JPS62223984A - Redox flow battery - Google Patents

Redox flow battery

Info

Publication number
JPS62223984A
JPS62223984A JP61068163A JP6816386A JPS62223984A JP S62223984 A JPS62223984 A JP S62223984A JP 61068163 A JP61068163 A JP 61068163A JP 6816386 A JP6816386 A JP 6816386A JP S62223984 A JPS62223984 A JP S62223984A
Authority
JP
Japan
Prior art keywords
redox flow
flow battery
film
membrane
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61068163A
Other languages
Japanese (ja)
Other versions
JPH06105615B2 (en
Inventor
Toshio Shigematsu
敏夫 重松
Shosuke Yamanouchi
昭介 山之内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP61068163A priority Critical patent/JPH06105615B2/en
Publication of JPS62223984A publication Critical patent/JPS62223984A/en
Publication of JPH06105615B2 publication Critical patent/JPH06105615B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To increase charge-discharge energy efficiency of a battery and mechanical strength of a separator by using a composite film of a hydrophilic film and a porous film as a separator. CONSTITUTION:A polymer whose moisture content is 10-200% is used as a hydrophilic film. A cellulose polymer or an ethylene-vinyl alcohol copolymer is used. As a porous film, a material having good ion permeability, high mechanical strength and acid resistance, such as porous Teflon film and porous vinyl chlorid film, is used. A composite film is formed by press-bonding or lamination of the hydrophilic film and the porous film. By this construction, electric resistance in a battery is substantially reduced and charge-discharge energy density is improved.

Description

【発明の詳細な説明】 C産業上の利用分野] この発明は、電解液を正極側および負極側に供給し酸化
還元反応により充放電するレドックスフロー電池に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application] The present invention relates to a redox flow battery that supplies an electrolytic solution to a positive electrode side and a negative electrode side and charges and discharges through an oxidation-reduction reaction.

〔従来の技術] 特公昭60−25163号には、電極貯蔵用2次電池と
してのレドックスフロー電池が開示されている。この種
のレドックスフロー電池では、隔膜により電極セルを正
極側と負極側に分離し、正極側には正極液を負極側には
負極液を供給し酸化還元反応により充放電を行なってい
る。隔膜としては、一般にイオン交換膜が用いられてい
る。
[Prior Art] Japanese Patent Publication No. 60-25163 discloses a redox flow battery as a secondary battery for storing electrodes. In this type of redox flow battery, an electrode cell is separated into a positive electrode side and a negative electrode side by a diaphragm, a positive electrode liquid is supplied to the positive electrode side, and a negative electrode liquid is supplied to the negative electrode side, and charging and discharging are performed by an oxidation-reduction reaction. Ion exchange membranes are generally used as diaphragms.

[発明が解決しようとする問題点] しかしながら、このようなイオン交換膜を隔膜として用
いると、そのイオン透過性が悪いために、セル内部の電
気抵抗は増大し、レドックスフロー電池全体としての充
放電効率が小さくなるという問題点があった。
[Problems to be Solved by the Invention] However, when such an ion exchange membrane is used as a diaphragm, the electrical resistance inside the cell increases due to its poor ion permeability, which hinders the charging and discharging of the redox flow battery as a whole. There was a problem that the efficiency was low.

また、イオン交換膜に代えてセルロース系ポリマーなど
の親水性膜を用いると、かかる問題点は解消されるが、
この場合新たに隔膜の機械的強度が低下するという問題
点を生じた。
In addition, if a hydrophilic membrane such as a cellulose polymer is used instead of an ion exchange membrane, this problem can be solved, but
In this case, a new problem arises in that the mechanical strength of the diaphragm decreases.

それゆえに、この発明の目的は、充放電エネルギ効率の
改善されたレドックスフロー電池を提供することにあり
、特に隔膜の機械的強度も改善されたレドックスフロー
電池を提供することにある。
Therefore, an object of the present invention is to provide a redox flow battery with improved charge/discharge energy efficiency, and particularly to provide a redox flow battery with improved mechanical strength of the diaphragm.

[問題点を解決するための手段] この発明のレドックスフロー電池においては、正極と負
極との間に、親水性膜と多孔質膜を組合わせた複合膜か
らなる隔膜を設け、該隔膜により電極セルを正極側と負
極側に分離し、正極側には正極液を負極側には負極液を
供給し充放電を行なっている。
[Means for Solving the Problems] In the redox flow battery of the present invention, a diaphragm made of a composite membrane in which a hydrophilic membrane and a porous membrane are combined is provided between the positive electrode and the negative electrode, and the diaphragm is used to connect the electrodes. The cell is separated into a positive electrode side and a negative electrode side, and charging and discharging are performed by supplying a positive electrode liquid to the positive electrode side and a negative electrode liquid to the negative electrode side.

[作用] この発明で用いられる隔膜は、親水性膜と多孔質膜を組
合わせた複合膜から構成されている。多孔質膜はイオン
透過性が非常に優れているため、この複合膜は親水性膜
単独と同様の優れたイオン透過性を有する。したがって
、セル内部の電気抵抗が著しく減少され、充放電エネル
ギ効率が改善される。
[Function] The diaphragm used in this invention is composed of a composite membrane that is a combination of a hydrophilic membrane and a porous membrane. Since porous membranes have very good ion permeability, this composite membrane has the same good ion permeability as the hydrophilic membrane alone. Therefore, the electrical resistance inside the cell is significantly reduced and the charging/discharging energy efficiency is improved.

さらに、親水性膜より機械的強度の優れている多孔質膜
が複合化されているため、この発明に用いられる隔膜は
優れた機械的強度ををする。
Furthermore, since a porous membrane, which has better mechanical strength than a hydrophilic membrane, is composited, the diaphragm used in the present invention has excellent mechanical strength.

[実施例] 電極面積1500cm2を有するセルを10セル積層さ
れた多段接続型レドックスフロー電池を用い、隔膜とし
てはセルロース系膜(厚み50μm)にテフロン多孔質
@(孔径1μm、厚み100μm)を両側から圧着させ
たものを用い充放電特性試験を行なった。
[Example] A multi-stage connected redox flow battery in which 10 cells with an electrode area of 1500 cm2 were stacked was used, and the diaphragm was a cellulose membrane (thickness 50 μm) with Teflon porous @ (pore diameter 1 μm, thickness 100 μm) on both sides. A charge/discharge characteristic test was conducted using the crimped product.

また比較として、テフロン多孔質膜を圧着させていない
セルロース系膜単独を隔膜として用いた場合についても
行なった。
For comparison, a case where a cellulose membrane alone without a Teflon porous membrane bonded thereto was used as a diaphragm was also conducted.

実施例により得られたエネルギ効率は、陽イオン交換膜
を用いた従来の場合に比べ優れており、比較例のものと
ほぼ同程度であった。
The energy efficiency obtained in the example was superior to that of the conventional case using a cation exchange membrane, and was approximately the same as that of the comparative example.

また、比較例のものでは組み込みの際あるいは電解液流
通の際に隔膜の亀裂や破断が認められたが、本実施例で
は隔膜の亀裂破断は全く認められなかった。
Furthermore, in the comparative example, cracks and breaks in the diaphragm were observed during assembly or during electrolyte flow, but no cracks or ruptures in the diaphragm were observed in this example.

以上のことから、この発明のレドックスフロー電池は、
隔膜の機械的強度を低下させることなく、充放電エネル
ギ効率の向上することが確認された。
From the above, the redox flow battery of this invention is
It was confirmed that the charge/discharge energy efficiency was improved without reducing the mechanical strength of the diaphragm.

この発明で用いられる親水性膜としては、実施例で用い
たセルロース系膜に限定されることはなく、たとえばエ
チルビニルアルコール共重合体なども用いることができ
る。また、この発明の効果をより充分に発揮するには、
含水率が10〜200%のポリマーであることが好まし
い。さらに、表面の親水性を調整するため、表面に親水
性膜より小さな親水性のコーティング層を設けてもよい
The hydrophilic membrane used in this invention is not limited to the cellulose membrane used in the examples, and for example, ethyl vinyl alcohol copolymer can also be used. In addition, in order to more fully demonstrate the effects of this invention,
Preferably, the polymer has a water content of 10 to 200%. Furthermore, in order to adjust the hydrophilicity of the surface, a hydrophilic coating layer smaller than the hydrophilic film may be provided on the surface.

この発明に用いられる多孔質膜としては、イオン透過性
に優れ、かつ機械的強度および耐酸性に優れた材料であ
ればいかなる材質であってもよい。
The porous membrane used in this invention may be made of any material as long as it has excellent ion permeability, mechanical strength, and acid resistance.

たとえば、テフロン多孔質膜、塩化ビニル多孔質膜等が
適当なものとして掲げられる。
For example, a Teflon porous membrane, a vinyl chloride porous membrane, etc. are listed as suitable.

親水性膜と多孔質膜を複合化する方法としては、実施例
のように圧着させる方法でもよいし、またラミネート加
工等により貼り会わせた方法でもよい。
The method of combining the hydrophilic membrane and the porous membrane may be a method of press-bonding them as in the embodiment, or a method of pasting them together by laminating or the like.

レドックスフロー電池としては、正極液および負極液が
それぞれ別組成の電解液である2液型レドツクスフロー
電池と、正極液および負極液がほぼ同一組成の電解液で
ある1液型レドツクスフロー電池が知られている。この
発明のレドックスフロー電池は、2液型および1液型の
両方に利用され得るものであるが、特に隔膜を通しての
正極液および負極液の混合の影響の少ない1液型にを効
なものである。
Redox flow batteries include two-component redox flow batteries, in which the positive and negative electrolytes are electrolytes with different compositions, and one-component redox flow batteries, in which the positive and negative electrolytes are electrolytes with approximately the same composition. It has been known. The redox flow battery of this invention can be used for both two-component type and one-component type, but is particularly effective for one-component type where the mixing of positive and negative electrode liquids through the diaphragm has less influence. be.

[発明の効果] この発明のレドックスフロー電池では、隔膜として、親
水性膜と多孔質膜を組合わせた複合膜を用いている。多
孔質膜はイオン透過性が非常に優れているため、この複
合膜は親水性膜単独と同程度のイオン透過性を示す。し
たがって、この発明に用いられる隔膜は、電気抵抗が非
常に小さく、セル内部の電気抵抗を減少させるため、充
放電エネルギ効率が著しく改善される。
[Effects of the Invention] In the redox flow battery of the present invention, a composite membrane in which a hydrophilic membrane and a porous membrane are combined is used as a diaphragm. Since porous membranes have very good ion permeability, this composite membrane exhibits ion permeability comparable to that of a hydrophilic membrane alone. Therefore, the diaphragm used in the present invention has very low electrical resistance and reduces the electrical resistance inside the cell, thereby significantly improving charge/discharge energy efficiency.

また、多孔質膜は機械的強度に優れているため、この発
明に用いられる隔膜はこの多孔質膜により補強され、セ
ル組み込みまたは運転に際にかかる応力や液圧等によっ
て亀裂破断するおそれがなくなる。
In addition, since porous membranes have excellent mechanical strength, the diaphragms used in this invention are reinforced by this porous membrane, eliminating the risk of cracking or breaking due to stress, hydraulic pressure, etc. applied during cell installation or operation. .

Claims (7)

【特許請求の範囲】[Claims] (1)正極と負極との間を隔膜により分離し、正極に正
極液を負極に負極液を供給し、充放電を行なうレドック
スフロー電池において、 前記隔膜が、親水性膜と多孔質膜を組合わせた複合膜で
あることを特徴とする、レドックスフロー電池。
(1) In a redox flow battery in which a positive electrode and a negative electrode are separated by a diaphragm and charged and discharged by supplying a positive electrode liquid to the positive electrode and a negative electrode liquid to the negative electrode, the diaphragm combines a hydrophilic membrane and a porous membrane. A redox flow battery characterized by a composite membrane.
(2)前記親水性膜が、10〜200%の含水率のポリ
マーからなることを特徴とする、特許請求の範囲第1項
記載のレドックスフロー電池。
(2) The redox flow battery according to claim 1, wherein the hydrophilic membrane is made of a polymer with a water content of 10 to 200%.
(3)前記親水性膜が、セルロース系ポリマーからなる
ことを特徴とする、特許請求の範囲第1項または第2項
記載のレドックスフロー電池。
(3) The redox flow battery according to claim 1 or 2, wherein the hydrophilic membrane is made of a cellulose polymer.
(4)前記親水性膜が、エチレンビニルアルコール共重
合体からなることを特徴とする、特許請求の範囲第1項
または第2項記載のレドックスフロー電池。
(4) The redox flow battery according to claim 1 or 2, wherein the hydrophilic membrane is made of ethylene vinyl alcohol copolymer.
(5)前記多孔質膜が、テフロン多孔質膜であることを
特徴とする、特許請求の範囲第1〜4項のいずれか1項
に記載のレドックスフロー電池。
(5) The redox flow battery according to any one of claims 1 to 4, wherein the porous membrane is a Teflon porous membrane.
(6)前記多孔質膜が、塩化ビニル多孔質膜であること
を特徴とする、特許請求の範囲第1〜4項のいずれか1
項に記載のレドックスフロー電池。
(6) Any one of claims 1 to 4, wherein the porous membrane is a vinyl chloride porous membrane.
The redox flow battery described in section.
(7)前記正極液および負極液が、それぞれほぼ等モル
の正極活物質と負極活物質の双方を含むことを特徴とす
る、特許請求の範囲第1〜6項のいずれか1項に記載の
レドッスクフロー電池。
(7) The method according to any one of claims 1 to 6, wherein the positive electrode liquid and the negative electrode liquid each contain substantially equimolar amounts of both the positive electrode active material and the negative electrode active material. Redox flow battery.
JP61068163A 1986-03-25 1986-03-25 Redox flow battery Expired - Fee Related JPH06105615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61068163A JPH06105615B2 (en) 1986-03-25 1986-03-25 Redox flow battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61068163A JPH06105615B2 (en) 1986-03-25 1986-03-25 Redox flow battery

Publications (2)

Publication Number Publication Date
JPS62223984A true JPS62223984A (en) 1987-10-01
JPH06105615B2 JPH06105615B2 (en) 1994-12-21

Family

ID=13365818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61068163A Expired - Fee Related JPH06105615B2 (en) 1986-03-25 1986-03-25 Redox flow battery

Country Status (1)

Country Link
JP (1) JPH06105615B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109075369A (en) * 2016-02-26 2018-12-21 凯斯西储大学 Composite membrane for flow battery

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105845958B (en) 2011-12-28 2018-04-06 旭化成株式会社 Oxidation, reduction liquid secondary cell and oxidation, reduction liquid secondary cell Electrolyte Membranes
JP6002685B2 (en) 2011-12-28 2016-10-05 旭化成株式会社 Redox flow secondary battery and electrolyte membrane for redox flow secondary battery
KR101797274B1 (en) 2011-12-28 2017-11-13 아사히 가세이 가부시키가이샤 Redox flow secondary battery and electrolyte membrane for redox flow secondary battery
KR20140097255A (en) 2011-12-28 2014-08-06 아사히 가세이 이-매터리얼즈 가부시키가이샤 Redox flow secondary battery and electrolyte membrane for redox flow secondary battery
KR102242600B1 (en) 2016-11-24 2021-04-20 아사히 가세이 가부시키가이샤 Carbon foam, membrane electrode composite

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5524389A (en) * 1978-07-10 1980-02-21 Oronzio De Nora Impianti Method of storing and discharging energy of
JPS6122574A (en) * 1984-07-09 1986-01-31 Sumitomo Electric Ind Ltd Cell construction

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5524389A (en) * 1978-07-10 1980-02-21 Oronzio De Nora Impianti Method of storing and discharging energy of
JPS6122574A (en) * 1984-07-09 1986-01-31 Sumitomo Electric Ind Ltd Cell construction

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109075369A (en) * 2016-02-26 2018-12-21 凯斯西储大学 Composite membrane for flow battery
JP2019510342A (en) * 2016-02-26 2019-04-11 ケース ウェスタン リザーブ ユニバーシティCase Western Reserve University Composite membrane for flow battery
US11444306B2 (en) 2016-02-26 2022-09-13 Case Western Reserve University Composite membranes for flow batteries
CN109075369B (en) * 2016-02-26 2023-05-30 凯斯西储大学 Composite membrane for flow battery

Also Published As

Publication number Publication date
JPH06105615B2 (en) 1994-12-21

Similar Documents

Publication Publication Date Title
US11631920B2 (en) Dual electrolyte electrochemical cells, systems, and methods of manufacturing the same
US6228527B1 (en) Magnesium solution phase catholyte seawater electrochemical system
JP2934632B2 (en) Flat multi-junction electrochemical cell
KR101049179B1 (en) Redox flow cell with separator
US7157184B2 (en) Method for producing electrode sheets for electrochemical elements
US4292357A (en) Zinc/zinc oxide laminated anode assembly
US9461298B2 (en) Spiral-wound convection battery and methods of operation
JPH11329474A (en) Redox battery or redox capacitor and manufacture thereof
US20160093919A1 (en) Vanadium Solid-Salt Battery
EP0617441A1 (en) Capacitive battery
GB2023918A (en) Galvanic cell
CN114597590A (en) Special edge-coated diaphragm and application thereof
JPS62223984A (en) Redox flow battery
JPS62184770A (en) Startable battery using li/so2cl2 coupling
JPH06260183A (en) Diaphragm for aqueous solvent electrochemical device and battery with aqueous solvent using same
CN1848506A (en) Vanadium ion liquid flow accumulator battery
JPS62226580A (en) Redox flow battery
JP2005158383A (en) Redox cell
KR20020043602A (en) Improvements To Ni-Zn Battery
JPH01209672A (en) Battery
JPS59214173A (en) Separator for zinc-bromine battery
JP2016164858A (en) Vanadium redox battery
US4824743A (en) Secondary battery with ion-exchange porous membrane
CN218769681U (en) Soft package solid-state battery of cluster in high voltage
KR20200073569A (en) Folding type lithium air battery and method for manufacturing the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees