation of zinc-bromine battery - Google Patents

Operation of zinc-bromine battery

Info

Publication number
JPH02270270A
JPH02270270A JP1091234A JP9123489A JPH02270270A JP H02270270 A JPH02270270 A JP H02270270A JP 1091234 A JP1091234 A JP 1091234A JP 9123489 A JP9123489 A JP 9123489A JP H02270270 A JPH02270270 A JP H02270270A
Authority
JP
Japan
Prior art keywords
battery
zinc
electrolyte
bromine
charged
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1091234A
Other languages
Japanese (ja)
Other versions
JPH0834110B2 (en
Inventor
Kenichiro Jinnai
健一郎 陣内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP1091234A priority Critical patent/JPH0834110B2/en
Publication of JPH02270270A publication Critical patent/JPH02270270A/en
Publication of JPH0834110B2 publication Critical patent/JPH0834110B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • H01M12/085Zinc-halogen cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/70Arrangements for stirring or circulating the electrolyte
    • H01M50/77Arrangements for stirring or circulating the electrolyte with external circulating path
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Hybrid Cells (AREA)

Abstract

PURPOSE:To retard the growth of zinc dendrite by installing two Zn-Br2 batteries, starting charging of one battery when the discharge of the other battery was completed, and completely discharging the other battery while one battery is charged. CONSTITUTION:Two zinc-bromine batteries 11, 12 are installed, and zinc, bromine electrolytes are supplied to the batteries 11, 12 from each of electrolyte tanks 13, 14 with pumps 17, 20. Both batteries 11, 12 are alternatively charged and discharged. When one battery is charged, the other battery is completely discharged, and the electrolyte of the other battery is not circulated during discharge. When one battery between batteries 11, 12 was completely discharged, the other battery is immediately charged. By repeating this charge-discharge operation, the growth of zinc dendrite is surely retarded.

Description

【発明の詳細な説明】 A、産業上の利用分野 この発明は亜鉛−臭素電池の運転方法に関する。[Detailed description of the invention] A. Industrial application field This invention relates to a method of operating a zinc-bromine battery.

89発明の概要 この発明は亜鉛−臭素電池の運転方法において、1つの
電解液システムに対し、2つの亜鉛−臭素電池本体シス
テムを設けて、この2つの電池本体を交互に充放電させ
るようにしたことにより、亜鉛のデンドライトを抑制す
ることができるとともに、電池本体の寿命を飛躍的に向
上させることができるようにしたものである。
89 Summary of the Invention This invention is a method for operating a zinc-bromine battery, in which two zinc-bromine battery body systems are provided for one electrolyte system, and the two battery bodies are alternately charged and discharged. This makes it possible to suppress zinc dendrites and dramatically improve the life of the battery body.

C0従来の技術 亜鉛−臭素電池の基本構成を第5図に示す。図中、lは
セル(電池本体)、2はこのセルl内を正極(陽極)側
と負極(陰極)側に仕切るセパレータで、正極側には正
極電極3を設けるとともに、Z n B r t −B
 r tの水溶液からなる正極電解液4を収納し、負極
側には負極電極5を設けるとともに、ZnBrtの水溶
液からなる負極電解eL6を収納する。7は正極電解液
4を貯蔵する貯蔵槽、8は負極電解液6を貯蔵する貯蔵
槽、9は前記セル1の正極側と貯蔵槽7との間に設けた
循環路、10は前記セルlの負極側と貯蔵槽8との間に
設けた循環路、11は正極側の循環路9に設けたポンプ
、12は負極側の循環路lOに設けたポンプ、13は正
極端子、14は負極端子である。
C0 Prior Art The basic structure of a zinc-bromine battery is shown in FIG. In the figure, l is a cell (battery main body), 2 is a separator that partitions the inside of this cell l into a positive electrode (anode) side and a negative electrode (cathode) side, and a positive electrode 3 is provided on the positive electrode side, and Z n B r t -B
A positive electrode electrolyte 4 made of an aqueous solution of rt is housed, a negative electrode 5 is provided on the negative side, and a negative electrolyte eL6 made of an aqueous solution of ZnBrt is housed. 7 is a storage tank for storing the positive electrode electrolyte 4; 8 is a storage tank for storing the negative electrode electrolyte 6; 9 is a circulation path provided between the positive electrode side of the cell 1 and the storage tank 7; 10 is the cell l 11 is a pump provided in the circulation path 9 on the positive electrode side, 12 is a pump provided in the circulation path 10 on the negative electrode side, 13 is a positive terminal, and 14 is a negative electrode. It is a terminal.

上記の亜鉛−臭素電池は電解液循環型であり、充放電時
に正極電解液4、負極電解液6がポンプ11.12によ
ってセル1内へ送り込まれると、正極:2Br;:Br
*+2e 負極: Z n ” + 2 e ;: Z nの反応
が生じる。この反応により正極で発生した臭素が負極に
拡散すると亜鉛と自己放電を起こす。
The above zinc-bromine battery is an electrolyte circulation type, and when the positive electrode electrolyte 4 and the negative electrode electrolyte 6 are fed into the cell 1 by the pump 11.12 during charging and discharging, the positive electrode: 2Br;
*+2e Negative electrode: Z n '' + 2 e ;: Z n reaction occurs. When bromine generated at the positive electrode diffuses to the negative electrode due to this reaction, self-discharge occurs with zinc.

このため、正極電極3と負極電極5の間にセパレータ2
を設置して、臭素の負極への拡散は防止している。セパ
レータ2としては、ポリエチレンやシリコンからなる多
孔質の膜が用いられいる。
Therefore, a separator 2 is placed between the positive electrode 3 and the negative electrode 5.
is installed to prevent bromine from diffusing into the negative electrode. As the separator 2, a porous film made of polyethylene or silicon is used.

正極で発生した臭素は、電解液中の臭素錯化剤と反応し
てオイル状の錯化物となり、槽の底に貯蔵される。また
、負極の亜鉛は電極に密着される。
Bromine generated at the positive electrode reacts with the bromine complexing agent in the electrolyte to form an oily complex, which is stored at the bottom of the tank. Moreover, the zinc of the negative electrode is closely attached to the electrode.

なお、電解液には、正、負極の活物質としてのZnBr
、の他、伝導度向上剤としてNH,CQが添加される。
Note that the electrolyte contains ZnBr as the active material of the positive and negative electrodes.
In addition to , NH and CQ are added as conductivity improvers.

第6図はバイポーラ接続電池本体を示すもので、セパレ
ータ2の周辺の枠2Aにチャンネル15を形成し、これ
が中間電極16のマニホールド17と連通するようにセ
パレータ2を中間電極16、端板電極18などと組み合
わせ、これらを押さえ板19で挟持した積層構造として
いる。電解液は、マニホールド17からチャンネル15
を通して送り込まれ、セパレータ2、中間電極16の部
分を通過した後、上部マニホールドから貯蔵槽へ戻る。
FIG. 6 shows a bipolar connected battery body, in which a channel 15 is formed in the frame 2A around the separator 2, and the separator 2 is connected to the intermediate electrode 16 and the end plate electrode 18 so that the channel 15 communicates with the manifold 17 of the intermediate electrode 16. A laminated structure is formed in which these are sandwiched between pressing plates 19. The electrolyte flows from manifold 17 to channel 15.
After passing through the separator 2 and the intermediate electrode 16, it returns to the storage tank from the upper manifold.

D1発明が解決しようとする課題 第5図に示した亜鉛−臭素電池における問題点の1つと
して、充電時に発生する亜鉛のデンドライト抑制がある
。このデンドライトが発生するとセパレータ2を損傷さ
せたり、あるいはそれが正極まで延びると短絡を起し、
電池効率を著しく低下させてしまう。このため、これら
の原因により亜鉛−臭素電池の寿命が短くさせてしまう
問題が発生した。これを解決させる為に、電解液に抑制
剤を添加したりしているが、未だ解決されるには至って
いない。
D1 Problems to be Solved by the Invention One of the problems with the zinc-bromine battery shown in FIG. 5 is the suppression of zinc dendrites that occur during charging. When this dendrite occurs, it can damage the separator 2, or if it extends to the positive electrode, it can cause a short circuit.
This will significantly reduce battery efficiency. Therefore, a problem arises in that the life of the zinc-bromine battery is shortened due to these causes. In order to solve this problem, inhibitors have been added to the electrolyte solution, but the problem has not yet been solved.

また、デンドライトは充電後、次の充電を行う時に発生
し易いことが判っているため、放電後、電極に残った亜
鉛は電気的に溶融させ、次の充電の時は全く亜鉛が密着
していない電極で電池の運転を行っている。
In addition, it is known that dendrites are likely to occur after charging and when performing the next charge, so the zinc remaining on the electrode after discharging is electrically melted so that no zinc is in close contact with it at the time of the next charge. The battery is being operated with an electrode that is not present.

しかし、放電と次の充電に移行する間に上述のような過
程があると電池の使用範囲か狭くなる問題が新たに生じ
る。
However, if the above-mentioned process occurs between discharging and transitioning to the next charge, a new problem arises in that the usable range of the battery is narrowed.

この発明は上記の事情に鑑みてなされたもので、亜鉛の
デンドライトを抑制するために、2つの電池本体を用い
てそれを交互に充放電させるように動作させた亜鉛−臭
素電池の運転方法を提供することを目的とする。
This invention was made in view of the above circumstances, and in order to suppress the formation of zinc dendrites, a method of operating a zinc-bromine battery using two battery bodies and operating the batteries in such a manner that they are alternately charged and discharged was proposed. The purpose is to provide.

80課題を解決するための手段 この発明は亜鉛−臭素電池本体を2個設け、両電池本体
に供給する亜鉛臭素電解液を同一電解液タンクから充放
電時ポンプで循環させるとともに両電池本体を交互に充
放電させて、一方の電池本体が充放電しているとき、他
方のそれは完全充電を行い、その完全放電中の電池の電
解液は循環させないようにしたものである。
80 Means for Solving the Problems This invention provides two zinc-bromine battery bodies, circulates the zinc-bromine electrolyte supplied to both battery bodies from the same electrolyte tank using a pump during charging and discharging, and alternates between the two battery bodies. When one battery body is being charged and discharged, the other battery is fully charged, and the electrolyte of the fully discharged battery is not circulated.

F1作用 電池本体の一方が放電を終了した時点で、他方の電池本
体は充電を行う。この他方の電池が充電を始めしかる後
に充電を行っている間に一方の電池本体は完全放電を行
う。この動作を以後繰り返し行う。
When one of the F1 working battery bodies finishes discharging, the other battery body starts charging. After the other battery starts charging, one battery body is completely discharged while charging is being performed. This operation is repeated thereafter.

G、実施例 以下この発明の一実施例を図面に基づいて説明する。G. Example An embodiment of the present invention will be described below based on the drawings.

第1図において、11.12は第5図および第6図に示
した亜鉛−臭素(ZnBr、)電池本体、13は正極電
解液タンク、14は負極電解液タンクである。Z n 
B r を電池本体11の正極側の入口、出口には電磁
弁15a、15bを介して循環路16a、16bの一端
が接続される。循環路16aの他端は正極電解液タンク
13の上部に連通され、循環路16bの他端はポンプ1
7を介して正極電解液タンク13の下部に連通される。
In FIG. 1, 11.12 is the zinc-bromine (ZnBr) battery body shown in FIGS. 5 and 6, 13 is a positive electrode electrolyte tank, and 14 is a negative electrode electrolyte tank. Z n
B.sub.r is connected to the inlet and outlet of the positive electrode side of the battery body 11 to one end of circulation paths 16a, 16b via electromagnetic valves 15a, 15b. The other end of the circulation path 16a is connected to the upper part of the positive electrode electrolyte tank 13, and the other end of the circulation path 16b is connected to the pump 1.
It communicates with the lower part of the positive electrode electrolyte tank 13 via 7.

また、電池本体11の負極側の入口、出口には電磁弁1
8a、18bを介して循環路19a、19bの一端が接
続される。循環路19aの他端は負極電解液タンク14
の上部に連通され、循環路19bの他端はポンプ20を
介して負極電解液タンク14の下部に連通される。
In addition, a solenoid valve 1 is provided at the inlet and outlet of the negative electrode side of the battery body 11.
One ends of circulation paths 19a and 19b are connected via 8a and 18b. The other end of the circulation path 19a is the negative electrode electrolyte tank 14
The other end of the circulation path 19b is connected to the lower part of the negative electrode electrolyte tank 14 via a pump 20.

一方、ZnBrt電池本体12の正極側の入口。On the other hand, an inlet on the positive electrode side of the ZnBrt battery body 12.

出口にも電磁弁21a、21bを設けて、その電磁弁2
1a、21bは循環路16a、16bの途中から分枝さ
れた循環路22a、22bに接続される。同様にZ n
 B r s電池本体12の負極側の入口、出口にも電
磁弁23a、23bを設けて、その電磁弁23a、23
bは循環路19a、19bの途中から分枝された循環路
24a、24bに接続される。
Solenoid valves 21a and 21b are also provided at the outlet, and the solenoid valve 2
1a and 21b are connected to circulation paths 22a and 22b branched from the middle of circulation paths 16a and 16b. Similarly Z n
Solenoid valves 23a, 23b are also provided at the inlet and outlet of the negative electrode side of the B r s battery body 12, and the solenoid valves 23a, 23
b is connected to circulation paths 24a and 24b branched from the middle of circulation paths 19a and 19b.

次に上記のように構成された実施例の動作を述べる。Z
 n B r z電池本体11が充電をし、しかる後に
放電を初めているとする。この放電が終了した時点(第
2図の1+)で、電池本体12の充電を開始する。この
充電開始前に、電池本体11では電解液を本体内に残し
たままポンプ17.20を停止し、電池本体ll内の電
解液がタンク13.14内に戻らないようにさせるため
に電磁弁15a、15bおよび18a、18bを閉じる
Next, the operation of the embodiment configured as described above will be described. Z
Assume that the n B r z battery body 11 is charged and then begins discharging. When this discharging is completed (1+ in FIG. 2), charging of the battery main body 12 is started. Before starting this charging, in the battery body 11, the pump 17.20 is stopped while leaving the electrolyte in the body, and a solenoid valve is activated to prevent the electrolyte in the battery body 11 from returning to the tank 13.14. 15a, 15b and 18a, 18b are closed.

そして、図示しない外部の抵抗によって電池本体11の
電荷を放電させる(完全放電)ことによって電極に残っ
た亜鉛を溶かす。この動作が電池本体11で始まったな
らポンプ17.20を動かして、電池本体12が充放電
を行い、電池本体12の放電が第2図の時点11で終了
した時、前記と同様にポンプ17.20を停止し、電磁
弁21a。
Then, by discharging the charge in the battery body 11 (complete discharge) using an external resistor (not shown), the zinc remaining on the electrodes is melted. When this operation starts in the battery body 11, the pumps 17 and 20 are operated to charge and discharge the battery body 12, and when the discharge of the battery body 12 is finished at time 11 in FIG. 2, the pump 17. .20 and solenoid valve 21a.

21bおよび24a、24bを閉じる。なお、電池本体
11の充電開始時には電磁弁15a、15bおよび18
a、’18bを開ける。第2図は上記動作の電圧挙動特
性図である。
21b and 24a, 24b are closed. Note that when the battery main body 11 starts charging, the solenoid valves 15a, 15b, and 18
a, open '18b. FIG. 2 is a voltage behavior characteristic diagram of the above operation.

次に、第1図の実施例を用いた電池充放電試験例につい
て記する。電池本体としては800ci’、10セルで
、電流密度10mA/Cx″、8時間充電し、10mA
/cm”で放電した。このときの放電終止電圧は1 、
OV/セルとし、この時点で電池本体11と電池本体1
2を切り替えた。第3図に示す曲線Aはこの発明の実施
例の寿命試験結果であり、曲線Bは電池本体が1個のと
きのものである。曲線Bの電池本体は完全放電を行わな
いでサイクルを繰り返した場合のものであるから100
サイクル程度で効率が低下してしまうが、この実施例に
よる運転を行えば、毎回完全放電を行った時と同程度の
寿命となる。
Next, a battery charging/discharging test example using the embodiment shown in FIG. 1 will be described. The battery itself is 800ci', 10 cells, current density 10mA/Cx'', charged for 8 hours, 10mA
/cm". The final discharge voltage at this time was 1,
OV/cell, and at this point battery body 11 and battery body 1
I switched 2. Curve A shown in FIG. 3 is the life test result of the embodiment of the present invention, and curve B is the result when there is only one battery body. The battery body of curve B is the one obtained by repeating the cycle without completely discharging, so it is 100%.
Although the efficiency decreases with each cycle, if the operation according to this embodiment is carried out, the lifespan will be approximately the same as when a complete discharge is performed every time.

第1図に示した実施例の電池は電池本体を2個持ったこ
とによるエネルギー密度、すなわち電池が重く、大きく
なってしまうことである。そこで、現状の電池の厚みを
半分にし、大きさをそのまま半分にした電池を製作した
。なお、重量は電池本体を締め付けるボルト、押さえ板
等が2台分かかるため、半分まで低減できない。電極の
厚みを半分にすると耐臭素性が低下するため、寿命が半
分になってしまう。
The battery of the embodiment shown in FIG. 1 has an energy density due to having two battery bodies, that is, the battery becomes heavy and large. Therefore, we created a battery that is half the thickness and half the size of the current battery. It should be noted that the weight cannot be reduced by half because the bolts, holding plates, etc. that tighten the battery body require the weight of two units. If the thickness of the electrode is halved, the bromine resistance will decrease and the lifespan will be cut in half.

しかしながら、この実施例のように電池本体を交互に使
用するため、1台の電池本体のサイクル数は2台の半分
ですむと予測できる。その試験結果を第4図に示す。第
4図において、曲線Aがこの実施例を1/2の大きさに
構成したときの充放電特性であり、曲線Bは従来の1台
の電池の場合のものである。このことから、電池寿命は
、従来の厚み2倍の電池とほぼ同等の結果が得られた。
However, since the battery bodies are used alternately as in this embodiment, it can be predicted that the number of cycles for one battery body will be half that of two batteries. The test results are shown in FIG. In FIG. 4, curve A shows the charging and discharging characteristics when this embodiment is constructed to be 1/2 the size, and curve B shows the charging and discharging characteristics when one conventional battery is used. As a result, the battery life was almost equivalent to that of a conventional battery with twice the thickness.

すなわち、厚みを半分にした電池を2台用いて交互に充
放電を行うことで、寿命は従来と同等のものが得られた
That is, by using two batteries with half the thickness and charging and discharging them alternately, a lifespan equivalent to that of the conventional battery was obtained.

H1発明の効果 以上述べたように、この発明によれば、ZnBrt電池
本体を2個設けて一方の電池本体が放電終了した時点で
、他方の電池本体の充電を始め、他方の電池本体が充放
電している間に前記一方の電池本体を完全放電させるよ
うに運転動作を行うようにしたので、亜鉛のデンドライ
トを確実に抑制できるようになる。また、この発明のよ
うに電池を運転させることにより、電池の寿命を従来の
約倍にできる。さらに電池本体の形状を半分にしても寿
命も従来と同等となる等の種々の利点がある。
H1 Effects of the invention As described above, according to this invention, two ZnBrt battery bodies are provided, and when one battery body finishes discharging, charging of the other battery body starts, and the other battery body starts charging. Since the operating operation is performed so that the one battery main body is completely discharged during discharging, zinc dendrites can be reliably suppressed. Furthermore, by operating the battery as in the present invention, the life of the battery can be approximately doubled compared to the conventional one. Furthermore, there are various advantages such as the lifespan being the same as before even if the shape of the battery body is halved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の一実施例を示す電池システムの系
統図、第2図は第1図の実施例の電圧挙動特性図、第3
図および第4図は充放電試験特性図、第5図は亜鉛−臭
素電池の基本構成説明図、第6図はバイポーラ接続電池
本体の斜視図であるる。 11 、  l 2−−−Zn−B r、!池本体、1
3・・正極電解液タンク、14・・・負極電解液タンク
、15 a。 15b、18a、、18b、21a、21b、23a。 23 b □−・電磁弁、17.20−・・ポンプ、1
6a。 16b、19a、19b、22a、22b、24a。 24b・・・循環路。 外2名 第1図 実施例のll7tI!ノステム系統図 11.12  ・電池本体 I3・・正極電解液タンク 14 負極電解液タンク 15a、l 5b、 l 8a、I 8b、21a、2
 l b、23a’、23b・・電磁弁 17.20・・ポンプ I 6a、l 6b、l 9a、l 9b、22a、2
2b、24a、24b第2図 電圧挙動特性図 第5図 Zn−Br2電池の基本構成説明図 1・・・セル 2・・・セパレータ 3・・・正極電極 4・・・正極電解液 5・・・負極電極 6・・・負極電解液 7・・・正極電解液タンク 8・・・負極電解液タンク 9、lO・・・循環路 11.12・・・ポンプ 第6図 バイポーラ接続電池本体の斜視図 2人・・枠 15・・チャンネル 16・中間電極 17 マニホルド 18・端板電極 +9・押え板
FIG. 1 is a system diagram of a battery system showing an embodiment of the present invention, FIG. 2 is a voltage behavior characteristic diagram of the embodiment of FIG. 1, and FIG.
5 and 4 are charge-discharge test characteristic diagrams, FIG. 5 is an explanatory diagram of the basic configuration of a zinc-bromine battery, and FIG. 6 is a perspective view of the main body of a bipolar connected battery. 11, l2---Zn-Br,! Pond body, 1
3... Positive electrode electrolyte tank, 14... Negative electrode electrolyte tank, 15 a. 15b, 18a, 18b, 21a, 21b, 23a. 23 b □-・Solenoid valve, 17.20-・Pump, 1
6a. 16b, 19a, 19b, 22a, 22b, 24a. 24b...Circulation path. ll7tI of the example shown in Figure 1 by two other people! Nostem system diagram 11.12 - Battery body I3... Positive electrode electrolyte tank 14 Negative electrode electrolyte tank 15a, l 5b, l 8a, I 8b, 21a, 2
l b, 23a', 23b...Solenoid valve 17.20...Pump I 6a, l 6b, l 9a, l 9b, 22a, 2
2b, 24a, 24b Figure 2 Voltage behavior characteristic diagram Figure 5 Basic configuration diagram of Zn-Br2 battery 1...Cell 2...Separator 3...Positive electrode 4...Positive electrolyte 5...・Negative electrode 6...Negative electrolyte 7...Positive electrolyte tank 8...Negative electrolyte tank 9, lO...Circulation path 11.12...Pump Figure 6: Perspective view of bipolar connected battery body Figure 2 people...Frame 15...Channel 16, Intermediate electrode 17, Manifold 18, End plate electrode +9, Holding plate

Claims (1)

【特許請求の範囲】[Claims] (1)亜鉛−臭素電池本体を2個設け、両電池本体に供
給する亜鉛臭素電解液を同一電解液タンクから充放電時
ポンプで循環させるとともに両電池本体を交互に充放電
させて、一方の電池本体が充放電しているとき、他方の
電池本体は完全放電を行い、その完全放電中の電池の電
解液は循環させないようにした亜鉛−臭素電池の運転方
法。
(1) Two zinc-bromine battery bodies are provided, and the zinc-bromine electrolyte supplied to both battery bodies is circulated by a pump during charging and discharging from the same electrolyte tank, and both battery bodies are alternately charged and discharged. A method of operating a zinc-bromine battery in which, when one battery body is being charged or discharged, the other battery body is completely discharged, and the electrolyte of the fully discharged battery is not circulated.
JP1091234A 1989-04-11 1989-04-11 Operating method of zinc-bromine battery Expired - Fee Related JPH0834110B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1091234A JPH0834110B2 (en) 1989-04-11 1989-04-11 Operating method of zinc-bromine battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1091234A JPH0834110B2 (en) 1989-04-11 1989-04-11 Operating method of zinc-bromine battery

Publications (2)

Publication Number Publication Date
JPH02270270A true JPH02270270A (en) 1990-11-05
JPH0834110B2 JPH0834110B2 (en) 1996-03-29

Family

ID=14020733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1091234A Expired - Fee Related JPH0834110B2 (en) 1989-04-11 1989-04-11 Operating method of zinc-bromine battery

Country Status (1)

Country Link
JP (1) JPH0834110B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014073475A1 (en) 2012-11-09 2014-05-15 日本電気株式会社 Battery controller, power storage device, power storage method, and program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014073475A1 (en) 2012-11-09 2014-05-15 日本電気株式会社 Battery controller, power storage device, power storage method, and program
US9735596B2 (en) 2012-11-09 2017-08-15 Nec Corporation Battery control device, power storage device, power storage method, and program

Also Published As

Publication number Publication date
JPH0834110B2 (en) 1996-03-29

Similar Documents

Publication Publication Date Title
JPH11506863A (en) How to restore electrode activity
CA1244078A (en) Metal-halogen secondary battery
WO2000054359A1 (en) Dual battery systems and methods for maintaining the charge state of high power batteries
JP2020198187A (en) Secondary battery manufacturing method, and nickel hydrogen secondary battery
JPH02270270A (en) Operation of zinc-bromine battery
CN1501533B (en) Method for making a lead fabric battery using novel lead fabric as polar plate grid
KR0143883B1 (en) Method pof operating metal halogen battery
JP2004014283A (en) Valve regulated lead battery
JPH04206468A (en) Sealed alkali-zinc storage battery
JP3307048B2 (en) Operating method of zinc-bromine battery
JPH0869811A (en) Lead-acid battery
JP2853271B2 (en) Electrolyte static zinc-bromine battery
JP2853295B2 (en) Stacked secondary battery
JP2967634B2 (en) Zinc-bromine battery
JPH05166550A (en) Electrolyte circulation type layered secondary battery
JP2518257B2 (en) Zinc bromide secondary battery charging method
JPH0246662A (en) Sealed lead-acid battery
JPS58147957A (en) Small sealed lead storage battery
JPH01149376A (en) Sealed lead-acid battery
JPH0530291Y2 (en)
JPS6288256A (en) Alkali-manganese secondary cell
JPH03127467A (en) Perfect discharge device of zinc-bromine battery
JPH08279367A (en) Sealed zinc-bromine battery
JPH0696796A (en) Sealed secondary battery
JPH03254075A (en) Perfect discharge device for zinc-bromine battery

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees