JPS622472A - Zinc-bromine secondary cell - Google Patents

Zinc-bromine secondary cell

Info

Publication number
JPS622472A
JPS622472A JP60138999A JP13899985A JPS622472A JP S622472 A JPS622472 A JP S622472A JP 60138999 A JP60138999 A JP 60138999A JP 13899985 A JP13899985 A JP 13899985A JP S622472 A JPS622472 A JP S622472A
Authority
JP
Japan
Prior art keywords
electrode
bromine
zinc
carbon plastic
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60138999A
Other languages
Japanese (ja)
Inventor
Yasuo Ando
保雄 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Electric Manufacturing Co Ltd
Priority to JP60138999A priority Critical patent/JPS622472A/en
Publication of JPS622472A publication Critical patent/JPS622472A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • H01M12/085Zinc-halogen cells or batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Hybrid Cells (AREA)

Abstract

PURPOSE:To integrate the constitution of a zinc-bromine secondary cell, by making the cell of an assembly in which a finely-porous carbon plastic electrode and a carbon plastic electrode are laminated together. CONSTITUTION:A finely-porous film a is laminated on a porous carbon plastic electrode b. A conventional carbon plastic electrode c is then fusebonded to the porous carbon plastic electrode b. Otherwise, the film a and the electrodes b, c are laminated together. An electrode assembly is thus manufactured. As a result, a bipolar cell of integrated constitution can be provided only by stacking.

Description

【発明の詳細な説明】 入 産業上の利用分野 本発明は、電池構成を1ピース構造にした亜鉛−臭素二
次電池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a zinc-bromine secondary battery having a one-piece battery structure.

B0発明の概要 本発明は、電池構成体として微細多孔質膜と。Summary of B0 invention The present invention uses a microporous membrane as a battery component.

多孔質力6−ボンプラステツク電極と、通常のカーボン
プラスチック電極の6者をラミネートしたものを用いる
ことによって、1ピース構造の電極とし、バイポーラ型
電池として構成する場合、この三層ラミネート電極構成
体を積重ねるだけで電池を構成しうる亜鉛−臭素二次電
池に関するものである。
By using a laminate of a porous 6-bond plastic electrode and a regular carbon plastic electrode, it becomes a one-piece electrode, and when configured as a bipolar battery, this three-layer laminated electrode structure This invention relates to a zinc-bromine secondary battery that can be constructed simply by stacking the batteries.

C0従来の技術 電解液循環型亜鉛−臭素二次電池は、第2図1=示すよ
うな基本的構成をなすものである。図中の符号(1)は
電池本体をなす単セル、(2)は陽極室、(3)は陰極
室、(4)は隔膜で、前記陽極室(2)と陰極室(3)
を区画する。(5)は陽極、(6)は陰極、(7)は陽
極側配管系、(8)は陰極側配管系、(9)は陽極電解
液槽、α0は陰極電解液槽、6℃(2)は共にポンプで
、それぞれの配管系(7) (8)を介して各電解液槽
(9)αQから電解液(ZnB、、水溶液)を循環させ
るよう!=なっている。
C0 Prior Art A circulating electrolyte type zinc-bromine secondary battery has a basic configuration as shown in FIG. In the figure, the symbol (1) is a single cell forming the battery body, (2) is an anode chamber, (3) is a cathode chamber, and (4) is a diaphragm, and the anode chamber (2) and cathode chamber (3)
compartmentalize. (5) is the anode, (6) is the cathode, (7) is the anode side piping system, (8) is the cathode side piping system, (9) is the anode electrolyte tank, α0 is the cathode electrolyte tank, 6℃ (2 ) are both pumps to circulate the electrolyte (ZnB, aqueous solution) from each electrolyte tank (9) αQ through the respective piping systems (7) and (8)! = has become.

しかして、充電時僅:は陰極(6)ではZH+2e−→
Zne陽極(5ンでは211.−→B「、 + 2 e
の反応を生じ、放電時I:は各電極(6) (5)で上
記反応式と逆の反応を生じ、析出物(ZHt B(、)
が各電極(6) (5)上で消費(酸化、還元)され、
電気エネルギーが放出される。
However, during charging, ZH+2e-→ at the cathode (6)
Zne anode (211.-→B", + 2 e
During discharge, I: causes a reaction opposite to the above reaction formula at each electrode (6) (5), and a precipitate (ZHt B(,)
is consumed (oxidized, reduced) on each electrode (6) (5),
Electrical energy is released.

又、第3図は従来の亜鉛−臭素積層二次電池の構造を示
し、(2)は締付端板、勾は積層端板、勾は電極端板、
(ハ)はパツキン、翰はMC(マイクロチャンネル)付
枠付膜、(2)は平板枠付中間電極、(財)は陽極マニ
ホールド、(至)は陰極マニホールド、@はMC(マイ
クロテヤンネN)形成部、(1)は隔膜、0力はスペー
サメツシュ、(至)は電極、(至)は集電メツシュ、(
ロ)は締付ポルト穴であって、ここI:図示を省略しで
ある締付ボルトを挿通し、ナツトにより締付ける構造に
なっている。
In addition, Figure 3 shows the structure of a conventional zinc-bromine laminated secondary battery, where (2) is the clamping end plate, the slope is the laminated end plate, the slope is the electrode end plate,
(c) is a packkin, 翺 is a membrane with a frame with MC (micro channel), (2) is an intermediate electrode with a flat plate frame, (Foundation) is an anode manifold, (to) is a cathode manifold, @ is MC (micro channel) ) forming part, (1) is diaphragm, zero force is spacer mesh, (to) is electrode, (to) is current collecting mesh, (
B) is a tightening port hole, and I: A tightening bolt (not shown) is inserted into the hole and is tightened with a nut.

上記の構成(:なる亜鉛−臭素電池は、前述の如く亜鉛
と臭素を活物質として用い、その出力特性の高い(単電
池の起電力が約1.8 V )こと、比較的軽量なこと
、前記活物質が資源的嘔:豊富なこと、などの長所があ
るため近年実用化のための開発が進められている。
The zinc-bromine battery with the above structure uses zinc and bromine as active materials as described above, has high output characteristics (the electromotive force of a single cell is about 1.8 V), is relatively lightweight, Since the active material has advantages such as being abundant as a resource, development for practical use has been progressing in recent years.

D0発明が解決しようとする問題点 しかるC二、第2図、第5図C;示すようI:この亜鉛
−臭素電池は、充放電時に陽極室、陰極室C電解液を循
環させることを基本としているために、電池本体と配管
系、電解液槽・ポンプ等の各部材・機器が複雑(=連結
された構造(ニなって゛いる。
D0 Problems to be Solved by the InventionC2, Figure 2, Figure 5 Because of this, the battery body, piping system, electrolyte tank, pump, and other parts and equipment have a complex (=connected) structure.

又、電池の陰極側では、充電時亜鉛イオンが金属亜鉛と
して析出し、放電時この金属亜鉛が溶解する。一方、陽
極側では、充電時(=臭素イオンが臭素分子となり電解
液に溶解する。場合蛋:よって陽極側I:添加した錯化
剤I:より、発生した臭素が水C:不溶な臭素コンプレ
ックスとなって電解液槽内に貯えられる。また放電時C
二は臭素又は臭素コンプレックスが陽極上で臭素イオン
となる。
Furthermore, on the cathode side of the battery, zinc ions precipitate as metallic zinc during charging, and this metallic zinc dissolves during discharging. On the other hand, on the anode side, during charging (=bromine ions become bromine molecules and dissolve in the electrolyte), the generated bromine becomes water C: an insoluble bromine complex. is stored in the electrolyte tank.Also, during discharge, C
Second, bromine or a bromine complex becomes bromine ions on the anode.

このことから理解されるよう(二、従来の亜鉛−臭素二
次電池は、電池本体のはか(:、電解液槽、配管系、ポ
ンプ等の各部材1機器を付属設備として必要とする。そ
して、ポンプ駆動のための電力ロスや複雑な配管系(=
よる振動等による装置全体の機械的強度への不安がある
。また、この電池は隔g(セパレータ)を使用している
関係上、第3図C:示す如く隔膜、電極の2部材による
積層構成をとらなくてはならない。
As can be understood from this (2), conventional zinc-bromine secondary batteries require one piece of equipment for each component such as the battery body, electrolyte tank, piping system, pump, etc. as accessory equipment. Also, power loss and complicated piping system (=
There are concerns about the mechanical strength of the entire device due to vibration, etc. Furthermore, since this battery uses a separator, it must have a laminated structure consisting of two members, a diaphragm and an electrode, as shown in FIG. 3C.

本発明は、以上の従来の亜鉛−臭素二次電池の問題点を
解決するため(=なされたものである。
The present invention was made in order to solve the problems of the conventional zinc-bromine secondary batteries mentioned above.

E0問題点を解決するための手段 本発明Cj&いては、上記の従来の問題点を解決するた
めI:、先ζ二本出願人が特願昭58−207167号
、特願昭60−112146号で提案した多孔質カーボ
ンプラスチック電極と同一のものをラミネート材料とし
、これI:特開昭51−74057号、特開昭52−1
56776号で知られた微細多孔質膜をまずラミネート
後、このラミネート後の材料の多孔質カーボンプラスチ
ック電極側へ、更(二通常のカーボンプラスチック電極
を融着させるか、もしくはこれら3者を上記の層構成に
ラミネートして電極構成体とするものである。
Means for Solving E0 Problems The present invention CJ & C is intended to solve the above-mentioned conventional problems. The same laminate material as the porous carbon plastic electrode proposed in 1983 was used, and this I: JP-A-51-74057, JP-A-52-1
After first laminating the microporous membrane known in No. 56776, the laminated material is bonded to the porous carbon plastic electrode side (either by fusing two ordinary carbon plastic electrodes, or by bonding these three to the porous carbon plastic electrode side). This layer is laminated to form an electrode structure.

上記の電極構成体は、積み重ねるだけで、バイポーラ型
電池となり、1ピース構造がとりうる。
The above electrode structure can be stacked to form a bipolar battery, and can have a one-piece structure.

しかして、上記の本発明[=用いる電極構成体のラミネ
ート材料である多孔質力・−ボンプラスチック電極とは
、例えば特願昭60−112146号C:gいて本出願
人が提案した如き、ポリエチレン導電性付与剤としての
カーボンブラックと微細シリカ粉末とヂオクテルフタレ
ー)(DOP)を加熱下で混練し、加圧ロールで成形後
抽出剤で抽出処理を施してなるものである。又、同じラ
ミネート材料の微細多孔質膜とは、例えば特開昭52−
1156776号薔二よって知られたポリオレフィン樹
脂と無機微粉体からなり微細な孔を多数有する多孔質膜
で、通常電池の隔膜として用いられるものである。さら
に、第6層目のラミネート材料として用いられるカーボ
ンプラスチック電極は、亜鉛   □−臭素二次電池(
:電極として用いるポリオレフィン樹脂へ導電性付与剤
として炭素質物質を混練、成形したものを用いる。
Therefore, the porous plastic electrode which is the laminate material of the electrode structure used in the present invention is, for example, polyethylene as proposed by the applicant in Japanese Patent Application No. 60-112146 C:g. Carbon black as a conductivity imparting agent, fine silica powder, and diocterphthalate (DOP) are kneaded under heating, and after being molded using a pressure roll, extraction treatment is performed using an extractant. In addition, a microporous membrane made of the same laminate material is, for example, disclosed in Japanese Patent Application Laid-Open No. 1986-
No. 1156776, a porous membrane made of polyolefin resin and inorganic fine powder and having many fine pores, and is usually used as a diaphragm in batteries. Furthermore, the carbon plastic electrode used as the 6th layer laminate material is a zinc □-bromine secondary battery (
: A material obtained by kneading and molding a carbonaceous material as a conductivity imparting agent into a polyolefin resin used as an electrode is used.

10作用 上記の構成になる本発明の亜鉛−臭素二次電池に8いて
は、充電時には陰極側でカーボンプラスチック電極上(
:亜鉛が電着し、陽極側では発生しり臭素又は臭素コン
プレックスが多孔性カーホンプラスチック電極の空孔内
に貯蔵される。又、放電時(:はその逆となる。陽極側
の活物質供給は、微細多孔質膜を通して行われる。
10 Effects In the zinc-bromine secondary battery of the present invention having the above-mentioned structure, during charging, the carbon plastic electrode (
: Zinc is electrodeposited and on the anode side the generated bromine or bromine complex is stored in the pores of the porous carbon plastic electrode. Also, during discharge (: is the opposite). The active material is supplied to the anode side through the microporous membrane.

従って、電池構成が1ピース構造という簡単な構造とな
っているため、極間距離が陰極表面からセパレータ相に
代る微細多孔質膜の裏側までとなっており、従来の電池
と比較して容積が半分近くなり、電圧効率が上昇する。
Therefore, since the battery has a simple one-piece structure, the distance between the electrodes is from the cathode surface to the back side of the microporous membrane that replaces the separator phase, and the volume is smaller than that of conventional batteries. is nearly halved, increasing voltage efficiency.

又、臭素は電極そのものの中に貯蔵されるので。Also, since bromine is stored within the electrode itself.

電解液の循環は陰極のみ1:行えばよく、充電電気量は
多孔質カーボングラスチック電極の厚さを変えることI
:よって変えることができる。
Circulation of the electrolyte only needs to be carried out at the cathode (1), and the amount of electricity charged can be changed by changing the thickness of the porous carbon glass electrode.
: Therefore, it can be changed.

さら1=、電極構成体の材料がすべてプラスチックで、
ラミネーションで製作できるので、容易【二人量を安価
(:供給できる。
Furthermore, 1 = the material of the electrode structure is all plastic;
Since it can be produced by lamination, it can be easily supplied for two people at a low cost.

G1発明の実施例 第1rgJ(AIは、本発明の亜鉛−臭素二次電池に用
いる電極構成体の一実施例で、図中の符号(a)は微細
多孔膜、(blは多孔質カーボンプラスチック電極であ
って、両者はラミネートされている。(C1は通常のカ
ーボンプラスチック電極であって、前記多孔質カーボン
プラスチック電極巾)の層側へ融着又はラミネートされ
るが、この実施例では後述する如くラミネートされた。
G1 Example of the invention 1rgJ (AI is an example of the electrode structure used in the zinc-bromine secondary battery of the present invention, symbol (a) in the figure is a microporous membrane, (bl is a porous carbon plastic The electrodes are laminated together. (C1 is a normal carbon plastic electrode, and the width of the porous carbon plastic electrode is fused or laminated to the layer side, which will be described later in this example.) It was laminated like that.

この場合(:ラミネート材料として用いた多孔・hカー
ボンプラスチック電極(b)は前述の特願昭60−11
2146号で提案したものと同一のポリエチレンに導電
性付与剤としてのカーボンブラックと、微細シリカ粉末
とヂオクテIフタレート(DOP)を加熱下で混練し、
加工ロールで成形後、抽出剤で抽出処理してなる親水性
微細多孔質カーボンプラスチック電極を用いた。又、第
三層目のラミネート材料のカーボンプラスチック電極と
しては、ポリエチレン(ショーレックス86008)4
0(重量)*、カーボンブラック(表面積100a’/
l−平均粒径30m ) 20 (重11 ) s、 
天然黒鉛40(重量)%の混合、混練したものを90−
押出機でシート化したものを用いた。
In this case (: the porous carbon plastic electrode (b) used as a laminate material is
The same polyethylene as proposed in No. 2146 is kneaded with carbon black as a conductivity imparting agent, fine silica powder, and Diocte I phthalate (DOP) under heating.
A hydrophilic microporous carbon plastic electrode formed by molding with processing rolls and then subjected to extraction treatment with an extractant was used. In addition, as the carbon plastic electrode of the third layer laminate material, polyethylene (Shorex 86008) 4
0 (weight)*, carbon black (surface area 100a'/
l-average particle size 30 m) 20 (weight 11) s,
90% of natural graphite mixed and kneaded with 40% (by weight)
A sheet formed using an extruder was used.

ラミネートは上記6種の材料シートをコンブレツVヨン
モールドで行ない、その後多孔化処理としてトリクロル
エタン中に24時間放置し、電極構成体とした。
Lamination was carried out using a combination V-type mold for the above-mentioned six types of material sheets, and then the sheets were left in trichloroethane for 24 hours as a porous treatment to form an electrode structure.

な8.ラミネートの方法としては、押出機を用いTダイ
で三層ラミネートすることも考えられる。
8. As a method of lamination, it is also possible to laminate three layers using an extruder and a T-die.

上記の如くして作製された電極構成体の厚さは、微細多
孔質膜(alが0.4閣、多孔質カーボンプラスチック
電極(blが2腫、カーボンプラスチック電極(C)が
1.で、全体の厚みは3,4鵡であった。
The thickness of the electrode structure produced as described above was as follows: the microporous membrane (al is 0.4 mm), the porous carbon plastic electrode (bl is 2 mm), and the carbon plastic electrode (C) is 1 mm; The total thickness was 3 to 4 mm.

第1図(B)は、この第1図(んに示した三層ラミネー
ト電極構成体をバイポーラ型電池として構成した例で、
積み重ねるだけで電池となり、1ピース梼造がとれる。
FIG. 1(B) shows an example in which the three-layer laminate electrode structure shown in FIG. 1(B) is configured as a bipolar battery.
Just by stacking them, you can create a battery and create a one-piece structure.

図中の矢印は電解液(znBrffi)水溶液の対流す
る方向を示す。
The arrows in the figure indicate the direction in which the electrolytic solution (znBrffi) aqueous solution flows.

この電池で充電時1:は第1図CB) c示す如く陰極
側ではカーボンプラスチック電極(cl上I:亜鉛が電
着し、陽極側では多孔質カーボンプラスチック電極(b
lの空孔内C;臭素または臭素コンプレックスが貯蔵さ
れる。
When this battery is charged, a carbon plastic electrode (I: zinc is electrodeposited on the cathode side, as shown in Figure 1 CB), and a porous carbon plastic electrode (b
C in the pores of l; bromine or bromine complexes are stored.

一方、放電時にはその逆となる。又、陽極側の活物質の
供給は、微細多孔質膜を通して行われる。
On the other hand, the opposite occurs during discharge. Furthermore, the active material on the anode side is supplied through the microporous membrane.

上記の電極構成体を用いて800.:slの有効電極面
積をもつ電池(10セル積層)を構成した。極間距離は
1.5腸である。20 mA/、−の電流密度で5時間
定電流充電し 2 Q mA/−で放電したところ、電
圧効率91チ、電流効率8Z%pエネルギー効率79チ
の電池効率が得られ、十分電池として作動することを確
認することができた。
800 using the above electrode structure. A battery (10 cells stacked) with an effective electrode area of :sl was constructed. The distance between the poles is 1.5 mm. When the battery was charged at a constant current for 5 hours at a current density of 20 mA/- and discharged at 2 Q mA/-, a voltage efficiency of 91 cm, a current efficiency of 8 Z%p, and an energy efficiency of 79 cm were obtained, and the battery was fully operational as a battery. I was able to confirm that.

なお、多孔性カーボンプラスチック電極の多孔度は約5
0%であり、陽極I:gいては、その孔内へ臭素がトラ
ップされることを考えると、この実施例のものは100
mA/lIが限界であり、それ以上充電する必要がある
場合1:は、多孔性カーボンプラスチック電極の厚さを
厚くする必要がある。
The porosity of the porous carbon plastic electrode is approximately 5.
0%, and considering that bromine is trapped in the pores of the anode I:g, this example has 100%
If mA/lI is the limit and charging beyond that limit is required (1), it is necessary to increase the thickness of the porous carbon plastic electrode.

H0発明の詳細 な説明したよう1:、本発明の亜鉛−臭素二次電池I:
おいては、電池が本発明で特定される電極構成体で1ピ
ース構造という簡単な構造(ニすることができるから、
電池全体の構造がコンパクト1:なるばかりでなく、活
物質の臭素が電極中に貯蔵されるため電解液の循環は陰
極のみでよく、又極間距離が陰極表面から多孔質セパレ
ータ相の裏側までとなっているから従来の電池と比較し
て半分近くなり電圧効率が上昇した。
H0 Detailed description of the invention 1: Zinc-bromine secondary battery of the present invention I:
In this case, since the battery can have a simple one-piece structure with the electrode structure specified in the present invention,
The overall structure of the battery is compact 1: Not only is the active material bromine stored in the electrode, the electrolyte only needs to be circulated through the cathode, and the distance between the electrodes is from the cathode surface to the back side of the porous separator phase. Compared to conventional batteries, the voltage efficiency has increased by nearly half.

さらに、電極構成体がすべてプラスチック材料でできて
いることから、ラミネーションにより容易に大量を安価
に作成することが可能である。
Furthermore, since the electrode structure is entirely made of plastic material, it can be easily manufactured in large quantities at low cost by lamination.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図囚は本発明僅;用いる電極構成体の断面図、同(
B) )i(A) +:示す電極構成体でバイポーラ型
電池を構成した場合の断面説明図、第2図は亜鉛−臭素
二次電池の構成を示す断面説明図、第6図は亜鉛−臭素
積層二次電池の構成を示す斜視図である。 図中の符号(alは微細多孔質膜、(b)は多孔質カー
ボンプラスチック電極、(C)はカーボンゲラステック
電極である。 代理人 弁理士  佐 藤 正 年 第1図 (A)       (B)
Figure 1 is a sectional view of the electrode structure used in the present invention.
B) )i(A) +: A cross-sectional explanatory diagram when a bipolar battery is constructed with the electrode structure shown. FIG. 2 is a cross-sectional explanatory diagram showing the configuration of a zinc-bromine secondary battery. FIG. 6 is a zinc- FIG. 1 is a perspective view showing the configuration of a bromine stacked secondary battery. The symbols in the figure (al is a microporous membrane, (b) is a porous carbon plastic electrode, and (C) is a carbon gelastec electrode. Agent: Patent Attorney Masashi Sato Figure 1 (A) (B)

Claims (1)

【特許請求の範囲】[Claims] 電池構成体として微細多孔質カーボンプラスチック電極
、カーボンプラスチック電極を順にラミネートしたもの
を用い、かつ充電時に発生する臭素を前記多孔質カーボ
ンプラスチック電極の層中に保持させることを特徴とす
る亜鉛−臭素二次電池。
A zinc-bromine dihydride, characterized in that a cell structure includes a fine porous carbon plastic electrode and a carbon plastic electrode laminated in this order, and bromine generated during charging is retained in the layer of the porous carbon plastic electrode. Next battery.
JP60138999A 1985-06-27 1985-06-27 Zinc-bromine secondary cell Pending JPS622472A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60138999A JPS622472A (en) 1985-06-27 1985-06-27 Zinc-bromine secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60138999A JPS622472A (en) 1985-06-27 1985-06-27 Zinc-bromine secondary cell

Publications (1)

Publication Number Publication Date
JPS622472A true JPS622472A (en) 1987-01-08

Family

ID=15235110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60138999A Pending JPS622472A (en) 1985-06-27 1985-06-27 Zinc-bromine secondary cell

Country Status (1)

Country Link
JP (1) JPS622472A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8479898B2 (en) 2004-06-10 2013-07-09 Hitachi Construction Machinery Co., Ltd. Work vehicle control device
JP2021144929A (en) * 2020-03-12 2021-09-24 コリア アドバンスト インスティチュート オブ サイエンス アンド テクノロジー Electrode for secondary battery containing high-density carbon defect structure and method of producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8479898B2 (en) 2004-06-10 2013-07-09 Hitachi Construction Machinery Co., Ltd. Work vehicle control device
JP2021144929A (en) * 2020-03-12 2021-09-24 コリア アドバンスト インスティチュート オブ サイエンス アンド テクノロジー Electrode for secondary battery containing high-density carbon defect structure and method of producing the same

Similar Documents

Publication Publication Date Title
EP1744393B1 (en) Improvements in or relating to batteries
TW552728B (en) Redox flow battery cell stack
US20090053601A1 (en) Modular Bipolar Battery
US7754379B2 (en) Secondary battery
US20090081541A1 (en) Bipolar Battery Having Carbon Foam Current Collectors
KR101309262B1 (en) Combined complex electrode cell and redox flow battery comprising thereof
GB2278712A (en) Bipolar plates for lead-acid battery,curing bipolar plates and bipolar lead-acid constructions
JPH087913A (en) Full vanadium redox cell
US9190221B2 (en) Aqueous-based electric double-layer capacitor
CN111477771A (en) High-energy-density square laminated lithium ion battery and preparation method thereof
EP3367487B1 (en) Redox flow battery electrode, and redox flow battery
EP0617441A1 (en) Capacitive battery
WO2013149512A1 (en) Current collector, double-electrode current collector comprising same, single battery, and flow battery
WO2021203932A1 (en) Composite electrode for flow cell, flow cell, and pile
JPS622472A (en) Zinc-bromine secondary cell
WO2021203935A1 (en) Composite electrode for flow cell, flow cell, and pile
WO2022233133A1 (en) Thin-film battery and battery cell printing method
JP2004119189A (en) Fuel cell
JPH0765871A (en) Electrolyte circulating type layer built secondary battery
KR101819797B1 (en) Fuel battery cell
EP4016680A1 (en) Method for laminating a polymer electrolyte film onto a porous support layer for energy storage devices
US11081717B2 (en) Storage module of distributed flow battery
JPS6158159A (en) Secondary battery
JP3488957B2 (en) Electric double layer capacitor
JPS58194262A (en) Fuel cell