JPH08279367A - Sealed zinc-bromine battery - Google Patents

Sealed zinc-bromine battery

Info

Publication number
JPH08279367A
JPH08279367A JP7103169A JP10316995A JPH08279367A JP H08279367 A JPH08279367 A JP H08279367A JP 7103169 A JP7103169 A JP 7103169A JP 10316995 A JP10316995 A JP 10316995A JP H08279367 A JPH08279367 A JP H08279367A
Authority
JP
Japan
Prior art keywords
bromine
zinc
battery
electrolytic solution
impregnated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7103169A
Other languages
Japanese (ja)
Inventor
Yasuo Nagano
泰男 永野
Masanori Yamamoto
雅教 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takaoka Toko Co Ltd
Original Assignee
Takaoka Electric Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takaoka Electric Mfg Co Ltd filed Critical Takaoka Electric Mfg Co Ltd
Priority to JP7103169A priority Critical patent/JPH08279367A/en
Publication of JPH08279367A publication Critical patent/JPH08279367A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inert Electrodes (AREA)
  • Hybrid Cells (AREA)

Abstract

PURPOSE: To attain miniaturization, weight reduction and cost reduction in short time capacity by sandwiching layered bodies composed of a conductive bromine adsorbing body which can be impregnated with electrolyte, an insulator which can be impregnated with the electrolyte and a conductive porous film sandwiched by insulating net bodies, by electrode plates. CONSTITUTION: Layered bodies composed of an electrode plate 1p, a conductive bromine adsorbing body 2, an insulator 3, net bodies 4 and 6 and a porous film 5 are layered in a plurality, and an electrode plate in is layered on the tail end, and is fastened by a bolt or the like, and a multilayer battery is formed. After electrolyte is impregnated and injected, it is also sealed by a plastic frame 11 and a plastic frame 8 to which the electrode plates 1p and in are adhered. For example, carbon plastic is used as the electrode plates 1p and in, and carbon fiber which has the surface area not less than a specific value and is activated in a fiber shape is used as the adsorbing body 2. Glass wool is used as the insulator 3, and net-like plastic is used as the net bodies 4 and 6, and carbon-applied paper is used as the film 5. When charging, bromine is adsorbed to the adsorbing body, and growth of dendrite-shaped zinc is once stopped by the film 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、密封形に構成した亜鉛
−臭素電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sealed zinc-bromine battery.

【0002】[0002]

【従来の技術】亜鉛−臭素電池は、臭化亜鉛の水溶液と
一対の電極とからなる単純で、しかもエネルギー密度の
高い電池であり、従来、比較的大規模の二次電池として
の利用が考えられてきている。基本的な電気化学的反応
を、下記の化学式1に示す。
2. Description of the Related Art A zinc-bromine battery is a simple and high energy density battery composed of an aqueous solution of zinc bromide and a pair of electrodes. Conventionally, it is considered to be used as a relatively large-scale secondary battery. Has been done. The basic electrochemical reaction is shown in Chemical Formula 1 below.

【0003】[0003]

【化1】 Embedded image

【0004】上式に示す通り、充電時には負極に亜鉛Z
nが析出し、正極に臭素Br2 が生成する。正極に生成
した臭素Br2 は電解液中に溶解して次第に拡散してい
く。放電時には負極に析出した亜鉛Znが酸化され亜鉛
イオンZn2+となって電解液中に溶解し、電解液中の臭
素Br2 は還元されて臭素イオン2Br- となって電解
液中に同様に溶解する。このように亜鉛−臭素電池は活
物質を電解液中に溶解しているので、電池容量が電解液
の容量によって決まることになり、そのために、亜鉛−
臭素電池は、電池反応槽の他に電解液の貯留槽を別に設
けて電解液容量を増大し、電解液を電池反応槽へ循環さ
せる電解液循環型の構造にした比較的大規模用の二次電
池として開発が進められてきている。
As shown in the above formula, during charging, the negative electrode is made of zinc Z.
n is deposited, and bromine Br 2 is produced on the positive electrode. Bromine Br 2 generated in the positive electrode is dissolved in the electrolytic solution and gradually diffuses. At the time of discharge, zinc Zn deposited on the negative electrode is oxidized to become zinc ions Zn 2+ and dissolved in the electrolytic solution, and bromine Br 2 in the electrolytic solution is reduced to bromine ions 2Br similarly in the electrolytic solution. Dissolve. As described above, in the zinc-bromine battery, the active material is dissolved in the electrolytic solution, so that the battery capacity is determined by the capacity of the electrolytic solution.
A bromine battery is a relatively large-scale battery that has an electrolytic solution circulation structure in which an electrolytic solution storage tank is separately provided in addition to the battery reaction tank to increase the electrolytic solution capacity and the electrolytic solution is circulated to the battery reaction tank. Development is proceeding as a secondary battery.

【0005】この、電解液循環型の亜鉛−臭素電池の概
要は次の通りである。上述のように、充電時には正極に
生成した臭素Br2 が電解液中に溶解して拡散していく
ので、負極に析出した亜鉛Znと再反応して自己放電を
起すことになるため、負極側の電解液と正極側の電解液
とは、臭素イオンBr- 及び亜鉛イオンZn2+は透過さ
せるが臭素Br2 及び亜鉛Znの透過は阻止するイオン
交換膜や多孔質膜などによるセパレータ膜で分離されて
いる。
The outline of the electrolyte circulating zinc-bromine battery is as follows. As described above, during charging, the bromine Br 2 generated in the positive electrode is dissolved and diffused in the electrolytic solution, so that it re-reacts with zinc Zn deposited on the negative electrode to cause self-discharge. The electrolytic solution and the electrolytic solution on the positive electrode side are separated by a separator membrane such as an ion exchange membrane or a porous membrane that allows bromine ions Br and zinc ions Zn 2+ to permeate but blocks bromine Br 2 and zinc Zn permeates. Has been done.

【0006】また、亜鉛−臭素電池には、さらに臭素B
2 の拡散を防止するために、正極側の電解液には錯化
剤を添加して、生成した臭素Br2 を電解液中に溶解し
にくい錯体化合物として分離沈澱させることや、負極に
析出する亜鉛Znが負極面近傍の電界分布の不均一など
から平滑となりにくく樹枝状晶のいわゆるデンドライト
状析出となり易いので、これが次第に成長してセパレー
タ膜を貫通破壊して正極との短絡を起し電池を破壊する
原因とならないように、亜鉛デンドライト抑制剤等の添
加や、必要に応じて電導度向上剤の添加等が施されてい
る。電極には電気導電性が高く、かつ活物質の反応性が
高いものが必要であり、特に正極では耐臭素性が要求さ
れることから、表面に活性化処理をしたカーボンプラス
チック(CP)や多孔質の炭素系複合材料などが使用さ
れている。その亜鉛−臭素電池の基本的構成を図2に示
す。図中1は電池反応槽、2は正極室、3は負極室、4
はセパレータ膜、5は正極、6は負極、7は正極電解
液、8は負極電解液、9および10はそれぞれ正極電解
液貯溜槽および負極電解液貯溜槽、11および12はポ
ンプ、13はバルブ、71は錯体化合物である。
In addition, zinc-bromine batteries also contain bromine B
In order to prevent the diffusion of r 2, a complexing agent is added to the electrolytic solution on the positive electrode side to separate and precipitate the produced bromine Br 2 as a complex compound that is difficult to dissolve in the electrolytic solution, or to deposit on the negative electrode. Zinc Zn is less likely to be smooth due to uneven electric field distribution in the vicinity of the negative electrode surface, and is likely to cause so-called dendrite-like deposition of dendrites, which gradually grows and breaks through the separator film to cause a short circuit with the positive electrode. The zinc dendrite inhibitor and the like are added so as not to cause the destruction of the metal, and the conductivity improver is added as necessary. Electrodes need to have high electrical conductivity and high reactivity with the active material, and since bromine resistance is required for the positive electrode in particular, carbon plastic (CP) or porous with activated surface is used. Quality carbon-based composite materials are used. The basic structure of the zinc-bromine battery is shown in FIG. In the figure, 1 is a battery reaction tank, 2 is a positive electrode chamber, 3 is a negative electrode chamber, 4
Is a separator film, 5 is a positive electrode, 6 is a negative electrode, 7 is a positive electrode electrolyte solution, 8 is a negative electrode electrolyte solution, 9 and 10 are positive electrode electrolyte solution storage tanks and negative electrode electrolyte solution storage tanks, 11 and 12 are pumps, and 13 is a valve. , 71 are complex compounds.

【0007】このように、亜鉛−臭素電池は、構成が単
純でかつ電解液容量によって電池容量が決まることか
ら、電解液循環型の比較的大規模の二次電池として、例
えば、夜間の余剰電力の有効利用のための電力貯蔵用電
池などの大規模用の電池の一つとして、古くから多くの
開発が進められてきていることは周知である(例えば、
電気学会雑誌第 103巻 8号 昭和58年 8月、特公平5−
82034公報、特公平5−82713公報)。
As described above, since the zinc-bromine battery has a simple structure and the battery capacity is determined by the electrolytic solution capacity, it is used as a comparatively large-scale secondary battery of the electrolytic solution circulation type, for example, surplus power at night. It is well known that many developments have been made since ancient times as one of large-scale batteries such as a battery for electric power storage for effective use of (for example,
The Institute of Electrical Engineers of Japan Vol. 103, No. 8, August 1983, Tokuhei 5-
82034, Japanese Patent Publication No. 5-82713).

【0008】しかしながら、このようなエネルギー密度
の高い亜鉛−臭素電池を密封形にして、例えばUPS
(Uninterruptible Power Supply)等の、大きな放電電
流が必要であるが短時間定格小容量でよい場合の用に供
する、小形軽量で安価な二次電池として応用することに
ついては開発が進められていない。そこでもし、従来開
発されてきた構成の亜鉛−臭素電池を、そのまま小形軽
量を目的とした二次電池に適用しようとする場合には次
のような問題がある。すなわち、亜鉛−臭素電池は1セ
ルの起電圧が約1.8Vであり、実用的な電圧を得るに
は多数のセルを積層するか、直列接続する必要がある
が、電解液循環形の亜鉛−臭素電池でこれを構成するに
は、望ましくは各セル毎に負極電解液貯留槽、正極電解
液貯留槽、各ポンプ等を持ち、さらにこれらが各セル間
で絶縁されていて、正極及び負極だけが接続されている
ことが必要である。さらに各ポンプの運転のバランスを
とることも必要となる。このように構成が非常に複雑で
繁雑となるから、亜鉛−臭素電池を小規模に実現させる
ことはスケールメリットもなく困難であることは明らか
である。また、負極電解液貯留槽、正極電解液貯留槽な
どを各セル共通で構成させた場合にも、電解液中に各セ
ル間の電位差に基づく循環電流が生じ損失が発生するこ
とになるので、小規模二次電池としては適用され難い。
そこで、亜鉛−臭素電池を、比較的大電流で短時間定格
小容量の用に供する、小形軽量で安価な二次電池として
適用する上においては、密封構造の積層形電池として構
成することが望まれる。
However, such a zinc-bromine battery having a high energy density is sealed and, for example, UPS is used.
(Uninterruptible Power Supply) and other applications that require a large discharge current but require a small rated capacity for a short time, have not been developed for application as a small, lightweight, inexpensive secondary battery. Therefore, if the zinc-bromine battery having the structure that has been conventionally developed is to be directly applied to a secondary battery for the purpose of small size and light weight, there are the following problems. That is, a zinc-bromine battery has an electromotive voltage of about 1.8 V per cell, and it is necessary to stack a number of cells or connect them in series to obtain a practical voltage. To configure this with a bromine battery, it is desirable to have a negative electrode electrolyte storage tank, a positive electrode electrolyte storage tank, each pump, etc. for each cell, and these are insulated between each cell, and the positive electrode and the negative electrode. Only need be connected. It is also necessary to balance the operation of each pump. Since the structure is very complicated and complicated in this way, it is obvious that it is difficult to realize a zinc-bromine battery on a small scale without a merit of scale. Further, even when the negative electrode electrolyte storage tank, the positive electrode electrolyte storage tank and the like are configured in common for each cell, a circulating current based on the potential difference between the cells in the electrolytic solution causes a loss, It is difficult to apply as a small-scale secondary battery.
Therefore, in applying the zinc-bromine battery as a small, lightweight, and inexpensive secondary battery that is used for a relatively large current for a short time with a small rated capacity, it is desirable to configure it as a laminated battery with a sealed structure. Be done.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、密封構
造の積層形亜鉛−臭素電池を構成する上において、次の
ような解決すべき課題を有している。すなわち、亜鉛−
臭素電池は上述の通り、電解液中に活物質が溶解してい
て容量が電解液の量で決定されるので、電池反応槽の他
に電解液の貯留槽を別に設けて大容量の二次電池を構成
する上においては非常に効果的のものであるのである
が、逆に密封形に構成すると、密封された電解液中の活
物質の量は、鉛蓄電池等の活物質を極板で形成している
ものに比し僅少なものとなるから、それらの電池に比し
ては非常に小容量なものになる。それ故、電池の反応槽
の厚さ方向の幅を増大し相当容量の電解液を密封しよう
とすると、小形軽量に構成することが困難となり、また
内部抵抗が増大することになる。しかるに、内部抵抗を
少なくするために、面方向の幅を増大し、より薄肉の積
層構造に形成するようにする場合においては、また正極
に生成する臭素Br2 の電解液への拡散や、負極に析出
するデンドライト状析出亜鉛により自己放電が激しくな
るという問題がある。本発明はこの様な課題に対して検
討を行い、UPS等に実用可能な小形軽量短時間容量の
低廉な密閉形亜鉛−臭素電池を得ることができたもので
ある。
However, in constructing a laminated zinc-bromine battery having a sealed structure, there are the following problems to be solved. That is, zinc-
As described above, in a bromine battery, the active material is dissolved in the electrolytic solution, and the capacity is determined by the amount of the electrolytic solution. Although it is very effective in constructing a battery, conversely, when it is constructed in a sealed type, the amount of active material in the sealed electrolytic solution is different from that of a lead storage battery or other active material in the electrode plate. Since the amount is smaller than that of the formed battery, it is extremely small as compared with those batteries. Therefore, if the width in the thickness direction of the reaction tank of the battery is increased and it is attempted to seal the electrolyte solution of a considerable capacity, it is difficult to make the battery compact and lightweight, and the internal resistance increases. However, in order to reduce the internal resistance by increasing the width in the surface direction to form a thinner laminated structure, the diffusion of bromine Br 2 generated in the positive electrode into the electrolytic solution and the negative electrode There is a problem that the self-discharge becomes intense due to the dendrite-like zinc that precipitates on the surface. The present invention was made to study such problems, and was able to obtain a small-sized, lightweight, short-time capacity and inexpensive sealed zinc-bromine battery that can be practically used for UPS and the like.

【0010】[0010]

【課題を解決するための手段】請求項1の発明では、電
解液が含浸できる導電性の臭素吸着体と、この臭素吸着
体に面し配置した電解液が含浸できる絶縁体と、この絶
縁体に面し配置した、絶縁性の網体に挾んだ導電性の多
孔質膜と、からなる積層体を電極板で挾んで密封したこ
とを特徴とする。請求項2では、請求項1の発明におい
て、臭素吸着体が繊維状の活性炭素であることを特徴と
する。
According to a first aspect of the present invention, a conductive bromine adsorbent which can be impregnated with an electrolytic solution, an insulator which faces the bromine adsorbent and can be impregnated with an electrolytic solution, and this insulator And a conductive porous film sandwiched between insulating nets facing each other and sandwiched by an electrode plate for sealing. A second aspect of the present invention is characterized in that, in the first aspect of the present invention, the bromine adsorbent is fibrous activated carbon.

【0011】[0011]

【作用】電解液が含浸できる導電性の臭素吸着体は電極
板に接していて、電極表面積を増大して電気化学反応を
活性化するとともに、電解液を含浸して電池容量を増加
させ、かつ充電時に生成した臭素Br2 を吸着して臭素
Br2 の電解液中への溶解を少くし、それに基づく自己
放電を抑制する。電解液が含浸できる絶縁体は、積層締
付けにおける正極側と負極側との絶縁体となるととも
に、相当容量の電解液を含浸して所望の電池容量を保有
させる。絶縁性の網体に挾んだ導電性の多孔質膜は、充
電時に析出するデンドライト状亜鉛の成長を多孔質膜面
で阻止し、それに基づく自己放電を抑制する。これらの
相乗作用に基づいて、実用可能な小形軽量短時間容量の
密閉形亜鉛−臭素電池が得られるようになる。
[Function] The conductive bromine adsorbent that can be impregnated with the electrolytic solution is in contact with the electrode plate to increase the electrode surface area to activate the electrochemical reaction, and to impregnate the electrolytic solution to increase the battery capacity, and Bromine Br 2 generated during charging is adsorbed to reduce dissolution of bromine Br 2 in the electrolytic solution and suppress self-discharge due to the dissolution. The insulator that can be impregnated with the electrolytic solution becomes an insulator on the positive electrode side and the negative electrode side in the laminated fastening, and impregnates a considerable capacity of the electrolytic solution to have a desired battery capacity. The conductive porous film sandwiched by the insulating netting inhibits the growth of dendrite-like zinc deposited during charging on the surface of the porous film, and suppresses self-discharge due to the growth. Based on these synergistic effects, it becomes possible to obtain a practical compact, lightweight, short-time capacity sealed zinc-bromine battery.

【0012】[0012]

【実施例】図1に本発明の密封形亜鉛ー臭素電池の基本
的構成の一例を示す。同図(a)において、1p、1
b、1nは電極板、2は電解液が含浸できる導電性の臭
素吸着体、3は電解液が含浸できる絶縁体、4および6
は絶縁性の網体、5は導電性の多孔質膜である。同図に
示すように、(図において左側より順次)、電極板1
p、臭素吸着体2、絶縁体3、網体4、多孔質膜5、網
体6でなる積層構成のものを一層分として、必要に応じ
てさらに、電極板1b,臭素吸着体2、のように多層分
積層し、最終端に電極板1nを積層して、これをボルト
等によって一括締付けして一体化し、一個の積層電池と
して構成するものである。
EXAMPLE FIG. 1 shows an example of the basic structure of the sealed zinc-bromine battery of the present invention. In the figure (a), 1p, 1
b, 1n are electrode plates, 2 is a conductive bromine adsorbent that can be impregnated with an electrolytic solution, 3 is an insulator that can be impregnated with an electrolytic solution, 4 and 6
Is an insulating mesh and 5 is a conductive porous film. As shown in the figure (from left side in the figure), the electrode plate 1
p, a bromine adsorbent 2, an insulator 3, a net 4, a porous film 5, and a net 6 are laminated, and if necessary, the electrode plate 1b and the bromine adsorbent 2 are further combined. As described above, a plurality of layers are laminated, the electrode plate 1n is laminated at the final end, and the electrode plates 1n are collectively tightened with bolts or the like to be integrated to form one laminated battery.

【0013】図1(b)は上記の構成を、プラスチック
枠11を取付けた電極板1pおよび1nとプラスチック
枠8とによって密封形に形成した、実施例の一層分の構
成を示す。同図に示すように、電極板1pおよび1nに
は、外周にプラスチック枠11を取付け、この電極板1
pと1nとの間に、臭素吸着体2、絶縁体3、網体4、
多孔質膜5および網体6を積層して、この積層の締付け
厚さに相応した厚さのプラスチック枠8を上述のプラス
チック枠11の部分に介入して、電極板1p、1nに取
付けたプラスチック枠11の部分をボルト締付けしてい
る。プラスチック枠11は電極板1p、1nへ接着によ
って取付け、またプラスチック枠8は電極板1pのプラ
スチック枠11に接着し、電極板1nとの間はシール剤
を用いて内部の積層を密封し、内部に含浸注入した電解
液(ZnBr2 水溶液)を封入している。この構成におい
て、臭素吸着体2が密着している電極板1pが正極を、
電極板1nが負極を形成する。なお多層分積層において
中間の電極板となる電極板1bは網体6に面する側が負
極、臭素吸着体2に密着している側が正極となるバイポ
ーラ電極を形成する。
FIG. 1 (b) shows a one-layer structure of the embodiment in which the above structure is hermetically formed by the electrode plates 1p and 1n to which the plastic frame 11 is attached and the plastic frame 8. As shown in the figure, a plastic frame 11 is attached to the outer periphery of the electrode plates 1p and 1n.
Between p and 1n, the bromine adsorbent 2, the insulator 3, the net 4,
The porous membrane 5 and the net body 6 are laminated, and a plastic frame 8 having a thickness corresponding to the tightening thickness of this lamination is inserted into the above-mentioned plastic frame 11 and attached to the electrode plates 1p and 1n. The portion of the frame 11 is bolted. The plastic frame 11 is attached to the electrode plates 1p and 1n by adhesion, the plastic frame 8 is adhered to the plastic frame 11 of the electrode plate 1p, and the inner layer is sealed with a sealant between the electrode plate 1n and the inside. The electrolyte solution (ZnBr 2 aqueous solution) impregnated and injected into is sealed. In this configuration, the electrode plate 1p to which the bromine adsorbent 2 is in close contact serves as the positive electrode,
The electrode plate 1n forms a negative electrode. The electrode plate 1b, which serves as an intermediate electrode plate in the multilayer stacking, forms a bipolar electrode in which the side facing the mesh 6 is the negative electrode and the side in close contact with the bromine adsorbent 2 is the positive electrode.

【0014】電極板1p、1b、1nは臭素に対し腐食
の恐れがなく、かつ高い導電性が必要であり、これには
従来より主として用いられているカーボンプラスチック
(CP)を用いている。本発明に係る構成は、電極板1
p、1bに面し密着させた電解液を含浸し導電性が高
く、かつ多量の臭素Br2 を吸着することのできる臭素
吸着体2と、積層間の絶縁として構成し、かつ相当容量
の電解液を含浸保有することのできる絶縁体3と、網体
4と6に挾んだ導電性多孔質膜5とを用いることにあ
る。実施例では、臭素吸着体2として、1g当たり約1
000m2 以上の表面積を有する繊維状に活性化された
カーボンファイイバ(ACF)例えばクラレケミカル社
製活性炭繊維クラクティブを用い、絶縁体3としてグラ
スウール、絶縁性の網体4および6として網状に成型し
たプラスチックを用いている。多孔質膜5はカーボン粉
末を接着剤(溶剤)に溶解混和したものを濾紙(ワット
マン No.42)に塗布し、乾燥させたものを使用した。多
孔質膜5には導電性でありイオンのみ透過する膜である
ことが好ましいが、これに替えて用いた上記のカーボン
塗布紙でも良好な結果が得られている。また、電解液は
絶縁体3への含浸のみでなく、臭素吸着体2へも含浸
し、積層の空隙にも充填している。
The electrode plates 1p, 1b, and 1n are required to have high conductivity and have no fear of being corroded by bromine, and carbon plastic (CP) which has been mainly used conventionally is used for this. The configuration according to the present invention is the electrode plate 1
bromine adsorber 2 which has a high conductivity and is capable of adsorbing a large amount of bromine Br 2 by impregnating it with an electrolytic solution facing p. The purpose is to use the insulator 3 that can be impregnated with the liquid and the conductive porous film 5 sandwiched between the nets 4 and 6. In the embodiment, the bromine adsorbent 2 is about 1 per 1 g.
Fiber activated carbon fiber (ACF) having a surface area of 000 m 2 or more, for example, activated carbon fiber krative manufactured by Kuraray Chemical Co., is used to form glass wool as the insulator 3 and reticulated as the insulating nets 4 and 6 Made of plastic. The porous film 5 was prepared by dissolving and mixing carbon powder in an adhesive (solvent), applying it to filter paper (Whatman No. 42), and drying it. The porous film 5 is preferably a film that is electrically conductive and allows only ions to pass through, but good results have also been obtained with the above-mentioned carbon-coated paper used in place of this. Further, not only the electrolyte 3 is impregnated with the electrolytic solution but also the bromine adsorbent 2 is impregnated to fill the voids in the stack.

【0015】この構成において、電極板1pを正極、電
極板1nを負極として充電すると、前述の通り、正極側
となる電極板1pおよび電極板1bの臭素吸着体2の接
している側に臭素Br2 が生成し、負極側となる電極板
1nおよび電極板1bの網体6に面する側に亜鉛Znが
析出してくる。このとき正極側では、臭素吸着体2が密
着しているので生成した臭素Br2 が直ぐにその臭素吸
着体2に吸着されて、電解液への溶解が少くなり負極側
への拡散が極度に抑制され、これによる自己放電が大巾
に減少する。負極側では、デンドライト状に析出してき
た亜鉛Znは、その先端が多孔質膜5に接すると、多孔
質膜5が導電性であるため先端の電界が一様に緩和され
て、デンドライト状析出亜鉛の成長は一旦多孔質膜5の
面で停止することになる。
In this structure, when the electrode plate 1p is charged with the positive electrode and the electrode plate 1n is charged with the negative electrode, as described above, the side of the positive electrode side electrode plate 1p and the side of the electrode plate 1b where the bromine adsorbent 2 is in contact with is bromine Br. 2 is generated, and zinc Zn is deposited on the side of the negative electrode side of the electrode plate 1n and the electrode plate 1b that faces the net body 6. At this time, on the positive electrode side, since the bromine adsorbent 2 is in close contact, the generated bromine Br 2 is immediately adsorbed on the bromine adsorbent 2 and is less dissolved in the electrolytic solution, so that the diffusion to the negative electrode side is extremely suppressed. As a result, self-discharge due to this is greatly reduced. On the negative electrode side, zinc Zn deposited in a dendrite shape has a uniform electric field at the tip when the tip thereof contacts the porous film 5, and the electric field at the tip is uniformly relaxed. Will once stop at the surface of the porous film 5.

【0016】さらに充電を進めると多孔質膜5が負極と
なって、多孔質膜5の正極側に面する側にデンドライト
状亜鉛が析出するようになるが、本発明の密封形亜鉛ー
臭素電池は、それまでの容量を求めるものではないの
で、内部に含浸注入している電解液の量に対応した最適
な厚みの網体6を用いることによって、デンドライト状
析出亜鉛で内部短絡を生じさせることはなく、自己放電
を助長させるものでもない。放電時においては、正極側
では臭素吸着体2に吸着されていた臭素Br2 が臭素イ
オンBr- 、負極側では析出していた亜鉛Znが亜鉛イ
オンZn2+となって電解液に溶解する。また、上述の電
解液の量や網体6の厚みの選定のみならず、臭素吸着体
2、絶縁体3、網体4の厚み並びに積層の圧縮圧力を最
適に調整することによって、内部抵抗の低い所望の小形
軽量短時間容量の密封形亜鉛ー臭素電池を構成すること
ができる。
When the charging is further advanced, the porous film 5 becomes the negative electrode, and the dendrite-like zinc is deposited on the side of the porous film 5 facing the positive electrode side. However, the sealed zinc-bromine battery of the present invention is used. Since the capacity up to that time is not obtained, an internal short circuit is generated by the dendrite-like precipitated zinc by using the net body 6 having an optimum thickness corresponding to the amount of the electrolytic solution impregnated and injected inside. Nor does it promote self-discharge. During discharge, bromine Br 2 adsorbed on the bromine adsorbent 2 on the positive electrode side becomes bromine ions Br , and zinc Zn deposited on the negative electrode side becomes zinc ions Zn 2+ and dissolves in the electrolytic solution. Further, not only the amount of the electrolytic solution and the thickness of the net body 6 described above are selected, but also the thickness of the bromine adsorbent 2, the insulator 3, the net body 4 and the compression pressure of the stack are optimally adjusted to reduce the internal resistance. It is possible to construct a sealed zinc-bromine battery which has a desired small size, light weight, and short time capacity.

【0017】[0017]

【発明の効果】このような構成にすることにより、臭素
Br2 の拡散を抑制し、負極のデンドライト状亜鉛析出
も抑制し、よって自己放電が少なく、かつ内部抵抗が低
く大きな放電電流が得られ、また相当容量の電解液を密
封し得て、実用可能な小形軽量短時間容量の安価な密閉
形亜鉛−臭素電池を得ることができる。また、積層が容
易であり所要の電圧のものが簡単に得られる。
EFFECTS OF THE INVENTION With such a structure, diffusion of bromine Br 2 is suppressed, and dendrite-like zinc deposition on the negative electrode is also suppressed. Therefore, self-discharge is small, internal resistance is low, and a large discharge current can be obtained. In addition, it is possible to obtain a practical small-sized, lightweight, short-time capacity, inexpensive, sealed zinc-bromine battery that can be sealed with a considerable amount of electrolytic solution. In addition, stacking is easy and a device having a required voltage can be easily obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の密閉形亜鉛−臭素電池の構成の一例を
示す図である。
FIG. 1 is a diagram showing an example of the configuration of a sealed zinc-bromine battery of the present invention.

【図2】従来の密閉形亜鉛−臭素電池の基本的な構成を
示す図である。
FIG. 2 is a diagram showing a basic configuration of a conventional sealed zinc-bromine battery.

【符号の説明】[Explanation of symbols]

1p、1b、1n 電極板 2 臭素吸着体 3 絶縁体 4、6 網体 5 多孔質膜 1p, 1b, 1n Electrode plate 2 Bromine adsorbent 3 Insulator 4, 6 Net 5 Porous membrane

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】電解液が含浸できる導電性の臭素吸着体
と、この臭素吸着体に面し配置した、電解液が含浸でき
る絶縁体と、この絶縁体に面し配置した、絶縁性の網体
に挾んだ導電性の多孔質膜と、からなる積層体を電極板
で挾んで密封したことを特徴とする密封形亜鉛−臭素電
池。
1. A conductive bromine adsorbent which can be impregnated with an electrolytic solution, an insulator which is arranged facing the bromine adsorbent and which can be impregnated with an electrolytic solution, and an insulating mesh which is arranged facing this insulator. A sealed zinc-bromine battery, characterized in that a laminated body composed of a conductive porous membrane sandwiched between the body is sandwiched between electrode plates and sealed.
【請求項2】請求項1において、臭素吸着体が繊維状の
活性炭素であることを特徴とする密封形亜鉛−臭素電
池。
2. The sealed zinc-bromine battery according to claim 1, wherein the bromine adsorbent is fibrous activated carbon.
JP7103169A 1995-04-05 1995-04-05 Sealed zinc-bromine battery Pending JPH08279367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7103169A JPH08279367A (en) 1995-04-05 1995-04-05 Sealed zinc-bromine battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7103169A JPH08279367A (en) 1995-04-05 1995-04-05 Sealed zinc-bromine battery

Publications (1)

Publication Number Publication Date
JPH08279367A true JPH08279367A (en) 1996-10-22

Family

ID=14347012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7103169A Pending JPH08279367A (en) 1995-04-05 1995-04-05 Sealed zinc-bromine battery

Country Status (1)

Country Link
JP (1) JPH08279367A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103137941A (en) * 2011-12-05 2013-06-05 中国科学院大连化学物理研究所 Electrode for zinc bromine storage battery and zinc bromine storage battery assembled by the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103137941A (en) * 2011-12-05 2013-06-05 中国科学院大连化学物理研究所 Electrode for zinc bromine storage battery and zinc bromine storage battery assembled by the same

Similar Documents

Publication Publication Date Title
US11069897B2 (en) Volume-expansion accommodable anode-free solid-state battery
US20180248168A1 (en) Electrochemical device
KR102607280B1 (en) Battery assembly capable of simultaneous application of mechanical pressing and magnetic pressing to battery cell
CN108242530A (en) A kind of lithium slurry battery and its negative plate
EP0617441A1 (en) Capacitive battery
US3625764A (en) Electrode for electric storage batteries containing zinc halide in aqueous solution, of the type having a soluble cathode and a dissolved anode
US3539396A (en) Rechargeable alkaline zinc system
KR20180113417A (en) Method of manufacturing lithium secondary battery
JP4536577B2 (en) Capacitor integrated fuel cell
JPH08279367A (en) Sealed zinc-bromine battery
CN116581482A (en) Electrode-separator composite for an electrical energy store, method for producing the same, and method for producing an electrical energy store
JP7218004B2 (en) Bipolar lead-acid battery cells with increased energy density
JP2013161772A (en) Lithium ion battery and manufacturing method of the same
JPS59173944A (en) Secondary battery
JPS62223984A (en) Redox flow battery
JPH07201681A (en) Electric double layer capacitor
US20240105914A1 (en) Bipolar battery plate and fabrication thereof
CN220121884U (en) Sodium ion battery positive plate easy to dry and sodium ion battery
CN218769681U (en) Soft package solid-state battery of cluster in high voltage
JP2853271B2 (en) Electrolyte static zinc-bromine battery
JP3307048B2 (en) Operating method of zinc-bromine battery
EP0136099B1 (en) Plastics electrode secondary battery
JP2759992B2 (en) Manufacturing method of solid state secondary battery
JPS622472A (en) Zinc-bromine secondary cell
JP2003338435A (en) Electric double layered capacitor