JPH11329474A - Redox battery or redox capacitor and manufacture thereof - Google Patents

Redox battery or redox capacitor and manufacture thereof

Info

Publication number
JPH11329474A
JPH11329474A JP10136282A JP13628298A JPH11329474A JP H11329474 A JPH11329474 A JP H11329474A JP 10136282 A JP10136282 A JP 10136282A JP 13628298 A JP13628298 A JP 13628298A JP H11329474 A JPH11329474 A JP H11329474A
Authority
JP
Japan
Prior art keywords
plate
redox
frame
positive
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10136282A
Other languages
Japanese (ja)
Inventor
Yukio Nakamura
幸夫 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP10136282A priority Critical patent/JPH11329474A/en
Publication of JPH11329474A publication Critical patent/JPH11329474A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a redox battery or redox capacitor high in a liquid sealing property and light in weight, and its manufacturing method. SOLUTION: In this redox battery or redox capacitor, a current collecting plate 9 and a presser plate (terminal-end plate) 11 are disposed on each opposite end part of a unit-cell stacked body made up by stacking, with a double-pole division plate interposed between them, a multiplicity of unit cells 10 each made up by stacking a positive electrode 2 provided in a positive-electrode chamber of a positive-electrode side electrode frame 1 and a negative electrode 4 provided in a negative-electrode chamber of a negative-electrode side electrode frame 3 with a barrier membrane 6 interposed between them, and the presser plates are fastened to each other with bolts. A water-dispersion type adhesive agent having an acrylic copolymer as base material is interposed between joined surfaces of respective component members or of their frame bodies. An aluminum plate is used as the current collecting plate 9, and a hard vinyl-chloride low-foam body is used for at least one frame body among frame bodies for the positive and negative, two electrodes 1, 3, the barrier membrane 6, the double-pole division plate 7, and the current collecting plate 9.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、レドックス電池ま
たはレドックスキャパシタおよびその製造方法に係り、
特に、液シール性を向上させ、軽量化を達成することが
できるレドックス電池またはレドックスキャパシタおよ
びその製造方法に関する。
The present invention relates to a redox battery or a redox capacitor and a method for manufacturing the same.
In particular, the present invention relates to a redox battery or a redox capacitor capable of improving liquid sealing properties and achieving weight reduction, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】レドックス電池またはレドックスキャパ
シタ(以下、単にレドックス電池という)は、各セルに
おいて電解液を共用することができるので、充放電によ
るセル間電位のばらつきが起こりにくい反面、電解液を
流通させることから、セル内部間または外部への漏液防
止対策を施す必要がある。
2. Description of the Related Art A redox battery or a redox capacitor (hereinafter simply referred to as a redox battery) can share an electrolyte in each cell. Therefore, it is necessary to take measures to prevent liquid leakage between the inside and outside of the cell.

【0003】漏液対策としては、各構成部材の接合面に
耐酸性のゴムパッキンを介在させて単セル積層体を構成
し、該単セル積層体を終端板(以下、押さえ板という)
で挟持し、全体をボルトで締め付けてモジュールとする
方法が一般に使用されている。しかしながら、このよう
な従来方法には以下のような問題点がある。すなわち、
レドックス電池の性能を十分に発揮させるために、正負
両電極枠の電極室内に充填される電極、例えば炭素繊維
布製電極の厚みを、前記電極枠の厚みよりも大きくする
ことがあり、この場合、圧縮に対する前記繊維の反発力
が大きくなるのでボルトによる締め付け力を前記反発力
以上に大きくする必要がある。また部材相互間のゴムパ
ッキンを圧縮して押しつぶす必要もあることから、さら
に大きな締め付け力が要求される。従って、押さえ板と
して締め付けトルクに耐えられるだけの十分な曲げ強度
を有する、例えば高密度部材またはリブ付の鋼板が使用
され、またかなり太い締め付けボルトが使用されること
から、電池全体が非常に重くなるという欠点があった。
As a countermeasure against liquid leakage, a single-cell laminate is formed by interposing an acid-resistant rubber packing on the joint surface of each component, and the single-cell laminate is referred to as an end plate (hereinafter referred to as a holding plate).
In general, a method is used in which a module is clamped by a bolt and the whole is tightened with bolts to form a module. However, such a conventional method has the following problems. That is,
In order to sufficiently exhibit the performance of the redox battery, the electrodes filled in the electrode chambers of the positive and negative electrode frames, for example, the thickness of a carbon fiber cloth electrode may be larger than the thickness of the electrode frame, in this case, Since the repulsive force of the fiber against compression becomes large, it is necessary to increase the tightening force of the bolt to be greater than the repulsive force. Further, since it is necessary to compress and crush the rubber packing between the members, an even greater tightening force is required. Therefore, as the holding plate, a high-density member or a steel plate with ribs having sufficient bending strength to withstand the tightening torque is used, and since a considerably thick tightening bolt is used, the whole battery is very heavy. There was a disadvantage of becoming.

【0004】ところで、このような従来技術では、押さ
え板として鋼板を用い、押さえ板相互間の締め付け力を
大きくしても漏液を完全に停止することは困難であっ
た。その原因としては、電極枠または隔膜等の電池構成
部材の枠体(以下、セル枠ともいう)やゴムパッキンの
板厚寸法精度およびこれらセル枠の表面の平滑度が不均
一であることが挙げられる。すなわち、電極枠として
は、通常硬質塩化ビニル系の部材が用いられるが、硬質
塩化ビニルの圧縮強度は、ゴムパッキンの押しつぶし強
度と同等であり、ゴムパッキンも用いて漏液をなくすた
めには、各構成部材に、例えば±0.05mm以下の高
い寸法および板厚精度が要求される。しかしながち、市
販の硬質塩化ビニル板の板厚精度は、例えば同じ製造ロ
ッドであっても、±0.2mm以上のばらつきがあり、
漏液を完全に防止することは困難であった。
[0004] In such a conventional technique, it is difficult to completely stop the liquid leakage even if a steel plate is used as the holding plate and the tightening force between the holding plates is increased. The cause is that the thickness of the frame (hereinafter also referred to as a cell frame) of a battery component such as an electrode frame or a diaphragm or a rubber packing and the smoothness of the surface of the cell frame are not uniform. Can be That is, as the electrode frame, a rigid vinyl chloride-based member is usually used, but the compressive strength of the rigid vinyl chloride is equivalent to the crushing strength of the rubber packing, and in order to eliminate liquid leakage using the rubber packing, Each component is required to have a high dimension of, for example, ± 0.05 mm or less and a thickness accuracy. However, the thickness accuracy of commercially available hard vinyl chloride plates, for example, even with the same manufactured rod, has a variation of ± 0.2 mm or more,
It was difficult to completely prevent leakage.

【0005】なお、ゴムパッキンを用いた漏液対策に必
要な塩化ビニルの寸法精度(±0.05以下)を満足す
るためには、現状の塩化ビニル板の製造工程に新たに板
厚均一化加工工程(表面削りだし加工工程)を追加する
必要があり、製造コストが高騰するという新たな問題が
発生する。従って、止むを得ず市販の塩化ビニル板を構
成部材として用いているのが現状であるが、上述したよ
うに押さえ板として鋼板を用い、締め付けボルトを太く
する必要があるために、電池全体が重くなって取り扱い
にくくなるだけでなく、部材が変形するという問題が生
じる。このような問題は、電池の出力電流を大きくする
ほど、すなわちモジュールの電極面積を大きくするほど
顕著に現れ、レドックス電池のエネルギー密度(wh/
kg)および出力密度(w/kg)を向上させる上の障
害となっている。
In order to satisfy the dimensional accuracy (± 0.05 or less) of vinyl chloride required for liquid leakage prevention using a rubber packing, a new uniform thickness is required in the current vinyl chloride sheet manufacturing process. It is necessary to add a processing step (surface cutting processing step), which causes a new problem that the manufacturing cost rises. Therefore, it is currently unavoidable to use a commercially available vinyl chloride plate as a component, but as described above, it is necessary to use a steel plate as the holding plate and make the tightening bolts thick, so that the entire battery is used. In addition to being heavy and difficult to handle, there is a problem that the member is deformed. Such a problem becomes conspicuous as the output current of the battery is increased, that is, as the electrode area of the module is increased, and the energy density (wh /
kg) and power density (w / kg).

【0006】また、このようなゴムパッキンを用いた漏
液対策においては、前記ゴムパッキンから電解液中に可
塑剤が溶け出し、これによって、例えば負極側の過電圧
特性が劣化して水素ガスが発生し、電池反応が阻害され
るという問題がある。水素ガスが発生すると、自己放電
が助長されるうえ、充放電中に正負両電解液の活物質バ
ランスが崩れて電池性能が大きく低下する。従って、こ
のような弊害を防止するため、ゴムパッキンをあらかじ
め電解液と同等の液に長時間、例えば24時間以上浸漬
して妨害となる可塑剤等を取り除く必要があった。
[0006] In the countermeasure against liquid leakage using such a rubber packing, a plasticizer dissolves into the electrolytic solution from the rubber packing, thereby deteriorating, for example, overvoltage characteristics on the negative electrode side and generating hydrogen gas. However, there is a problem that the battery reaction is hindered. When hydrogen gas is generated, self-discharge is promoted, and the active material balance between the positive and negative electrolytes is lost during charging and discharging, and the battery performance is greatly reduced. Therefore, in order to prevent such an adverse effect, it was necessary to previously immerse the rubber packing in a liquid equivalent to the electrolytic solution for a long time, for example, 24 hours or more, to remove the disturbing plasticizer and the like.

【0007】一方、ゴムパッキンの代わりに硬化型樹脂
からなる接着剤または硬化物がゴム状の接着剤(以下、
硬化型接着剤という)、例えば一液性のシリコーン系接
着剤を部材間に介在させる方法が検討されているが、こ
の方法も、上記ゴムパッキンを用いた場合と同様、強力
な締め付け具を必要とする。また、この方法では、接着
剤が硬化する前に電池本体の組立を完了する必要がある
ことから、接着剤の硬化時に発生するガスによって電極
または隔膜が悪影響を受けるという問題、およびボルト
の締め付け時に余剰の接着剤が電池構造体の細部、例え
ばスリット部に進入して機能妨害が生じるという問題が
ある。
On the other hand, instead of rubber packing, an adhesive or cured product made of a curable resin is used as a rubber-like adhesive (hereinafter, referred to as a rubber-like adhesive).
For example, a method of interposing a one-part silicone adhesive between members has been studied, but this method also requires a strong fastening tool as in the case of using the rubber packing. And In addition, in this method, since it is necessary to complete the assembly of the battery main body before the adhesive is cured, the gas generated when the adhesive is cured adversely affects the electrode or the diaphragm, and when the bolt is tightened. There is a problem in that the excess adhesive enters the details of the battery structure, for example, the slits, and causes functional interference.

【0008】このように、ゴムパッキンまたは硬化型接
着剤を用いる漏液対策には種々の問題があり、また、両
者を併用したとしても、電池の充放電に伴う熱的変化に
よる構成材料の膨張、収縮による接着剥離を回避して高
いシール性を維持することは困難であり、有効な漏液対
策の確立が要望されていた。
[0008] As described above, there are various problems in the liquid leakage countermeasure using the rubber packing or the curable adhesive, and even if both are used together, the expansion of the constituent materials due to the thermal change due to the charge and discharge of the battery. In addition, it is difficult to maintain high sealing properties by avoiding adhesive peeling due to shrinkage, and it has been demanded to establish effective measures for liquid leakage.

【0009】[0009]

【発明が解決しようとする課題】本発明は、上記要望に
応えるものであり、その目的は、液シール性が高く、し
かも軽量のレドックス電池またはレドックスキャパシタ
およびその製造方法を提供することにある。
SUMMARY OF THE INVENTION The present invention meets the above-mentioned demand, and an object of the present invention is to provide a redox battery or a redox capacitor which has a high liquid sealing property and is lightweight, and a method of manufacturing the same.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するた
め、本発明者は、レドックス電池の構成部材間に介在さ
せるシール材の種類と漏液との関係、および重量構成部
材の軽量部材への代替について鋭意研究した結果、シー
ル材としてアクリル共重合物を基材とした水分散型接着
剤を用いることにより電解液のシール性が向上し、電極
枠をはじめとするセル枠として硬質塩化ビニル板の代わ
りに硬質塩化ビニル低発泡板を、集電板として銅板の代
わりにアルミ板を用いることにより電池全体を軽量化で
きることを見出し、本発明に到達した。
In order to achieve the above object, the present inventor has determined the relationship between the type of sealing material interposed between the components of a redox battery and liquid leakage, and the use of a heavy component to a light component. As a result of intensive studies on alternatives, the use of a water-dispersed adhesive based on an acrylic copolymer as a sealing material has improved the sealing properties of the electrolytic solution, and has been used as a rigid vinyl chloride plate as a cell frame including an electrode frame. The present inventors have found that the weight of the entire battery can be reduced by using a rigid vinyl chloride low-foaming plate instead of a copper plate and an aluminum plate as a current collector instead of a copper plate, and have reached the present invention.

【0011】すなわち本願で特許請求する発明は、以下
のとおりである。 (1)正極側電極枠の正極室内に設けられた正極と負極
側電極枠の負極室内に設けられた負極とを隔膜を介して
積層した単セルを複極仕切板を介して多数積層した単セ
ル積層体の両端部にそれぞれ集電板および終端板を配置
し、前記終端板相互間をボルトで締めつけたレドックス
電池またはレドックスキャパシタにおいて、前記各構成
部材またはその枠体相互の接合面にアクリル共重合物を
基材とした水分散型接着剤を介在させたことを特徴とす
るレドックス電池またはレドックスキャパシタ。 (2)前記集電板が、アルミ板であることを特徴とする
上記(1)に記載のレドックス電池またはレドックスキ
ャパシタ。 (3)前記正負両電極枠、隔膜、複極仕切板および集電
板の枠体のうち少なくとも一つの枠体が、硬質塩化ビニ
ル低発泡板からなることを特徴とする上記(1)または
(2)に記載のレドックス電池またはレドックスキャパ
シタ。
That is, the invention claimed in the present application is as follows. (1) A single cell in which a large number of single cells in which a positive electrode provided in the positive electrode chamber of the positive electrode frame and a negative electrode provided in the negative electrode chamber of the negative electrode frame are stacked via a diaphragm is stacked via a bipolar separator. In a redox battery or a redox capacitor in which a current collector plate and a terminal plate are arranged at both ends of the cell stack, and the terminal plates are fastened with bolts, an acrylic material is attached to a joint surface between the constituent members or the frame member. A redox battery or a redox capacitor, wherein a water-dispersed adhesive containing a polymer as a base material is interposed. (2) The redox battery or the redox capacitor according to the above (1), wherein the current collector plate is an aluminum plate. (3) The above (1) or (1), wherein at least one of the positive and negative electrode frames, the diaphragm, the bipolar separator, and the current collector is formed of a rigid vinyl chloride low-foam plate. The redox battery or redox capacitor according to 2).

【0012】(4)正極側電極枠の正極室内に設けられ
た正極と負極側電極枠の負極室内に設けられた負極とを
隔膜を介して積層して単セルとし、該単セルを複極仕切
板を介して多数積層して単セル積層体とし、該単セル積
層体の両端部にそれぞれ集電板および終端板を配置し、
前記終端板相互間をボルトで締めつけるレドックス電池
またはレドックスキャパシタの製造方法において、前記
集電板としてアルミ板を用い、前記正負両電極枠、隔
膜、複極仕切板および集電板の枠体のうち少なくとも一
つの枠体として硬質塩化ビニル低発泡板を用い、各構成
部材または枠体相互の接合面にアクリル共重合物を基材
とした水分散型接着剤を塗布したのち前記各構成部材を
積層することを特徴とするレドックス電池またはレドッ
クスキャパシタの製造方法。 (5)前記アクリル共重合物を基材とした水分散型接着
剤の塗膜厚さを0.01〜0.5mmとすることを特徴
とする上記(4)に記載のレドックス電池またはレドッ
クスキャパシタの製造方法。
(4) A positive electrode provided in the positive electrode chamber of the positive electrode frame and a negative electrode provided in the negative electrode chamber of the negative electrode frame are laminated via a diaphragm to form a single cell. A single cell laminate is formed by laminating a large number through a partition plate, and a current collector and a terminal plate are arranged at both ends of the single cell laminate, respectively.
In the method for manufacturing a redox battery or a redox capacitor in which the end plates are tightened with bolts, an aluminum plate is used as the current collector, and the positive and negative electrode frames, the diaphragm, the bipolar separator, and the current collector plate frame are used. A rigid vinyl chloride low-foam plate is used as at least one frame, and a water-dispersed adhesive based on an acrylic copolymer is applied to each component or a joint surface between the frames, and then the components are laminated. A method for manufacturing a redox battery or a redox capacitor. (5) The redox battery or the redox capacitor according to the above (4), wherein the coating thickness of the water-dispersed adhesive based on the acrylic copolymer is 0.01 to 0.5 mm. Manufacturing method.

【0013】本発明においては、電池の各構成部材の接
合面にシール材としてアクリル共重合物を基材とした水
分散型接着剤を介在させる。アクリル共重合物を基材と
した水分散型接着剤(以下、アクリル系水分散型接着剤
という)は、溶剤として水を使用することができ、非硬
化型の接着剤であり、乾燥後も強力な剥離接着強さがあ
り、常温(25℃)で1時間以内に接着が完了する、す
なわち接着部材の使用が可能となるという特性があり、
しかも特殊な製品でなく、80℃以上の耐熱性があり、
五酸化バナジウムをはじめとする強力な酸化剤に対して
安定であり、25%硫酸に対する耐性もあり、電池構成
部材の接合剤、接着剤として優れたものである。
In the present invention, a water-dispersed adhesive having an acrylic copolymer as a base material is interposed as a sealing material on the joint surface of each component of the battery. Water-dispersible adhesives based on acrylic copolymers (hereinafter referred to as acrylic water-dispersible adhesives) can use water as a solvent, are non-curable adhesives, and can be dried. It has strong peel adhesion strength, and has the property that the adhesion is completed within one hour at normal temperature (25 ° C.), that is, the adhesive member can be used,
Moreover, it is not a special product and has heat resistance of 80 ℃ or more.
It is stable against strong oxidizing agents such as vanadium pentoxide and has resistance to 25% sulfuric acid, and is excellent as a bonding agent and an adhesive for battery components.

【0014】以下、アクリル系水分散型接着剤の性能特
性について説明する。 浸漬試験 レドックス電池の構成材料であるガラス状カーボン(複
極仕切板材)、陰陽のイオン交換膜(隔膜材)、カーボ
ンフェルト、焼結カーボン(電極材)および本発明にお
いて硬質塩化ビニル板の代替品として使用する硬質塩化
ビニル低発泡板(セル枠材)を被着材として用い、該各
被着材の50mm×25mmの試験片の片側全面に、ア
クリル系水分散型接着剤として高耐熱・スクリーン印刷
用水性接着剤である、商品名:Screenable
PSA SP−7533(住友スリーエム社製)を、厚
さ約0.3mm刷毛塗りし、常温(25℃)で1時間乾
燥したのち、60℃の、バナジウム2mol/l+硫酸
30%の電解液中に3週間浸漬したところ、前記アクリ
ル系水分散型接着剤が固くなったり、硫酸によって褐変
する等の変化はみられず、安定していた。
The performance characteristics of the acrylic water-dispersed adhesive will be described below. Immersion test Glass-like carbon (dipole partition material), ion-exchange membrane (diaphragm material), carbon felt, sintered carbon (electrode material), which are constituent materials of redox battery, and a substitute for rigid vinyl chloride plate in the present invention Vinyl chloride low foam board (cell frame material) to be used as an adherend, and an acrylic water-dispersed adhesive with high heat resistance and screen over the entire surface of one side of each 50 mm x 25 mm test piece of each adherend Product name: Screenable, which is a water-based adhesive for printing
PSA SP-7533 (manufactured by Sumitomo 3M) is brush-applied to a thickness of about 0.3 mm, dried at room temperature (25 ° C.) for 1 hour, and then placed at 60 ° C. in an electrolyte of vanadium 2 mol / l + 30% sulfuric acid. After immersion for 3 weeks, the acrylic water-dispersed adhesive was stable without any change such as hardening or browning due to sulfuric acid.

【0015】剥離強度試験 上記浸漬試験で用いた硬質塩化ビニル低発泡板(以下、
低発泡塩化ビニル板ともいう)と同質のもの2枚を、接
合面に上記と同様のアクリル系水分散型接着剤を、厚さ
約0.3mm刷毛塗りして接合し、この接合体を上記浸
漬試験と同様の条件で同様の電解液に同様の期間浸漬し
たのち蒸留水で十分に洗浄し、60℃で1時間養生した
のちJIS−Z−0237法に従って剥離強度試験を行
ったところ、60℃剥離強度は3.4kgf/25mm
であり、上記電解液に浸漬しない以外は同様に処理した
場合の剥離強度(3.6kgf/25mm)と比べて若
干の強度低下が認められたものの、実用に影響を与える
程の低下は認められなかった。なお、剥離強度試験の条
件は、引っ張り速度:300mm/min、雰囲気温
度:25℃とした。
Peel strength test The rigid vinyl chloride low foam board (hereinafter referred to as the “foam”) used in the above immersion test
Two sheets of the same quality as a low-expanded polyvinyl chloride board) are joined together by brushing the same acrylic water-dispersed adhesive as described above on the joining surface with a thickness of about 0.3 mm, and joining the joined body to the above. After immersion in the same electrolyte for the same period under the same conditions as the immersion test, the plate was sufficiently washed with distilled water, cured at 60 ° C. for 1 hour, and then subjected to a peel strength test according to JIS-Z-0237. C peel strength is 3.4kgf / 25mm
Although the peel strength was slightly reduced compared to the peel strength (3.6 kgf / 25 mm) of the same treatment except that it was not immersed in the above-mentioned electrolytic solution, a decrease that would affect practical use was observed. Did not. The conditions for the peel strength test were as follows: tensile speed: 300 mm / min, ambient temperature: 25 ° C.

【0016】充放電試験 上記浸漬試験に用いた被着材を使用して電池(49cm
2 )を構成し、充放電試験を行った。すなわち、低発泡
塩化ビニル板からなる正負両電極枠の電極室にそれぞれ
電極材としてカーボンフェルトを装填して正負両電極と
し、各構成部材またはその枠体の接合面にアクリル系水
分散型接着剤(住友スリーエム社製、商品名:Scre
enable PSA SP−7533)を塗布したの
ち、前記正負両電極を陰陽のイオン交換膜(隔膜)を介
して積層して単セルとし、該単セルをガラス状カーボン
からなる複極仕切板で挟持してモジュールを構成した。
得られたモジュールについて、前記浸漬試験終了後の電
解液を用いて電流密度80mA/cm2 で定電流充放電
を行ったところ、セル抵抗は1.64Ω・cm2 、電流
効率は99.6%であり、同様のモジュールを用いて上
記電解液と同様の組成で全く新しい電解液を用いた場合
のセル抵抗:1.6Ω・cm2 、電流効率:99.5%
と大差なかった。
Battery (49 cm) using the adherend used in the above immersion test
2 ), and a charge / discharge test was performed. That is, carbon felt is loaded as an electrode material into each of the electrode chambers of the positive and negative electrode frames made of a low-foaming vinyl chloride plate to form both positive and negative electrodes, and an acrylic water-dispersed adhesive is attached to the joining surface of each component or its frame. (Sumitomo 3M, product name: Scre
After applying enable PSA SP-7533), the positive and negative electrodes are laminated via an anion-positive ion exchange membrane (diaphragm) to form a single cell, and the single cell is sandwiched between bipolar separators made of glassy carbon. The module.
The obtained module was subjected to constant current charging and discharging at a current density of 80 mA / cm 2 using the electrolytic solution after the completion of the immersion test. As a result, the cell resistance was 1.64 Ω · cm 2 , and the current efficiency was 99.6%. In the case where a completely new electrolytic solution having the same composition as the above-mentioned electrolytic solution was used in the same module, the cell resistance was 1.6 Ω · cm 2 , and the current efficiency was 99.5%.
Was not much different.

【0017】このことから、上記浸漬試験においてアク
リル系水分散型接着剤から、電極液中に電極反応に対し
て悪影響を与える物質は溶出していないものと推測でき
る。このとき部材相互を密着するために必要な保持力
(漏液防止のための締め付け力)はシール材としてゴム
パッキンを用いた従来技術に比べて60%以上低減でき
た。また、電池組立時に何の不都合もなく、各部材の電
気絶縁性が低下することもなかった。
From this, it can be inferred that, in the above immersion test, substances that have an adverse effect on the electrode reaction were not eluted from the acrylic water-dispersed adhesive into the electrode solution. At this time, the holding force (clamping force for preventing liquid leakage) required to bring the members into close contact with each other could be reduced by 60% or more as compared with the conventional technology using rubber packing as a seal material. Also, there was no inconvenience when assembling the battery, and the electrical insulation of each member did not decrease.

【0018】なお、厚さ0.05mm、25mm□のア
クリル系水分散型接着剤(商品名:Screenabl
e PSA SP−7533、住友スリーエム社製)塗
膜について35VDC(感度:0.01μA)で行った
絶縁性試験の結果、絶縁性は無限大であった。以上のこ
とから、アクリル系水分散型接着剤は、電解液に対する
耐性があり、かつ電解反応に悪影響を与える物質が電解
液中に溶出することもなく、液シール性を向上させるこ
とができるので、電池の各構成部材間のシール材として
適していることが分かる。
Acrylic water-dispersible adhesive having a thickness of 0.05 mm and 25 mm square (trade name: Screenabl)
e PSA SP-7533, manufactured by Sumitomo 3M Ltd.) As a result of an insulation test performed at 35 VDC (sensitivity: 0.01 μA), the insulation was infinite. From the above, since the acrylic water-dispersed adhesive has resistance to the electrolytic solution, and a substance that adversely affects the electrolytic reaction does not elute into the electrolytic solution, and the liquid sealing property can be improved. It can be seen that this is suitable as a sealing material between the components of the battery.

【0019】シール材としてアクリル系水分散型接着剤
を用いることにより、強力な接着力が発揮されるので、
電極材として電極室内に充填された、例えば炭素繊維の
反発力の大部分、例えば60%程度を押さえることがで
きる。従って、ボルト等による外部からの締め付け力を
大幅に軽減することができ、押さえ板としてより強度の
小さいもの、締め付けボルトとしてより細いものを使用
することができる。また、アクリル系水分散型接着剤層
は、圧力によって自由に変形するので、電池の充放電に
伴って発生する熱によって電池構成部材が膨張または収
縮しても高い機密性が確保され、長期間液漏れを防止す
ることができる。
By using an acrylic water-dispersed adhesive as a sealing material, a strong adhesive force is exhibited.
Most of the repulsive force of, for example, carbon fibers filled in the electrode chamber as the electrode material can be suppressed, for example, about 60%. Therefore, external tightening force by a bolt or the like can be greatly reduced, and a pressing plate having lower strength and a thinner tightening bolt can be used. In addition, since the acrylic water-dispersed adhesive layer is freely deformed by pressure, high confidentiality is ensured even if the battery components expand or contract due to heat generated as the battery is charged or discharged. Liquid leakage can be prevented.

【0020】本発明で用いるアクリル系水分散型接着剤
は、水性であるために、デリケートなイオン交換膜を侵
すことがなく、しかもこの接着剤は部材接合面に塗布
し、水を飛散させて十分な剥離強度が得られたのち各部
材相互を接合することができるので、電池の組立をより
正確に行うことができる。本発明において、アクリル系
水分散型接着剤としては、例えばアクリル酸メチル(C
2 =CH−COOCH3 )、アクリル酸エチル(CH
2 =CH−COOC2 5 )、アクリル酸ブチル(CH
2 =CH−COOC4 9 )、アクリル酸2エチルヘキ
シル〔CH2 =CHCOOCH2 −CH2 (C2 5
(CH2 3 −CH3 〕等に極性基含有単量体を共重合
させたポリマーを主成分として水中に分散させたもの
で、用途に応じて種々の添加物を混入させた種々のもの
がある。代表的なものとしては、例えば商品名:Scr
eenable PSA SP−7533(住友スリー
エム社製)があげられ、この接着剤は、アクリル共重合
物を基材とする水分散型の接着剤(pH=7.0)であ
り、例えば比重が1.02、粘度が35000cps、
色は乳白色である。有機溶剤は含まれておらず、不揮発
分約65%で、引火点は存在しない。なお、接着剤とし
てシリコン系の水分散型接着剤を使用することも可能で
あるが、組立時のハンドリングに難があり、比較的酸化
分解され易いという欠点がある。また、その他ブチルゴ
ム系の粘着剤等を用いることができる。
Acrylic water-dispersed adhesive used in the present invention
Can attack delicate ion exchange membranes due to its aqueous nature
This adhesive is applied to the joint surface of the members
And after water is scattered to obtain sufficient peel strength,
Since the materials can be joined to each other,
Can be done accurately. In the present invention, acrylic
Examples of the water-dispersed adhesive include, for example, methyl acrylate (C
HTwo= CH-COOCHThree), Ethyl acrylate (CH
Two= CH-COOCTwoHFive), Butyl acrylate (CH
Two= CH-COOCFourH9), 2-ethyl acrylate
Syl [CHTwo= CHCOOCHTwo-CHTwo(CTwoHFive)
(CHTwo) Three-CHThreeCopolymerized with a polar group-containing monomer
Dispersed in water with the polymer as the main component
Various types mixed with various additives depending on the application
There is. A typical example is a product name: Scr
eable PSA SP-7533 (Sumitomo Three
This adhesive is made of acrylic copolymer
Water-based adhesive (pH = 7.0)
For example, specific gravity is 1.02, viscosity is 35,000 cps,
The color is milky white. Contains no organic solvents and is non-volatile
At about 65% min, there is no flash point. Note that the adhesive
It is also possible to use silicone-based water-dispersed adhesive
However, handling during assembly is difficult and relatively oxidized.
There is a disadvantage that it is easily decomposed. In addition, other butylgo
A system-based adhesive or the like can be used.

【0021】本発明において、アクリル系水分散型接着
剤を塗布する際の塗膜厚さは、0.01〜0.5mmで
あることが好ましく、特に0.03〜0.3であること
が好ましい。塗膜厚さが薄すぎると液シール性が低下
し、厚すぎると電極の圧縮不足となり性能低下等の弊害
が生じることがある。本発明において、電池枠をはじめ
とするセル枠材としては硬質塩化ビニル低発泡板を用い
ることが好ましい。硬質塩化ビニル低発泡板は、例えば
発泡剤を混入しながら成形されるもので、その比重は約
0.7であり、従来使用されていた硬質塩化ビニル板の
比重1.3に比較して非常に軽いので、電池全体の軽量
化が可能となる。低発泡板は、硬質板に比べて圧縮強度
が小さいが、本発明においては、上述したように、シー
ル材としてアクリル系水分散型接着剤を用いることによ
り、漏液防止のための締め付け力が小さくなるので、十
分使用可能である。
In the present invention, the thickness of the coating when the acrylic water-dispersed adhesive is applied is preferably 0.01 to 0.5 mm, particularly preferably 0.03 to 0.3. preferable. If the coating film thickness is too thin, the liquid sealing properties will be reduced, and if it is too thick, the electrodes will be insufficiently compressed, which may cause adverse effects such as reduced performance. In the present invention, it is preferable to use a rigid vinyl chloride low foam board as a cell frame material including a battery frame. The rigid vinyl chloride low-foamed board is formed by mixing a foaming agent, for example, and has a specific gravity of about 0.7, which is much higher than that of the conventionally used rigid vinyl chloride board of 1.3. Lighter, the weight of the entire battery can be reduced. The low foam board has a lower compressive strength than the hard board, but in the present invention, as described above, by using the acrylic water-dispersed adhesive as the sealing material, the tightening force for preventing liquid leakage is reduced. Since it becomes smaller, it can be used sufficiently.

【0022】また本発明においては、集電板としてアル
ミ板を用いることが好ましい。アルミ板の比重は約2.
7であり、従来使用されていた銅板の比重約9.0と比
べて非常に軽いので、電池全体の軽量化が可能となる。
銅板の代わりにアルミ板を用いても電気抵抗の点につい
ては全く問題がない。また、アルミ板の熱変形量は銅板
の熱変形量よりも大きく、アルミ集電板を採用すること
により、モジュールの熱変形による反発力は大きくなる
が、本発明においては、上述したように、シール材とし
てアクリル系水分散型接着剤を用いることにより、電池
体の熱変形許容範囲が拡大するので、不都合を生じるこ
とはない。このような軽量部材を用いることによる電池
の軽量化効果はセルの電極面積が大きくなればなるほど
大きくなる。
In the present invention, it is preferable to use an aluminum plate as the current collector. The specific gravity of the aluminum plate is about 2.
7, which is much lighter than the specific gravity of the conventionally used copper plate of about 9.0, so that the weight of the whole battery can be reduced.
Even if an aluminum plate is used instead of a copper plate, there is no problem in terms of electric resistance. In addition, the thermal deformation of the aluminum plate is larger than the thermal deformation of the copper plate, and the adoption of the aluminum current collector plate increases the repulsive force due to the thermal deformation of the module, but in the present invention, as described above, By using an acrylic water-dispersed adhesive as the sealing material, the allowable range of thermal deformation of the battery body is expanded, so that there is no inconvenience. The effect of reducing the weight of the battery by using such a lightweight member increases as the electrode area of the cell increases.

【0023】[0023]

【発明の実施の形態】以下、本発明を実施例によりさら
に詳細に説明する。 実施例1 縦320mm、横250mm、厚さ2.0mmの硬質塩
化ビニル低発泡板からなる正負両電極枠の電極室内にそ
れぞれ電極材としてカーボンフェルトを充填して正負両
電極とし、前記電極枠と同じ大きさで同じ材質からなる
枠体にそれぞれ陰陽のイオン交換膜およびガラス状カー
ボンを装着して枠体付の隔膜および複極仕切板とし、各
部材の枠体相互の接合面にアクリル系水分散型接着剤と
して商品名:Screenable PSA SP−7
533(住友スリーエム社製)を厚さが0.05mmと
なるように塗布したのち、前記正負両電極を前記隔膜を
介して積層して単セルとし、該単セルを前記複極仕切板
を介して20セル積層し、該単セル積層体の両端部に、
前記両電極枠と同じ大きさで厚さ15mmの硬質塩化ビ
ニル低発泡板からなる枠体に集電体としてアルミ板を装
填したものを積層し、得られた積層体の両端に縦370
mm、横300mm、厚さ9mm、重さ1.6kgの松
材からる押さえ板をそれぞれ配置し、該両押さえ板相互
を直径8mmのボルト(M8のボルト)で締め付けてモ
ジーュルを構成した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in more detail by way of examples. Example 1 Both the positive and negative electrodes were filled with carbon felt as an electrode material in the electrode chambers of the positive and negative electrode frames made of a hard vinyl chloride low foam board having a length of 320 mm, a width of 250 mm, and a thickness of 2.0 mm. Attach the ion-exchange membrane and glassy carbon of yin and yang to the frame of the same size and made of the same material, respectively, to form a diaphragm with a frame and a bipolar separator. Product name: Screenable PSA SP-7 as a dispersion adhesive
After applying 533 (manufactured by Sumitomo 3M) to a thickness of 0.05 mm, the positive and negative electrodes are laminated through the diaphragm to form a single cell, and the single cell is placed through the bipolar separator. 20 cells are stacked, and at both ends of the single cell stack,
A frame made of a rigid vinyl chloride low-foamed plate having the same size as the above-mentioned two electrode frames and having a thickness of 15 mm is laminated with an aluminum plate loaded as a current collector.
A pressing plate made of pine wood having a size of 300 mm, a width of 300 mm, a thickness of 9 mm, and a weight of 1.6 kg was arranged, and the two pressing plates were fastened to each other with 8 mm diameter bolts (M8 bolts) to form a module.

【0024】図1は、本実施例で製作したモジュールの
展開模式図(単セルは一つのみを示した)である。図に
おいて、正負両電極枠1および3にそれぞれ装填された
正極2および負極4が、セル枠5に装填された隔膜6を
介して積層されて単セル10が構成されている。図中斜
線部分は接着剤の塗布面を示す。このような単セル10
を図1に示した、セル枠5に装填された複極仕切板7を
介して20セル積層し、得られた単セル積層体の両端部
に図1に示した、集電板枠8に装着された集電板9およ
び押さえ板11によって挟持し、該押さえ板11相互間
を図示省略したボルトによって締め付けることによりモ
ジュールが構成される。なお、12はボルト孔、13は
マニホルド、14はスリットである。
FIG. 1 is an exploded schematic view of a module manufactured in this embodiment (only one unit cell is shown). In the figure, a positive electrode 2 and a negative electrode 4 loaded on both positive and negative electrode frames 1 and 3 are laminated via a diaphragm 6 loaded on a cell frame 5 to form a single cell 10. The hatched portion in the figure indicates the surface on which the adhesive is applied. Such a single cell 10
Are stacked via the bipolar separator 7 loaded in the cell frame 5 shown in FIG. 1, and the current collector plate frame 8 shown in FIG. The module is configured by being sandwiched between the mounted current collector plate 9 and the holding plate 11 and tightening the space between the holding plates 11 with a bolt (not shown). In addition, 12 is a bolt hole, 13 is a manifold, and 14 is a slit.

【0025】得られたモジュールに、バナジウム2mo
l/l+硫酸30%の電解液を流通させ、漏液が停止す
るまでさらにボルトを締め付けたところ、締め付けトル
クが0.7kg・mで漏液が止まった。本実施例によれ
ば、圧力によって自在に変形するアクリル系水分散型接
着剤をシール材として用いたことにより、例えば小さな
異物が挟まれた場合でも液シールが破れることはない。
また、接着材塗膜の厚さを0.05mm程度とすること
ができるので、0.5mm厚のゴムパッキンを用いた従
来技術に比べてモジュール全体をコンパクト化すること
ができる。
In the obtained module, vanadium 2mo
When an electrolyte of 1 / l + 30% sulfuric acid was circulated and the bolts were further tightened until the leakage stopped, the leakage stopped at a tightening torque of 0.7 kg · m. According to the present embodiment, since the acrylic water-dispersible adhesive that can be freely deformed by pressure is used as the sealing material, the liquid seal does not break even when small foreign matter is caught, for example.
Further, since the thickness of the adhesive coating film can be set to about 0.05 mm, the whole module can be made compact as compared with the conventional technique using a 0.5 mm thick rubber packing.

【0026】また本実施例によれば、シール材としてア
クリル系水分散型接着剤を用いたことにより、該接着剤
を必要部分のみに塗布すればよいので、ゴムパッキンを
用いた場合のように、例えば枠材の内側のみを刳り抜く
作業が不要となり、作業性および経済性が向上する。本
実施例において、押さえ板として松材を用いたが、別の
軽量部材、例えば集成材や合板を使用することもでき
る。集成材とは、木材の小片(ラミナ)の繊維方向を平
行にして積層密着したものであり、小片の縦方向の継ぎ
方にはバットジョイント、スカーフジョイント、フック
ドスカーフジョイント、フィンガージョイント(水
平)、フィンガージョイント(垂直)等種々の方法があ
るが、フィンガージョイントで積層されたものが多く、
接着剤としては、例えばレゾルシノール樹脂や水性ビニ
ルウレタンが用いられる。
Further, according to the present embodiment, since the acrylic water-dispersible adhesive is used as the sealing material, it is sufficient to apply the adhesive only to the necessary portions. For example, the work of hollowing out only the inside of the frame material becomes unnecessary, and the workability and economy are improved. In the present embodiment, pine is used as the holding plate, but another lightweight member, for example, laminated wood or plywood may be used. Glued laminates are small pieces of wood (lamina) that are laminated and adhered with the fiber direction in parallel, and butt joints, scarf joints, hooked scarf joints, and finger joints (horizontal) are used for joining small pieces in the vertical direction. There are various methods such as finger joints (vertical), many of which are stacked with finger joints,
As the adhesive, for example, resorcinol resin or aqueous vinyl urethane is used.

【0027】比較例1 シール材として、アクリル系水分散型接着剤の代わりに
従来から使用されているゴムパッキンを、各セル枠とし
て硬質塩化ビニル板を、集電板として銅板を、押さえ板
として松材の代わりに重量15.5kgのリブ付き鋼板
をそれぞれ用い、かつ締め付けボルトとして直径12m
mのボルト(M12ボルト)を用いた以外は上記実施例
1と同様にして同様のモジュールを構成し、同様の液漏
れ試験を行ったところ、締め付けトルクが4.5kg・
mのとき漏液が止まった。
Comparative Example 1 A rubber packing conventionally used instead of an acrylic water-dispersed adhesive was used as a sealing material, a hard vinyl chloride plate was used as each cell frame, a copper plate was used as a current collector, and a pressing plate was used as a holding plate. Instead of pine wood, a ribbed steel plate weighing 15.5 kg was used, and the diameter of the bolt was 12 m.
A similar module was constructed in the same manner as in Example 1 except that a bolt of M m (M12 bolt) was used, and a similar leak test was performed. As a result, the tightening torque was 4.5 kg ·
At the time of m, liquid leakage stopped.

【0028】実施例1と比較例1の結果を表1に示す。Table 1 shows the results of Example 1 and Comparative Example 1.

【0029】[0029]

【表1】 表1において、アクリル系水分散型接着剤をシール材と
して用いた実施例1は、ゴムパッキンを用いた比較例1
に比べて必要締め付けトルクが約84%、押さえ板の重
量が約90%低減できたことが分かる。
[Table 1] In Table 1, Example 1 using an acrylic water-dispersed adhesive as a sealing material is Comparative Example 1 using rubber packing.
It can be seen that the required tightening torque can be reduced by about 84% and the weight of the holding plate can be reduced by about 90%.

【0030】実施例2 縦140mm、横100mm、厚さ2.0mmの硬質塩
化ビニル低発泡板からなる正負両電極枠の電極室内にそ
れぞれ電極材として70mm×70mm×4.6mmの
炭素繊維布を充填して電極面積49cm2 の正負両電極
とし、前記電極枠と同じ大きさで同じ材質からなる枠体
にそれぞれ陽イオン交換膜およびグラッシー炭素板を装
着して枠体付の隔膜および集電板とし、各部材の枠体接
合面にアクリル系水分散型接着剤として住友スリーエム
社製の商品名:Screenable PSA SP−
7533接着剤を、その厚さが0.05mmとなるよう
に塗布したのち、前記正負両電極を前記隔膜を介して積
層して単セルを構成し、その両端部に集電板を配置して
モジュールとした。
Example 2 A 70 mm × 70 mm × 4.6 mm carbon fiber cloth was used as an electrode material in each of the electrode chambers of the positive and negative electrode frames made of a rigid vinyl chloride low foam board having a length of 140 mm, a width of 100 mm and a thickness of 2.0 mm. Filled to make both positive and negative electrodes with an electrode area of 49 cm 2, a cation exchange membrane and a glassy carbon plate were mounted on a frame of the same size and made of the same material as the electrode frame, respectively, and a diaphragm with a frame and a current collector plate Acrylic water-dispersed adhesive on the frame joining surface of each member as a water-soluble adhesive of Sumitomo 3M Limited: Screenable PSA SP-
After applying the 7533 adhesive so that the thickness becomes 0.05 mm, the positive and negative electrodes are laminated via the diaphragm to form a single cell, and current collector plates are arranged at both ends thereof. Module.

【0031】得られたモジュールに対し、電解液として
バナジウム1.6mol/l+硫酸4.0mol/lの
電解液を用い、20℃一定温度で80mA/cm2 の定
電流充放電を行ったところ、セル抵抗は1.64Ω・c
2 であった。 実施例3 実施例2のモジュールを電極面積を420cm2 のセル
にスケールアップした以外は同様にして同様の充放電試
験を行ったところ、セル抵抗は1.68Ω・cm2 であ
った。
The obtained module was charged and discharged with a constant current of 80 mA / cm 2 at a constant temperature of 20 ° C. using an electrolyte of 1.6 mol / l of vanadium + 4.0 mol / l of sulfuric acid as an electrolyte. Cell resistance is 1.64Ω · c
m 2 . Example 3 A similar charge / discharge test was performed on the module of Example 2 except that the electrode area was increased to a cell having an electrode area of 420 cm 2 , and the cell resistance was 1.68 Ω · cm 2 .

【0032】比較例2 シール材として、アクリル系水分散型接着剤の代わりに
従来から使用されているゴムパッキンを、各セル枠とし
て硬質塩化ビニル板を、集電板として銅板をそれぞれ用
いた以外は上記実施例2と同様にしてモジュールを構成
し、同様の条件で同様の充放電試験を行ったところ、セ
ル抵抗は1.82Ω・cm2 であった。
Comparative Example 2 A rubber packing conventionally used instead of an acrylic water-dispersed adhesive was used as a sealing material, a hard vinyl chloride plate was used as each cell frame, and a copper plate was used as a current collector. A module was constructed in the same manner as in Example 2, and a similar charge / discharge test was performed under the same conditions. As a result, the cell resistance was 1.82 Ω · cm 2 .

【0033】比較例3 比較例2のモジュールを電極面積を420cm2 のセル
にスケールアップした以外は同様にして同様の充放電試
験を行ったところ、セル抵抗は1.93Ω・cm2 であ
った。実施例2、3および比較例2、3の結果を表2に
示す。
Comparative Example 3 A similar charge / discharge test was performed on the module of Comparative Example 2 except that the electrode area was increased to a cell having an electrode area of 420 cm 2 , and the cell resistance was 1.93 Ω · cm 2 . . Table 2 shows the results of Examples 2 and 3 and Comparative Examples 2 and 3.

【0034】[0034]

【表2】 表2において、シール材としてアクリル系水分散型接着
剤を使用した実施例においては、スケールアップによる
セル性能の変化はほとんど見られず、スケールアップ特
性に優れていることが分かる。この理由としては、シー
ル材であるアクリル系水分散型接着剤の塗膜厚が、例え
ば0.05mmで、ゴムパッキンの厚さ(約0.5m
m)の約1/10と非常に薄いので、電極の圧縮代の変
動差異が少なく、小型セルで得られた結果を基に大型セ
ルを設計して、設計どおりの電極性能が得られたことが
挙げられる。
[Table 2] In Table 2, in the example in which the acrylic water-dispersed adhesive was used as the sealing material, almost no change in cell performance due to scale-up was observed, indicating that the scale-up characteristics were excellent. The reason for this is that the coating thickness of the acrylic water-dispersed adhesive as the sealing material is, for example, 0.05 mm and the thickness of the rubber packing (about 0.5 m).
m) is very thin, about 1/10 of the above, so there is little variation in the compression allowance of the electrode. A large cell was designed based on the results obtained with a small cell, and the electrode performance as designed was obtained. Is mentioned.

【0035】これに対してシール材としてゴムパッキン
を用いた比較例においてはスケールアップによる整合性
が得られず、スケールアップすることによりセル性能が
低下したことが分かる。この理由としては、シール材と
して、例えば厚さ0.5mmのゴムパッキンを用いたた
めに、該ゴムパッキンの一定の潰し代、すなわち電極の
圧縮代の制御が困難で、これが電極反応、セル抵抗に大
きく影響したためと考えられる。
On the other hand, in the comparative example using the rubber packing as the sealing material, no consistency was obtained by scaling up, and it can be seen that the cell performance was reduced by scaling up. The reason for this is that, for example, a rubber packing having a thickness of 0.5 mm is used as a sealing material, so that it is difficult to control a certain amount of crushing of the rubber packing, that is, a compression allowance of the electrode. It is considered that this had a significant effect.

【0036】また、実施例3のセル重量を1とした場合
の比較例3のセル重量は実に2.9であり、実施例3に
よれば、セル重量を従来セルの1/2.9に軽減できた
ことが分かる。 実験例1 実施例3と比較例3のモジュールについて、上記と同様
の条件で0.5時間の充放電試験を繰り返したところ、
実施例3のセルに性能変化はみられなかった。このこと
から、実施例3のセルにおいてはシール材であるアクリ
ル系水分散型接着剤から電解液中へ電極反応阻害物質が
溶出していないことが分かる。一方、比較例3のモジュ
ールにおける、連続運転後のセル抵抗は2.22Ω・c
2 と大きくなっていた。これは、ゴムパッキンから電
解液中に電解反応を阻害する物質、例えば可塑剤が溶出
したためと考えられる。
The cell weight of Comparative Example 3 when the cell weight of Example 3 was 1 was actually 2.9. According to Example 3, the cell weight was reduced to 1 / 2.9 that of the conventional cell. You can see that it was reduced. Experimental Example 1 A charge / discharge test of 0.5 hours was repeated for the modules of Example 3 and Comparative Example 3 under the same conditions as above.
No performance change was observed in the cell of Example 3. This indicates that in the cell of Example 3, no electrode reaction inhibitory substance was eluted from the acrylic water-dispersed adhesive as the sealing material into the electrolytic solution. On the other hand, the cell resistance after continuous operation in the module of Comparative Example 3 was 2.22Ω · c.
It was as large as m 2. This is probably because a substance that inhibits an electrolytic reaction, for example, a plasticizer, was eluted from the rubber packing into the electrolytic solution.

【0037】[0037]

【発明の効果】本願の請求項1記載の発明によれば、レ
ドックス電池の各構成部材またはその枠体相互の接合面
にアクリル系水分散型接着剤を介在させたことにより、
液シール性が著しく向上する。本願の請求項2記載の発
明によれば、集電板としてアルミ板を用いたことによ
り、上記発明の効果に加え、レドックス電池全体を軽量
化することができる。
According to the invention as set forth in claim 1 of the present application, the acrylic water-dispersed adhesive is interposed between the constituent members of the redox battery or the joint surfaces of the frames thereof.
The liquid sealing property is significantly improved. According to the invention described in claim 2 of the present application, by using an aluminum plate as the current collector plate, in addition to the effects of the above-described invention, the weight of the entire redox battery can be reduced.

【0038】本願の請求項3記載の発明によれば、正負
両電極枠、隔膜、複極仕切板および集電板の枠体のうち
少なくとも一つの枠体を、硬質塩化ビニル低発泡体で構
成したことにより、上記発明の効果に加え、電池全体を
より軽量化することができる。本願の請求項4記載の発
明によれば、集電板としてアルミ板を用い、正負両電極
枠、隔膜、複極仕切板および集電板の枠体の少なくとも
一つの枠体として硬質塩化ビニル低発泡体を用い、各構
成部材または枠体相互の接合面にアクリル系水分散型接
着剤を塗布したのち積層するようにしたことにより、液
シール性が高く、従来の電池に比べて非常に軽いレドッ
クス電池が得られる。
According to the third aspect of the present invention, at least one of the positive and negative electrode frames, the diaphragm, the bipolar separator, and the current collector plate is made of a rigid vinyl chloride low foam. As a result, in addition to the effects of the present invention, the weight of the entire battery can be further reduced. According to the invention as set forth in claim 4 of the present application, an aluminum plate is used as the current collector, and at least one of the positive and negative electrode frames, the diaphragm, the bipolar separator, and the frame of the current collector is made of hard vinyl chloride. By using a foam, applying an acrylic water-dispersed adhesive on the joint surface of each component or frame, and then laminating, the liquid sealing property is high and it is very light compared to conventional batteries A redox battery is obtained.

【0039】本願の請求項5記載の発明によれば、アク
リル系水分散型接着剤の塗膜厚さを0.01〜0.5m
mとすることにより、上記発明の効果に加え、電池のコ
ンパクト化が可能となる。
According to the fifth aspect of the present invention, the acrylic water-dispersed adhesive has a coating thickness of 0.01 to 0.5 m.
By setting m, the battery can be made more compact in addition to the effects of the present invention.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の構成を示す模式図。FIG. 1 is a schematic diagram showing a configuration of one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…正極側電極枠、2…正極、3…負極側電極枠、4…
負極、5…セル枠、6…隔膜、7…複極仕切板、8…集
電板枠、9…集電板、10…単セル、11…押さえ板、
12…ボルト孔、13:マニホルド、14…スリット。
DESCRIPTION OF SYMBOLS 1 ... Positive electrode frame, 2 ... Positive electrode, 3 ... Negative electrode frame, 4 ...
Negative electrode, 5: cell frame, 6: diaphragm, 7: bipolar partition plate, 8: current collector frame, 9: current collector plate, 10: single cell, 11: holding plate,
12: bolt hole, 13: manifold, 14: slit.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 正極側電極枠の正極室内に設けられた正
極と負極側電極枠の負極室内に設けられた負極とを隔膜
を介して積層した単セルを複極仕切板を介して多数積層
した単セル積層体の両端部にそれぞれ集電板および終端
板を配置し、前記終端板相互間をボルトで締めつけたレ
ドックス電池またはレドックスキャパシタにおいて、前
記各構成部材またはその枠体相互の接合面にアクリル共
重合物を基材とした水分散型接着剤を介在させたことを
特徴とするレドックス電池またはレドックスキャパシ
タ。
1. A single cell in which a positive electrode provided in a positive electrode chamber of a positive electrode side electrode frame and a negative electrode provided in a negative electrode chamber of a negative electrode side electrode frame are stacked via a diaphragm, and a large number of single cells are stacked via a bipolar separator. In the redox battery or the redox capacitor in which the current collector plate and the end plate are respectively disposed at both ends of the single cell laminate body, and the end plates are tightened with bolts, the respective constituent members or the joint surfaces between the frame members are connected to each other. A redox battery or a redox capacitor, characterized by interposing a water-dispersed adhesive based on an acrylic copolymer.
【請求項2】 前記集電板が、アルミ板であることを特
徴とする請求項1に記載のレドックス電池またはレドッ
クスキャパシタ。
2. The redox battery or the redox capacitor according to claim 1, wherein the current collecting plate is an aluminum plate.
【請求項3】 前記正負両電極枠、隔膜、複極仕切板お
よび集電板の枠体のうち少なくとも一つの枠体が、硬質
塩化ビニル低発泡板からなることを特徴とする請求項1
または2に記載のレドックス電池またはレドックスキャ
パシタ。
3. The frame of at least one of the positive and negative electrode frames, the diaphragm, the bipolar separator and the current collector, wherein at least one of the frames is made of a rigid vinyl chloride low-foam plate.
Or a redox battery or a redox capacitor according to 2.
【請求項4】 正極側電極枠の正極室内に設けられた正
極と負極側電極枠の負極室内に設けられた負極とを隔膜
を介して積層して単セルとし、該単セルを複極仕切板を
介して多数積層して単セル積層体とし、該単セル積層体
の両端部にそれぞれ集電板および終端板を配置し、前記
終端板相互間をボルトで締めつける、レドックス電池ま
たはレドックスキャパシタの製造方法において、前記集
電板としてアルミ板を用い、前記正負両電極枠、隔膜、
複極仕切板および集電板の枠体のうち少なくとも一つの
枠体として硬質塩化ビニル低発泡板を用い、各構成部材
または枠体相互の接合面にアクリル共重合物を基材とし
た水分散型接着剤を塗布したのち前記各構成部材を積層
することを特徴とするレドックス電池またはレドックス
キャパシタの製造方法。
4. A single cell is formed by laminating a positive electrode provided in a positive electrode chamber of a positive electrode frame and a negative electrode provided in a negative electrode chamber of a negative electrode frame via a diaphragm, and dividing the single cell into a bipolar cell. A single cell laminate is formed by laminating a large number of sheets via a plate, a current collector plate and a terminal plate are arranged at both ends of the single cell laminate, and the terminal plates are tightened with bolts. In the manufacturing method, an aluminum plate is used as the current collector plate, the positive and negative electrode frames, the diaphragm,
Aqueous dispersion using an acrylic copolymer as a base material on each of the constituent members or between the frames using a rigid vinyl chloride low-foaming plate as at least one of the frames of the bipolar partition plate and the current collector plate. A method for manufacturing a redox battery or a redox capacitor, comprising applying the mold adhesive and then laminating the respective constituent members.
【請求項5】 前記アクリル共重合物を基材とした水分
散型接着剤の塗膜厚さを0.01〜0.5mmとするこ
とを特徴とする請求項4に記載のレドックス電池または
レドックスキャパシタの製造方法。
5. The redox battery or redox according to claim 4, wherein the coating thickness of the water-dispersible adhesive based on the acrylic copolymer is 0.01 to 0.5 mm. A method for manufacturing a capacitor.
JP10136282A 1998-05-19 1998-05-19 Redox battery or redox capacitor and manufacture thereof Pending JPH11329474A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10136282A JPH11329474A (en) 1998-05-19 1998-05-19 Redox battery or redox capacitor and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10136282A JPH11329474A (en) 1998-05-19 1998-05-19 Redox battery or redox capacitor and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH11329474A true JPH11329474A (en) 1999-11-30

Family

ID=15171546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10136282A Pending JPH11329474A (en) 1998-05-19 1998-05-19 Redox battery or redox capacitor and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH11329474A (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000078768A (en) * 1998-09-01 2000-03-14 Agency Of Ind Science & Technol Method for evenly charging lithium ion secondary batteries
JP2007524203A (en) * 2004-01-22 2007-08-23 ヘンケル コーポレイション Polymerizable composition for bonding and sealing low surface energy substrates for fuel cells
JP2009540549A (en) * 2006-06-05 2009-11-19 厦▲門▼大学 Super capacitor
US20100092807A1 (en) * 2008-10-10 2010-04-15 Saroj Kumar Sahu Magnetic Current Collector
US7855005B2 (en) 2007-02-12 2010-12-21 Deeya Energy, Inc. Apparatus and methods of determination of state of charge in a redox flow battery
US7919204B2 (en) 2008-10-10 2011-04-05 Deeya Energy, Inc. Thermal control of a flow cell battery
US7927731B2 (en) 2008-07-01 2011-04-19 Deeya Energy, Inc. Redox flow cell
JP2011222312A (en) * 2010-04-09 2011-11-04 Sanyu Rec Co Ltd Electrolyte circulation type cell stack for secondary battery and electrolyte circulation type secondary battery
KR101145714B1 (en) * 2010-04-09 2012-05-14 전자부품연구원 a redox flow secondary cell with carbon felt electrode applied surface treatment
KR101163996B1 (en) * 2010-04-09 2012-07-18 전자부품연구원 a redox flow secondary cell having metal foam electrodes
US8230736B2 (en) 2008-10-10 2012-07-31 Deeya Energy, Inc. Level sensor for conductive liquids
US8231993B2 (en) 2008-10-10 2012-07-31 Deeya Energy, Inc. Flexible multi-walled tubing assembly
US8349477B2 (en) 2009-05-28 2013-01-08 Deeya Energy, Inc. Optical leak detection sensor
US8877365B2 (en) 2009-05-28 2014-11-04 Deeya Energy, Inc. Redox flow cell rebalancing
US8883297B2 (en) 2008-10-10 2014-11-11 Imergy Power Systems, Inc. Methods for bonding porous flexible membranes using solvent
KR20150007750A (en) * 2013-07-12 2015-01-21 오씨아이 주식회사 Redox flow battery and cell frame
WO2015009019A1 (en) * 2013-07-16 2015-01-22 주식회사 에이치투 Redox flow battery stack provided with ion exchange membrane and flow frame assembly
US8951665B2 (en) 2010-03-10 2015-02-10 Imergy Power Systems, Inc. Methods for the preparation of electrolytes for chromium-iron redox flow batteries
JP2015082448A (en) * 2013-10-23 2015-04-27 住友電気工業株式会社 Electrolyte circulation type battery, and supplying/discharging plate of electrolyte circulation type battery
US9035617B2 (en) 2009-05-28 2015-05-19 Imergy Power Systems, Inc. Control system for a flow cell battery
US9281535B2 (en) 2010-08-12 2016-03-08 Imergy Power Systems, Inc. System dongle
JP2016526781A (en) * 2013-07-16 2016-09-05 フラウンホーファー−ゲゼルシャフト ツァー フェルデルング デア アンゲヴァンテン フォーシャング アインゲトラーゲナー フェアアインFraunhofer−Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Redox flow battery cell and cell stack
US9479056B2 (en) 2009-05-28 2016-10-25 Imergy Power Systems, Inc. Buck-boost circuit with protection feature
JP2018519619A (en) * 2015-04-30 2018-07-19 スタンダード エナジー カンパニー リミテッドStandard Energy Co., Ltd. Redox flow battery
WO2021215126A1 (en) * 2020-04-24 2021-10-28 旭化成株式会社 Diaphragm for redox flow batteries, method for producing diaphragm for redox flow batteries, diaphragm electrode assembly for redox flow batteries, cell for redox flow batteries, and redox flow battery
WO2022244805A1 (en) * 2021-05-20 2022-11-24 株式会社トクヤマ Anion exchange membrane type aqueous electrolytic cell

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000078768A (en) * 1998-09-01 2000-03-14 Agency Of Ind Science & Technol Method for evenly charging lithium ion secondary batteries
JP2007524203A (en) * 2004-01-22 2007-08-23 ヘンケル コーポレイション Polymerizable composition for bonding and sealing low surface energy substrates for fuel cells
JP2009540549A (en) * 2006-06-05 2009-11-19 厦▲門▼大学 Super capacitor
US7855005B2 (en) 2007-02-12 2010-12-21 Deeya Energy, Inc. Apparatus and methods of determination of state of charge in a redox flow battery
US7927731B2 (en) 2008-07-01 2011-04-19 Deeya Energy, Inc. Redox flow cell
US8230736B2 (en) 2008-10-10 2012-07-31 Deeya Energy, Inc. Level sensor for conductive liquids
US8883297B2 (en) 2008-10-10 2014-11-11 Imergy Power Systems, Inc. Methods for bonding porous flexible membranes using solvent
US20100092807A1 (en) * 2008-10-10 2010-04-15 Saroj Kumar Sahu Magnetic Current Collector
US7919204B2 (en) 2008-10-10 2011-04-05 Deeya Energy, Inc. Thermal control of a flow cell battery
US8236463B2 (en) * 2008-10-10 2012-08-07 Deeya Energy, Inc. Magnetic current collector
US8231993B2 (en) 2008-10-10 2012-07-31 Deeya Energy, Inc. Flexible multi-walled tubing assembly
US9035617B2 (en) 2009-05-28 2015-05-19 Imergy Power Systems, Inc. Control system for a flow cell battery
US8349477B2 (en) 2009-05-28 2013-01-08 Deeya Energy, Inc. Optical leak detection sensor
US8877365B2 (en) 2009-05-28 2014-11-04 Deeya Energy, Inc. Redox flow cell rebalancing
US9479056B2 (en) 2009-05-28 2016-10-25 Imergy Power Systems, Inc. Buck-boost circuit with protection feature
US8951665B2 (en) 2010-03-10 2015-02-10 Imergy Power Systems, Inc. Methods for the preparation of electrolytes for chromium-iron redox flow batteries
KR101163996B1 (en) * 2010-04-09 2012-07-18 전자부품연구원 a redox flow secondary cell having metal foam electrodes
KR101145714B1 (en) * 2010-04-09 2012-05-14 전자부품연구원 a redox flow secondary cell with carbon felt electrode applied surface treatment
JP2011222312A (en) * 2010-04-09 2011-11-04 Sanyu Rec Co Ltd Electrolyte circulation type cell stack for secondary battery and electrolyte circulation type secondary battery
US9281535B2 (en) 2010-08-12 2016-03-08 Imergy Power Systems, Inc. System dongle
KR20150007750A (en) * 2013-07-12 2015-01-21 오씨아이 주식회사 Redox flow battery and cell frame
JP2016526781A (en) * 2013-07-16 2016-09-05 フラウンホーファー−ゲゼルシャフト ツァー フェルデルング デア アンゲヴァンテン フォーシャング アインゲトラーゲナー フェアアインFraunhofer−Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Redox flow battery cell and cell stack
WO2015009019A1 (en) * 2013-07-16 2015-01-22 주식회사 에이치투 Redox flow battery stack provided with ion exchange membrane and flow frame assembly
WO2015060099A1 (en) * 2013-10-23 2015-04-30 住友電気工業株式会社 Redox flow battery and redox flow battery supply-exhaust plate
JP2015082448A (en) * 2013-10-23 2015-04-27 住友電気工業株式会社 Electrolyte circulation type battery, and supplying/discharging plate of electrolyte circulation type battery
CN105659422A (en) * 2013-10-23 2016-06-08 住友电气工业株式会社 Electrolyte circulation type battery, and supplying/discharging plate of electrolyte circulation type battery
US10033053B2 (en) 2013-10-23 2018-07-24 Sumitomo Electric Industries, Ltd. Flow battery and supply/discharge plate of flow battery
JP2018519619A (en) * 2015-04-30 2018-07-19 スタンダード エナジー カンパニー リミテッドStandard Energy Co., Ltd. Redox flow battery
WO2021215126A1 (en) * 2020-04-24 2021-10-28 旭化成株式会社 Diaphragm for redox flow batteries, method for producing diaphragm for redox flow batteries, diaphragm electrode assembly for redox flow batteries, cell for redox flow batteries, and redox flow battery
JP6971431B1 (en) * 2020-04-24 2021-11-24 旭化成株式会社 A diaphragm for a redox flow battery, a method for manufacturing a diaphragm for a redox flow battery, a diaphragm electrode junction for a redox flow battery, a cell for a redox flow battery, and a redox flow battery.
US11923584B2 (en) 2020-04-24 2024-03-05 Asahi Kasei Kabushiki Kaisha Membrane for redox flow battery, method for producing membrane for redox flow battery, membrane electrode assembly for redox flow battery, cell for redox flow battery, and redox flow battery
WO2022244805A1 (en) * 2021-05-20 2022-11-24 株式会社トクヤマ Anion exchange membrane type aqueous electrolytic cell

Similar Documents

Publication Publication Date Title
JPH11329474A (en) Redox battery or redox capacitor and manufacture thereof
KR100923377B1 (en) Partially crosslinked adhesive-supported porous film for battery separator and its use
US5840087A (en) Method for making laminated rechargeable battery cells
US9533475B2 (en) Crosslinking polymer-supported porous film for battery separator and method for producing battery using the same
KR100923375B1 (en) Adhesive composition-supporting separator for battery and electrode/separator laminate obtained by using the same
JP2010282976A (en) Separator for gel electrolyte battery
JPH05242897A (en) Solid high polymer electrolyte type fuel cell
EP1403948B1 (en) Electrolyte compositions
JP2002367661A (en) Assembly method for redox flow battery
CA2294291A1 (en) Solid electrolytic secondary battery
CN111933952A (en) Manufacturing method of novel composite lithium battery aluminum foil
US6235065B1 (en) Room temperature lamination of Li-ion polymer electrodes
JPH09289029A (en) Gas seal structure, cooling part structure, and stack for solid polymer electrolyte type fuel cell
JPH06290796A (en) Bipolar plate with reaction electrode layer for secondary battery
JP2007035541A (en) Separator for battery and manufacturing method of battery using same
JPS58197655A (en) Battery
JP5140240B2 (en) Battery separator and battery manufacturing method using the same
CN101689623A (en) Crosslinkable polymer-loaded porous film for battery separator and use thereof
JP4989053B2 (en) Battery separator and battery manufacturing method using the same
JP2007035556A (en) Separator for battery and manufacturing method of battery using same
JP2007035543A (en) Separator for battery and manufacturing method of battery using same
JP2007035542A (en) Separator for battery and manufacturing method of battery using same
EP1160903A3 (en) Protective membrane-equipped composite electrolyte, method for producing the same, and fuel cell provided with the same
JPH06105615B2 (en) Redox flow battery
JP2007035554A (en) Separator for battery and manufacturing method of battery using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080415

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080812