JPH06290796A - Bipolar plate with reaction electrode layer for secondary battery - Google Patents

Bipolar plate with reaction electrode layer for secondary battery

Info

Publication number
JPH06290796A
JPH06290796A JP5072201A JP7220193A JPH06290796A JP H06290796 A JPH06290796 A JP H06290796A JP 5072201 A JP5072201 A JP 5072201A JP 7220193 A JP7220193 A JP 7220193A JP H06290796 A JPH06290796 A JP H06290796A
Authority
JP
Japan
Prior art keywords
bipolar plate
carbon
plate
electrode layer
reaction electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5072201A
Other languages
Japanese (ja)
Inventor
Satoshi Odajima
智 小田嶋
Akio Nakamura
昭雄 中村
Kenichi Isono
健一 礒野
Tetsuji Ito
哲二 伊藤
Toshio Shigematsu
敏夫 重松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Sumitomo Electric Industries Ltd
Original Assignee
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Polymer Co Ltd, Shin Etsu Chemical Co Ltd, Sumitomo Electric Industries Ltd filed Critical Shin Etsu Polymer Co Ltd
Priority to JP5072201A priority Critical patent/JPH06290796A/en
Publication of JPH06290796A publication Critical patent/JPH06290796A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To reduce contact resistance between a bipolar plate and a reaction electrode layer so as to improve the energy efficiency of a bipolar plate with the reaction electrode layer for a secondary battery and to attain a thin and small size by joining the reaction electrode layer to the carbon conductive bipolar plate in a body. CONSTITUTION:A solution of polyvinyl chloride conductive resin prepared by kneading and conditioning polyvinyl chloride and a carbon filler or the like with each other is impregnately applied to nonwoven carbon fiber cloth, and then specific treatment is given to the nonwoven cloth to form a carbon conductive resin plate. A solution of vinyl chloride conductive resin is applied to the one or two faces of the resin plate, and then nonwoven ACF cloth is placed on the resin plate and the ACF cloth is compressively pressed to be joined to the resin plate in a body. The resultant resin plate is used for a bipolar plate 7. Then a diaphragm 5 is arranged in a middle part between the two bipolar plates 7 while collecting electrodes 8 are arranged respectively on the external faces of the plates 7, and the resultant unit is pressurized from the outside thereof to form a cell 4. A reaction electrode layer 6 is joined to a bipolar plate in a body in such a manner like this, so that contact resistance between the bipolar plate and the layer 6 can be reduced to improve the energy efficiency of the resultant bipolar plate 7, and the bipolar plate 7 is made to thin so that the thickness and size of the whole of a redox flow type secondary battery can be reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電力貯蔵システムのた
めの2次電池に用いられる反応電極層付双極板、特にレ
ドックスフロー型2次電池用として有用な、充放電時の
エネルギー効率が高く、組み立て作業性の良い、反応電
極層付双極板に関するものである。
FIELD OF THE INVENTION The present invention relates to a bipolar plate with a reaction electrode layer used in a secondary battery for an electric power storage system, and particularly useful for a redox flow type secondary battery, which has high energy efficiency during charging and discharging. The present invention relates to a bipolar plate with a reaction electrode layer that is easy to assemble.

【0002】[0002]

【従来の技術】発電施設は、電力需要のピーク時に応じ
られる能力を持つことが要求されるが、夜間等の非ピー
ク時には発電能力は大幅に余り、設備の稼働率が下がっ
て不経済となる。したがって非ピーク時に電力を貯蔵
し、ピーク時に放出できればきわめて好都合である。現
在電力貯蔵の1方法として揚水発電が利用されている
が、設置位置は一般に遠隔地で送電ロスの問題があるほ
か立地難になりつつある。このため、これに替わる効率
の良い方法として、現在2次電池による電力貯蔵システ
ムの開発が行われている。
2. Description of the Related Art Power generation facilities are required to have the capacity to meet peak demand, but during non-peak hours such as at night, the power generation capacity is excessive and the operating rate of equipment is reduced, which is uneconomical. . Therefore, it would be very convenient to be able to store power during non-peak times and discharge it during peak times. Currently, pumped storage power generation is used as one method of power storage, but the installation location is generally remote and there is a problem of transmission loss, and it is becoming difficult to locate. Therefore, as an efficient alternative to this, a power storage system using a secondary battery is currently being developed.

【0003】例えば通産省工業技術院では、1980年
から11年計画で大型プロジェクト(ムーンライト計画
の一つ)を発足させ、研究対象として、ナトリウム−硫
黄2次電池、亜鉛−塩素2次電池、亜鉛−臭素2次電池
およびレドックスフロー型2次電池の4種類を取り上
げ、具体的目標として、 出力1000kW級、8
時間充電・8時間放電、 総合エネルギー効率70%
以上、 寿命が充放電1500サイクル以上等の条件
を挙げて、指定企業に委託し研究開発に取り組んでき
た。
For example, the Ministry of International Trade and Industry Institute of Industry and Technology has launched a large-scale project (one of the moonlight projects) from 1980 to 2011, and research targets include sodium-sulfur secondary batteries, zinc-chlorine secondary batteries, and zinc. -Four types of bromine rechargeable batteries and redox flow type rechargeable batteries are taken up, and concrete targets are output 1000 kW class, 8
Hourly charge / 8 hour discharge, total energy efficiency 70%
As mentioned above, under the condition that the life is 1500 cycles or more of charge and discharge, we have commissioned the designated company to carry out research and development.

【0004】二次電池の中でレドックスフロー電池の特
徴は、(イ)出力部(電池セル部)と容量部(タンク
部)とが独立しているため設計が容易、(ロ)各電池セ
ル部の充電状態が同一のため、全電池の充電状態をチェ
ックする必要がなくメンテナンスが容易、(ハ)電極に
おける反応は金属イオンの価数変化だけのため、他の電
池にみられる固体活物質の脱落やデンドライトの成長等
の問題がなく長寿命が期待できる等で、将来もっとも有
望とされている。
Among the secondary batteries, the features of the redox flow battery are (a) easy design because the output part (battery cell part) and the capacity part (tank part) are independent, and (b) each battery cell. Since the state of charge of all parts is the same, it is not necessary to check the state of charge of all batteries and maintenance is easy. It is expected to be the most promising in the future because it can be expected to have a long life without any problems such as dropouts and growth of dendrites.

【0005】以下、レドックスフロー型2次電池の技術
内容を簡単に説明する。この電池は、図2に示すよう
に、正極用電解液タンク1,負極用電解液タンク2に貯
蔵した、原子価が異なる2種類の金属イオンを含む塩酸
水溶液(以下電解液という)を、循環ポンプ3で流通型
の電池セル4に供給して充放電を行うものである。
The technical contents of the redox flow secondary battery will be briefly described below. As shown in FIG. 2, this battery circulates a hydrochloric acid aqueous solution (hereinafter referred to as an electrolytic solution) containing two kinds of metal ions having different valences, which are stored in a positive electrode electrolytic solution tank 1 and a negative electrode electrolytic solution tank 2. The pump 3 supplies the flow-type battery cell 4 for charging and discharging.

【0006】すなわちこの電池セル4は、陽イオン交換
膜からなる隔膜5を中心に、左右対称に反応電極層6、
双極板(バイポーラプレート)7、集合電極(金属電
極)8が配置され、電解液は反応電極層6を流通循環す
る。正極の電解液はFeイオンを溶解させた塩酸水溶
液、負極の電解液はCrイオンを溶解させた塩酸水溶液
であって、それぞれ正、負極電解液タンク1,2に貯蔵
されている。充放電時に電池セル内で生じる平衡反応は
次式で示される。 正極 Fe3++e → Fe2+ … 還元反応(放電) 正極 Fe3++e ← Fe2+ … 酸化反応(充電) 負極 Cr2+ → Cr3++e … 酸化反応(放電) 負極 Cr2+ ← Cr3++e … 還元反応(充電) 隔膜5は正極イオンと負極イオンの隔離と、電子の担体
すなわち水素イオンの透過とを行うもので、一般に陽イ
オン交換膜が用いられる。
That is, in this battery cell 4, a reaction electrode layer 6 is symmetrically arranged around a diaphragm 5 made of a cation exchange membrane.
A bipolar plate (bipolar plate) 7 and a collecting electrode (metal electrode) 8 are arranged, and the electrolytic solution circulates and circulates in the reaction electrode layer 6. The electrolytic solution of the positive electrode is an aqueous hydrochloric acid solution in which Fe ions are dissolved, and the electrolytic solution of the negative electrode is an aqueous hydrochloric acid solution in which Cr ions are dissolved, which are stored in the positive and negative electrode electrolytic solution tanks 1 and 2, respectively. The equilibrium reaction occurring in the battery cell during charge / discharge is represented by the following equation. Positive electrode Fe 3+ + e → Fe 2 + … Reduction reaction (discharge) Positive electrode Fe 3+ + e ← Fe 2 + … Oxidation reaction (charge) Negative electrode Cr 2+ → Cr 3+ + e… Oxidation reaction (discharge) Negative electrode Cr 2+ ← Cr 3+ + e ... Reduction reaction (charging) The diaphragm 5 separates positive and negative ions and permeates electron carriers, that is, hydrogen ions, and is generally a cation exchange membrane.

【0007】図2は、単一の電池セルを示すが、所望の
電池出力(kW)を得るため、実際には正極反応電極層
6/双極板7/負極反応電極層6/隔膜5を一単位とし
て積層(スタック)し、この最外層に集合電極8を設け
る。この集合電極8は、外部エネルギー源(あるいは外
部負荷)9に接続されてエネルギーの授受が行われる。
単一電池セルの多重積層体をセルスタックとよび、現在
実証試験中の60kW級パイロットプラントにおいて
は、セルスタックは60個の単一セル(出力容量0.1
kW)の多重積層体からなっている。なお本発明の電池
セルにおいて、電解液の塩酸濃度は約10%、温度は最
高50℃である。
FIG. 2 shows a single battery cell, but in order to obtain a desired battery output (kW), the positive electrode reaction electrode layer 6 / bipolar plate 7 / negative electrode reaction electrode layer 6 / diaphragm 5 are actually formed as one unit. They are stacked as a unit, and the collective electrode 8 is provided on this outermost layer. This collective electrode 8 is connected to an external energy source (or external load) 9 to transfer energy.
A multi-layered body of single battery cells is called a cell stack. In the 60 kW class pilot plant currently undergoing verification test, the cell stack has 60 single cells (output capacity of 0.1
kW) multi-layered structure. In the battery cell of the present invention, the concentration of hydrochloric acid in the electrolytic solution is about 10%, and the temperature is up to 50 ° C.

【0008】双極板は、上式に示す酸化還元反応の電子
を効率よく通過させる特性すなわち低抵抗特性と、正負
極液の隔離機能さらに集合電極を酸性電解液すなわち塩
酸水溶液から保護する特性を要求される。すなわち
(a)FeイオンまたはCrイオンを含む塩酸水溶液に
よって腐食されない、(b)表裏面間の1cm2 当たり
貫層抵抗が0.1Ω以下の低抵抗である、(c)液漏れ
がない、(d)ガス不透過性に優る、(e)大形サイズ
すなわち100kW級以上では約1m角等が要求され
る。
The bipolar plate is required to have a property of efficiently passing electrons of the redox reaction shown in the above formula, that is, a low resistance property, a function of isolating the positive and negative electrode liquids, and a property of protecting the collecting electrode from the acidic electrolytic solution, that is, a hydrochloric acid aqueous solution. To be done. That is, (a) is not corroded by an aqueous hydrochloric acid solution containing Fe ions or Cr ions, (b) has a low resistance of 0.1 Ω or less for the through layer per cm 2 between the front and back surfaces, and (c) has no liquid leakage. d) Excellent gas impermeability, (e) Large size, that is, about 100 kW or more, about 1 m square is required.

【0009】上記60kW級実証試験プラントでは、双
極板に、特殊熱硬化性樹脂を1000〜3000℃で反
応させながら収縮させて、非晶質のガラス状としたグラ
ッシーカーボンと呼ばれる炭素系導電性板を使用してい
るが、このグラッシーカーボンは、(イ)一般に高価で
ある、(ロ)硬く脆いため取扱い作業時に多少の捻じれ
が加わっただけで割れ易い、(ハ)また双極板支持体
(通常樹脂フレーム)との熱膨張係数の差があり、温度
差により歪み破壊を招くことがあり大面積化が困難等の
短所がある。これを解決するために、ビニル樹脂系マト
リクスに炭素系フィラーを充填した複合導電材料からな
る炭素系導電性樹脂板の使用が提案されている。
In the 60 kW class demonstration test plant, a bipolar plate is made to shrink while reacting with a special thermosetting resin at 1000 to 3000 ° C. to form an amorphous glassy carbon-based conductive plate called glassy carbon. This glassy carbon is (a) generally expensive, (b) hard and brittle, so it is easy to crack due to a slight twist during handling, (c) a bipolar plate support ( There is a difference in the coefficient of thermal expansion from that of a normal resin frame, which may lead to distortion and destruction due to the temperature difference, and it is difficult to increase the area. In order to solve this, it has been proposed to use a carbon-based conductive resin plate made of a composite conductive material in which a vinyl resin-based matrix is filled with a carbon-based filler.

【0010】またセルスタックの場合、双極板の両側に
は正極及び負極の反応電極層が配置されるが、反応電極
層には厚さ約3mmのアクティベイティッド カーボン
ファイバー不織布(以下ACFという)を使用し、厚さ
が初めの厚さの約70%になるように、セルスタックの
外側に分厚い鋼板を押圧治具として当て、ボルト締めし
て1cm2 当たり1〜2kgの圧力で圧縮する。ACF
は炭素繊維系織布または不織布の表面をミクロポーラス
な状態に活性化したものからなる。
In the case of a cell stack, positive electrode and negative electrode reaction electrode layers are arranged on both sides of a bipolar plate, and an activated carbon fiber nonwoven fabric (hereinafter referred to as ACF) having a thickness of about 3 mm is arranged on the reaction electrode layers. A thick steel plate is applied as a pressing jig to the outside of the cell stack so that the thickness is about 70% of the initial thickness, and the bolt is tightened and compressed at a pressure of 1 to 2 kg per cm 2 . ACF
Is a carbon fiber-based woven or non-woven fabric whose surface is activated in a microporous state.

【0011】[0011]

【発明が解決しようとする課題】双極板と反応電極層と
の間の電気的接触状態は、酸化還元反応の電子の移動に
関与するため、非常に重要で、従来は図3に示すよう
に、別々の双極板と反応電極層とを機械的に圧縮してい
るが、このようにして接触抵抗を小さくすることには以
下のような問題がある。 接触境界面を流れる電流は当然微小接触部分で絞ら
れ、また双極板表面にある異物、塵埃、微細凹凸等の影
響を受けて不安定になり易いので、固体−固体間の接触
抵抗が大きく不安定となり、エネルギー変換効率を一定
以上に高めることが難しい。 双極板や隔膜に、圧力1〜2kgf/cm2 に耐え
るだけの機械的強度が要求されるため、一定以上の厚さ
が必要になる。また押圧治具も分厚く頑丈な構造物が要
求される。このことは、セルスタックの総厚を薄くし、
2次電池システム全体を小型化したいという要求に逆行
する。 アセンブル作業上から、分離した個々の部品を組み
込むことは、一体化した部品を組み込むよりも工程数が
増え、アセンブルコストが嵩む。
The electrical contact state between the bipolar plate and the reaction electrode layer is very important because it is involved in the transfer of electrons in the redox reaction, and as shown in FIG. The separate bipolar plate and the reaction electrode layer are mechanically compressed, but there are the following problems in reducing the contact resistance in this way. The current flowing through the contact boundary surface is naturally narrowed at the minute contact portion, and is easily unstable due to the influence of foreign matter, dust, fine irregularities on the surface of the bipolar plate, so that the contact resistance between solids is large. It becomes stable and it is difficult to increase energy conversion efficiency above a certain level. Since the bipolar plate and the diaphragm are required to have a mechanical strength sufficient to withstand a pressure of 1 to 2 kgf / cm 2 , a certain thickness or more is required. Also, the pressing jig is required to be thick and strong. This reduces the total thickness of the cell stack,
It goes against the demand to downsize the entire secondary battery system. From the viewpoint of assembling work, incorporating separate individual parts requires more steps and more assembly cost than incorporating integrated parts.

【0012】本発明では、上記した従来の問題を解決す
るもので、双極板−反応電極層間の接触抵抗が低く安定
してエネルギー変換効率が高く、過度の押圧力を必要と
しないため、双極板や隔膜を薄くでき、システム全体が
薄型化、小型化し、かつ部品点数が少なくなることか
ら、アセンブルコストを低減できる、2次電池用反応電
極層付双極板を提供することを目的とする。
[0012] The present invention solves the above-mentioned conventional problems. The contact resistance between the bipolar plate and the reaction electrode layer is low, the energy conversion efficiency is high, and no excessive pressing force is required. It is an object of the present invention to provide a bipolar plate with a reaction electrode layer for a secondary battery, which can reduce the assembly cost because the diaphragm and the diaphragm can be thinned, the entire system can be thinned and downsized, and the number of parts can be reduced.

【0013】[0013]

【課題を解決するための手段】本発明者らは、種々検討
を重ねた結果、上記目的を達成したのであって、これは
炭素系導電性板からなり、少なくとも一面に炭素繊維系
織布または不織布からなる反応電極層が接合一体化され
ていることを特徴とする2次電池用反応電極層付双極板
を要旨とする。
As a result of various studies, the inventors of the present invention achieved the above-mentioned object, which is composed of a carbon-based conductive plate and has a carbon fiber-based woven fabric or a carbon fiber-based woven fabric on at least one surface. A bipolar plate with a reaction electrode layer for a secondary battery is characterized in that a reaction electrode layer made of a non-woven fabric is integrally bonded.

【0014】本発明の実施態様としては、図1(a)に
示すように、双極板7の両面に反応電極層6を接合一体
化してなる場合、図1(b)に示すように、双極板7の
片面に反応電極層6を接合一体化してなる場合、さらに
はセルスタックの最外側においては、図1(c)に示す
ように、集合電極(金属電極)8を双極板7の一面に一
体化し、他面に反応電極層6を接合一体化してなる場合
がある。
As an embodiment of the present invention, as shown in FIG. 1 (a), when the reaction electrode layers 6 are integrally bonded to both surfaces of the bipolar plate 7, as shown in FIG. When the reaction electrode layer 6 is integrally bonded to one surface of the plate 7, and further on the outermost side of the cell stack, as shown in FIG. 1C, the collective electrode (metal electrode) 8 is connected to one surface of the bipolar plate 7. In some cases, and the reaction electrode layer 6 is joined and integrated in the other surface.

【0015】本発明の双極板に用いられる材料として
は、上記したグラッシーカーボンや、ビニル樹脂系マト
リクスと炭素系フィラーとからなる複合導電材料による
炭素系導電性樹脂板が用いられ、さらに具体的には、
(A)ビニル樹脂系マトリクスに黒鉛、カーボンブラッ
ク等の炭素系フィラーを充填した複合材料からなるか、
(B)またはビニル樹脂系マトリクスに炭素系フィラー
を充填した導電性樹脂と炭素繊維系基布よりなる炭素系
導電性樹脂板等が挙げられる。
As a material used for the bipolar plate of the present invention, the above-mentioned glassy carbon or a carbon-based conductive resin plate made of a composite conductive material including a vinyl resin-based matrix and a carbon-based filler is used, and more specifically, Is
(A) is composed of a composite material in which a carbon resin filler such as graphite or carbon black is filled in a vinyl resin matrix,
(B) or a carbon-based conductive resin plate made of a conductive resin in which a vinyl-based matrix is filled with a carbon-based filler and a carbon fiber-based base cloth.

【0016】グラッシーカーボンは高価でありかつ取扱
作業時に割れ易い等の欠点をもつのに対し、炭素系導電
性樹脂板は反応電極層との一体化作業が容易であり、ま
たグラッシーカーボンより熱伝導率が低く断熱性に優
れ、電解液の温度制御が容易、かつ取り扱い作業時に曲
げ方向の外力が加わった際や落下、衝撃等に対して強靭
である等から、本発明においては炭素系導電性樹脂板の
使用が望ましい。
While glassy carbon is expensive and has the drawback of being easily broken during handling, the carbon-based conductive resin plate is easy to integrate with the reaction electrode layer, and has a higher thermal conductivity than glassy carbon. In the present invention, the carbon-based conductivity is low because the rate is low, the heat insulation is excellent, the temperature of the electrolytic solution is easy to control, and it is strong against external force in the bending direction during handling, drop, impact, etc. Use of resin plate is desirable.

【0017】この、炭素系導電性樹脂板に用いられるビ
ニル樹脂系マトリクスとしては、ビニル基を有するモノ
マー(CH2 =CH−X及びCH2 =C(X)−Y)の
付加重合によって得られる高分子化合物すべてを含み、
ポリエチレン、ポリプロピレン、ポリ−n−ブチレン、
ポリイソブチレン、ポリブテン、ポリ−4−メチルペン
テン−1、ポリ塩化ビニル、ポリビニルアルコール、ポ
リスチレン、ポリ酢酸ビニル、ポリ塩化ビニリデン、塩
化ビニル−酢酸ビニル共重合体、エチレン−酢酸ビニル
共重合体、ポリアクリル酸、ポリメタクリル酸、ポリア
クリル酸メチル、ポリメタクリル酸メチル、ポリアクリ
ル酸高級エステル、ポリアクリロニトリル、塩素化ポリ
エチレン、クロルスルホン化ポリエチレン、エピクロル
ヒドリンゴム、アクリルゴム、エチレンプロピレンゴ
ム、エチレンプロピレンジェンゴム、スチレン−エチレ
ンブチレン−スチレンブロック共重合体、カルボキシル
化スチレン−エチレンブチレン−スチレンブロック共重
合体等が挙げられるが、耐塩酸性、炭素系フィラーの配
合が容易、押出・カレンダーロール・プレス等の成形加
工の容易性、価格面の有利性その他の条件を満たすポリ
塩化ビニルや塩素化ポリチレン、塩化ビニル−酢酸ビニ
ル共重合体等の塩素含有高分子を選択することが望まし
い。
The vinyl resin matrix used for the carbon conductive resin plate is obtained by addition polymerization of monomers having a vinyl group (CH 2 ═CH—X and CH 2 ═C (X) —Y). Including all high molecular compounds,
Polyethylene, polypropylene, poly-n-butylene,
Polyisobutylene, polybutene, poly-4-methylpentene-1, polyvinyl chloride, polyvinyl alcohol, polystyrene, polyvinyl acetate, polyvinylidene chloride, vinyl chloride-vinyl acetate copolymer, ethylene-vinyl acetate copolymer, polyacrylic Acid, polymethacrylic acid, polymethylmethacrylate, polymethylmethacrylate, polyacrylic acid higher ester, polyacrylonitrile, chlorinated polyethylene, chlorosulfonated polyethylene, epichlorohydrin rubber, acrylic rubber, ethylene propylene rubber, ethylene propylene diene rubber, styrene -Ethylene butylene-styrene block copolymer, carboxylated styrene-ethylene butylene-styrene block copolymer and the like can be mentioned, but hydrochloric acid resistance, easy blending of carbonaceous filler, extrusion It is desirable to select chlorine-containing polymers such as polyvinyl chloride, chlorinated polyethylene, vinyl chloride-vinyl acetate copolymer, etc. .

【0018】また、これらのビニル樹脂系マトリクス
は、融点または軟化点が低く、比較的低温で溶融するた
め、これをマトリクスとする炭素系導電性樹脂板と反応
電極層の接合一体化が、(イ)熱圧着法、(ロ)超音波
ウエルダー法、(ハ)高周波ウエルダー法などの熱溶融
接合という簡便な手段により容易に達成することができ
る。
Further, since these vinyl resin-based matrices have a low melting point or softening point and melt at a relatively low temperature, the carbon-based conductive resin plate using this as a matrix and the reaction electrode layer can be integrally bonded. It can be easily achieved by a simple means such as heat fusion bonding such as a) thermocompression bonding method, (b) ultrasonic welder method, and (c) high frequency welder method.

【0019】炭素系フィラーとしては、フレーク天然黒
鉛、アモルファス天然黒鉛、人造黒鉛、膨張黒鉛、アセ
チレンブラック、ケッチェンブラックR EC、導電性オ
イルファーネスブラック、炭素繊維等の単独または複合
配合が挙げられる。これらの炭素系フィラーをビニル樹
脂系マトリクスに直接練り込む方法としては、加熱装置
付きの2本ロール、バンバリーミキサー、ヘンシェルミ
キサー、コニーダー(2軸押出機)等が挙げられる。
[0019] the carbon-based filler, flakes of natural graphite, amorphous natural graphite, artificial graphite, expanded graphite, acetylene black, Ketjen black R EC, conductive oil furnace black include alone or combined formulations, such as carbon fiber. Examples of the method of directly kneading the carbon-based filler into the vinyl resin-based matrix include a two-roll with heating device, a Banbury mixer, a Henschel mixer, and a cokneader (biaxial extruder).

【0020】前記「0015」において挙げた(A)の
炭素系導電性板は、ビニル樹脂系マトリクスと炭素系フ
ィラーとを混練した後、熱可塑性樹脂用押出機のスリッ
ト状口金(Tダイと通称)から押し出してシート状と
し、必要に応じてプレス成形を行って製造することがで
きる。この場合、炭素系フィラーの充填量が少なすぎる
と抵抗値が高くなり、多すぎると成形加工が困難となる
ため、10〜80重量%、望ましくは20〜60重量%
とするのがよい。
The carbon-based conductive plate (A) mentioned in the above "0015" is a slit-shaped die (commonly referred to as a T-die) of an extruder for thermoplastic resin after kneading a vinyl resin-based matrix and a carbon-based filler. ) And extruding into a sheet shape, and if necessary, press molding can be carried out for production. In this case, if the filling amount of the carbon-based filler is too small, the resistance value becomes high, and if it is too large, the molding process becomes difficult. Therefore, it is 10 to 80% by weight, preferably 20 to 60% by weight.
It is good to say

【0021】前記「0015」において挙げた(B)の
炭素系導電性板は、アクリル繊維(PAN)系炭素繊
維、石油ピッチ系炭素繊維、石炭ピッチ系炭素繊維の織
布または不織布等の基布に、上記ビニル樹脂系マトリク
スに炭素系フィラーを充填した導電性樹脂溶液を含浸硬
化させ、さらには必要に応じてこれをプレス成形する方
法や、炭素繊維系基布上に導電性樹脂層を重ね合わせて
プレスする方法等により製造することができる。この炭
素繊維系基布の役割は、炭素系導電性板の機械的強度、
寸法安定性、低抵抗化等である。
The carbon conductive plate (B) mentioned in the above "0015" is a base cloth such as a woven or non-woven fabric of acrylic fiber (PAN) carbon fiber, petroleum pitch carbon fiber, coal pitch carbon fiber. In addition, the vinyl resin matrix is impregnated with a conductive resin solution filled with a carbon-based filler and cured, and further, a method of press-molding the same, or a conductive resin layer is laminated on a carbon fiber-based base cloth. It can be manufactured by a method of pressing together. The role of this carbon fiber-based fabric is the mechanical strength of the carbon-based conductive plate,
Dimensional stability, low resistance, etc.

【0022】炭素繊維系基布に含浸される導電性樹脂溶
液は、選択した樹脂マトリクスを適当な溶媒で溶解し、
上記導電性フィラーを混合し、ディゾルバー等のブレー
ド型高速攪拌機で混練した後、サンドグラインダ等によ
り微粉砕練肉を行って得ることができる。なおビニル樹
脂系マトリクスとしてポリ塩化ビニルを用いる場合に
は、溶媒としてはテトラヒドロフラン、シクロヘキサノ
ン、ニトロベンゼン、メチルエチルケトン、ジオキサン
等が挙げられる。この溶液の粘度は、低すぎると1回の
含浸では基布の空隙を埋められず数回繰り返し含浸する
必要があり、高すぎると含浸困難となるため、10P〜
10,000Pの範囲、望ましくは100〜1000P
の範囲から選択するとよい。炭素系導電性板の厚さは、
従来のグラッシーカーボンの厚さ(0.5〜2mm)と
同等でよいが、本発明においては、機械的圧縮が不要と
なり、双極板に機械的強度が要求されないので、多少薄
くして0.1〜1mmの範囲から選択することができ
る。
The conductive resin solution impregnated into the carbon fiber base cloth is prepared by dissolving the selected resin matrix in a suitable solvent,
It can be obtained by mixing the above-mentioned conductive filler, kneading with a blade type high speed stirrer such as a dissolver, and then finely crushing and kneading meat with a sand grinder or the like. When polyvinyl chloride is used as the vinyl resin matrix, the solvent includes tetrahydrofuran, cyclohexanone, nitrobenzene, methyl ethyl ketone, dioxane and the like. If the viscosity of this solution is too low, it is necessary to repeat the impregnation several times because the voids of the base cloth cannot be filled with one time impregnation, and if it is too high, impregnation becomes difficult.
10,000P range, preferably 100-1000P
It is good to select from the range. The thickness of the carbon-based conductive plate is
The thickness may be equivalent to that of conventional glassy carbon (0.5 to 2 mm), but in the present invention, mechanical compression is not required and the bipolar plate is not required to have mechanical strength. It can be selected from a range of up to 1 mm.

【0023】本発明に用いられる反応電極層としては従
来公知のものとすればよく、上記のACFを用いること
ができる。反応電極層を炭素系導電性板に接合し一体化
する方法としては、反応電極層と炭素系導電性板の一面
または両面に導電性接着剤を塗布し、貼り合わせて硬化
させる方法や、炭素系導電性板が導電性樹脂板である場
合には、 加熱ラミネーターロールや熱盤プレス機に
より通過させて、導電性樹脂板の表面層を熱溶融して接
合する方法、 導電性接着剤を塗布しておき加熱加圧
接着する方法、数十kHzの超音波振動の摩擦熱を利
用した超音波ウエルダー接合法、 マイクロ波(1.
25GHz)を利用した高周波ウエルダー接合法等が例
示されるが、最も簡便な方法としては、導電性樹脂板の
表面に導電性接着剤を塗布し、ACFわ圧着して接着す
る方法が挙げられる。
The reaction electrode layer used in the present invention may be a conventionally known one, and the above ACF can be used. As a method of joining and integrating the reaction electrode layer to the carbon-based conductive plate, a method of applying a conductive adhesive to one or both surfaces of the reaction electrode layer and the carbon-based conductive plate, and bonding and curing, or carbon. When the system conductive plate is a conductive resin plate, it is passed through a heating laminator roll or a hot plate press to heat-melt the surface layer of the conductive resin plate and join it, applying a conductive adhesive The method of heat and pressure bonding, the ultrasonic welding method using the frictional heat of ultrasonic vibration of several tens of kHz, the microwave (1.
A high-frequency welder joining method using 25 GHz) is exemplified, but the simplest method is to apply a conductive adhesive to the surface of the conductive resin plate and bond it by ACF compression bonding.

【0024】ここで用いられる導電性接着剤としては、
塩酸性電解液に侵されず、また電解液に悪影響を与えな
いものとする必要があるので、炭素系フィラーを導電性
付与成分として樹脂系接着剤中に含むものとすればよ
く、この樹脂系接着剤としては、ポリ塩化ビニルに代表
される上記ビニル樹脂系のほか、エポキシ樹脂系、ウレ
タン樹脂系、アクリル樹脂系、合成ゴム系等が例示され
るが、導電性樹脂板を用いる場合には、接着強度を得る
ために、前記した導電性樹脂板に用いた樹脂成分と同系
統のビニル樹脂系接着剤を用いるのが好ましい。
As the conductive adhesive used here,
Since it is necessary not to be attacked by the hydrochloric acid-based electrolytic solution and not to adversely affect the electrolytic solution, it is sufficient to include a carbon-based filler as a conductivity-imparting component in the resin-based adhesive. As the adhesive, in addition to the vinyl resin type represented by polyvinyl chloride, epoxy resin type, urethane resin type, acrylic resin type, synthetic rubber type, etc. are exemplified, but when using a conductive resin plate In order to obtain adhesive strength, it is preferable to use a vinyl resin adhesive of the same type as the resin component used for the conductive resin plate described above.

【0025】[0025]

【作用】本発明において双極板−反応電極層間の接触抵
抗が低減するのは、炭素系導電性板からなる双極板に、
反応電極層が接合一体化されているためであり、またこ
れらが一体化されているためアセンブリー工程が簡単化
される。
In the present invention, the contact resistance between the bipolar plate and the reaction electrode layer is reduced in the bipolar plate composed of the carbon-based conductive plate,
This is because the reaction electrode layers are bonded and integrated, and because they are integrated, the assembly process is simplified.

【0026】[0026]

【実施例】重合度700のポリ塩化ビニル、TK700
(信越化学工業(株)製、商品名)100重量部と安定
剤・オクチル錫メルカプト3重量部とを、ブレード型高
速攪拌機を用いて、溶媒・シクロヘキサノン600重量
部に溶解し、この中にフレーク天然黒鉛、CPB−30
((株)中越黒鉛工業所製、商品名)75重量部と、ケ
ッチェンブラックR EC(ライオン(株)、商品名)2
5重量部とを添加し、同じ高速攪拌機により分散混練を
行い、固形分含量25重量%のポリ塩化ビニル導電性樹
脂溶液を調整した。
Example: Polyvinyl chloride having a degree of polymerization of 700, TK700
(Shin-Etsu Chemical Co., Ltd., trade name) 100 parts by weight and stabilizer, octyl tin mercapto 3 parts by weight, are dissolved in a solvent, cyclohexanone, 600 parts by weight using a blade type high speed stirrer, and flakes therein. Natural graphite, CPB-30
(Co., Ltd. Chuetsu Graphite Industries, Ltd., trade name) and 75 parts by weight, Ketchen black R EC (Lion Corporation, trade name) 2
5 parts by weight was added, and the mixture was kneaded by dispersion with the same high-speed stirrer to prepare a polyvinyl chloride conductive resin solution having a solid content of 25% by weight.

【0027】つぎにコンマコーターを含浸装置として用
い、坪量100gf/m2 (見掛け厚さ1.7mm)、
面積抵抗0.3Ω/□のPAN系炭素繊維不織布、ベス
トファイトペーパーBP−1100A−EP(東邦レー
ヨン(株)製、商品名)に含浸塗布し、100℃の熱風
乾燥炉を90秒間で通過させて指触乾燥させた後、17
0℃×30kgf/cm2 、予備加熱10分、本加熱プ
レス15分、冷却プレス20分の条件で加熱冷却プレス
を行い、厚さ0.6mmの炭素系導電性樹脂板を得た。
この炭素系導電性樹脂板の体積固有抵抗を、ロレスタA
P・MCP−T400(三菱油化(株)製、商品名)を
用いて測定したところ、3×10-2Ω・cm、表裏面の
1cm2 当たり貫層抵抗の実測値は約8mΩであった。
Next, using a comma coater as an impregnating device, a basis weight of 100 gf / m 2 (apparent thickness of 1.7 mm),
PAN-based carbon fiber non-woven fabric with an area resistance of 0.3Ω / □, Best Fight Paper BP-1100A-EP (trade name, manufactured by Toho Rayon Co., Ltd.) is impregnated and applied, and passed through a hot air drying oven at 100 ° C. for 90 seconds. After touch and dry
A heating / cooling press was performed under the conditions of 0 ° C. × 30 kgf / cm 2 , 10 minutes of preliminary heating, 15 minutes of main heating press, and 20 minutes of cooling press to obtain a carbon-based conductive resin plate having a thickness of 0.6 mm.
The volume resistivity of this carbon-based conductive resin plate is calculated by Loresta A
When measured using a P.MCP-T400 (trade name, manufactured by Mitsubishi Petrochemical Co., Ltd.), it was 3 × 10 −2 Ω · cm, and the actual measured value of the penetration resistance per 1 cm 2 of the front and back surfaces was about 8 mΩ. It was

【0028】つぎにこの炭素系導電性樹脂板の片面に、
前記「0026」で挙げたポリ塩化ビニル導電性樹脂溶
液を塗布し、この上に厚さ3.1mm×150mm□の
ACF不織布を当て、ACFを約10%圧縮した状態で
120℃、60分の条件で接合一体化を行った。このA
CF不織布を片面にラミネートした炭素系導電性樹脂板
を双極板とし、図2に示すように、中央に隔膜、外面に
集合電極としてCu電極板を配置し、外側から面圧1.
5kgf/cm2 を加えて、ACF不織布が厚さ2.2
mmとなるように押圧し、評価用のレドックスフロー型
小型電池セルAを形成した。
Next, on one surface of the carbon-based conductive resin plate,
The polyvinyl chloride conductive resin solution mentioned in the above “0026” is applied, an ACF non-woven fabric having a thickness of 3.1 mm × 150 mm □ is applied thereon, and the ACF is compressed by about 10% at 120 ° C. for 60 minutes. Bonding and integration were performed under the conditions. This A
A carbon-based conductive resin plate laminated with a CF nonwoven fabric on one side is used as a bipolar plate, a diaphragm is arranged at the center, and a Cu electrode plate as a collective electrode is arranged on the outer surface as shown in FIG.
5kgf / cm 2 is added to make ACF nonwoven fabric 2.2
By pressing so as to have a size of mm, a redox flow type small battery cell A for evaluation was formed.

【0029】[0029]

【比較例】ACF不織布が着いていない厚さ0.6mm
×150mm□の炭素系導電性樹脂板と、厚さ3.1m
m×150mm□のACF不織布を用いて、図2と同様
に、中央に隔膜、外面に集合電極としてCu電極板を配
置し、外側から面圧1.5kgf/cm2 を加えて、A
CF不織布が厚さ2.2mmとなるように押圧し、評価
用のレドックスフロー型小型電池セルBを形成した。
[Comparative example] ACF non-woven fabric is 0.6mm thick
× 150mm □ carbon-based conductive resin plate, thickness 3.1m
Using an ACF non-woven fabric of m × 150 mm □, a diaphragm is placed in the center and a Cu electrode plate as a collective electrode is placed on the outer surface, and a surface pressure of 1.5 kgf / cm 2 is applied from the outside as in FIG.
The CF non-woven fabric was pressed so as to have a thickness of 2.2 mm to form a redox flow type small battery cell B for evaluation.

【0030】結局小型電池セルAと小型電池セルBとの
ちがいは、双極板と反応電極層とが接合一体化している
か、いないかである。同一厚さのACFを用い同一厚さ
に圧縮したのは、電解液の流路断面積と、流路抵抗を一
定条件にするためである。表1に、小型電池セルA,B
に充放電を行わせた際の評価結果を示す。
After all, the difference between the small battery cell A and the small battery cell B is whether or not the bipolar plate and the reaction electrode layer are integrally bonded. The reason why the ACF having the same thickness was used and compressed to the same thickness is to make the flow passage cross-sectional area of the electrolytic solution and the flow passage resistance constant. Table 1 shows small battery cells A and B
The evaluation results when charging and discharging are shown.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【発明の効果】本発明においては、炭素系導電性板から
なる双極板に、反応電極層が接合一体化されているた
め、双極板−反応電極層間の接触抵抗が低減され、その
結果としてエネルギー効率を向上させることができる。
また薄い双極板の使用が可能となってレドックスフロー
型2次電池全体を薄型、小型化することができる。
In the present invention, since the reaction electrode layer is joined and integrated with the bipolar plate made of the carbon-based conductive plate, the contact resistance between the bipolar plate and the reaction electrode layer is reduced, and as a result, energy is reduced. The efficiency can be improved.
Further, since a thin bipolar plate can be used, the redox flow type secondary battery as a whole can be made thin and compact.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の2次電池用反応電極層付双極板の縦断
面図を示し、(a)は両面に反応電極層を接合一体化し
てなる双極板、(b)は片面に反応電極層を接合一体化
してなる双極板、(c)は集合電極(金属電極)を一面
に、反応電極層を他面に接合一体化してなる双極板の場
合である。
FIG. 1 is a vertical cross-sectional view of a bipolar plate with a reaction electrode layer for a secondary battery of the present invention, (a) is a bipolar plate in which reaction electrode layers are joined and integrated on both sides, and (b) is a reaction electrode on one side. A bipolar plate obtained by joining and integrating layers is shown. (C) is a bipolar plate obtained by joining and integrating a collective electrode (metal electrode) on one surface and a reaction electrode layer on the other surface.

【図2】レドックスフロー型2次電池の概念図である。FIG. 2 is a conceptual diagram of a redox flow secondary battery.

【図3】反応電極層と双極板とが分離している従来の双
極板の縦断面図である。
FIG. 3 is a vertical sectional view of a conventional bipolar plate in which a reaction electrode layer and a bipolar plate are separated.

【符号の説明】[Explanation of symbols]

1…正極用電解液タンク 2…負極用電解液タンク 3…循環ポンプ 4…電池セル 5…隔膜 6…反応電極層 7…双極板 8…集合電極 9…外部エネルギー源 DESCRIPTION OF SYMBOLS 1 ... Electrolyte tank for positive electrodes 2 ... Electrolyte tank for negative electrodes 3 ... Circulation pump 4 ... Battery cell 5 ... Diaphragm 6 ... Reaction electrode layer 7 ... Bipolar plate 8 ... Collective electrode 9 ... External energy source

───────────────────────────────────────────────────── フロントページの続き (72)発明者 礒野 健一 埼玉県大宮市吉野町1丁目406番地1 信 越ポリマー株式会社商品研究所内 (72)発明者 伊藤 哲二 大阪市此花区島屋一丁目1番3号 住友電 気工業株式会社大阪製作所内 (72)発明者 重松 敏夫 大阪市此花区島屋一丁目1番3号 住友電 気工業株式会社大阪製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Kenichi Isono, 1-406-1 Yoshino-cho, Omiya-shi, Saitama, Shin-Etsu Polymer Co., Ltd. Product Research Laboratory (72) Tetsuji Ito 1-3-1, Shimaya, Konohana-ku, Osaka No. Sumitomo Electric Industries, Ltd. Osaka Works (72) Inventor Toshio Shigematsu 1-3-3 Shimaya, Konohana-ku, Osaka City Sumitomo Electric Industries, Ltd. Osaka Works

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】炭素系導電性板からなり、少なくとも一面
に炭素繊維系織布または不織布からなる反応電極層が接
合一体化されていることを特徴とする2次電池用反応電
極層付双極板。
1. A bipolar plate with a reaction electrode layer for a secondary battery, comprising a carbon-based conductive plate, and a reaction electrode layer made of a carbon fiber-based woven or non-woven fabric bonded and integrated on at least one surface. .
【請求項2】炭素系導電性板が、ビニル樹脂系マトリク
スに炭素系フィラーを充填した複合導電材料からなる請
求項1に記載の双極板。
2. The bipolar plate according to claim 1, wherein the carbon-based conductive plate is made of a composite conductive material in which a vinyl resin-based matrix is filled with a carbon-based filler.
【請求項3】炭素系導電性板が、ビニル樹脂系マトリク
スに炭素系フィラーを充填した導電性樹脂と炭素繊維系
基布とからなる請求項1に記載の双極板。
3. The bipolar plate according to claim 1, wherein the carbon-based conductive plate comprises a conductive resin in which a vinyl-based matrix is filled with a carbon-based filler and a carbon fiber-based base fabric.
JP5072201A 1993-03-30 1993-03-30 Bipolar plate with reaction electrode layer for secondary battery Pending JPH06290796A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5072201A JPH06290796A (en) 1993-03-30 1993-03-30 Bipolar plate with reaction electrode layer for secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5072201A JPH06290796A (en) 1993-03-30 1993-03-30 Bipolar plate with reaction electrode layer for secondary battery

Publications (1)

Publication Number Publication Date
JPH06290796A true JPH06290796A (en) 1994-10-18

Family

ID=13482390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5072201A Pending JPH06290796A (en) 1993-03-30 1993-03-30 Bipolar plate with reaction electrode layer for secondary battery

Country Status (1)

Country Link
JP (1) JPH06290796A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001003213A1 (en) * 1999-07-01 2001-01-11 Squirrel Holdings Ltd. Bipolar electrode for electrochemical redox reactions
JP2001037085A (en) * 1999-07-22 2001-02-09 Kansai Electric Power Co Inc:The Method and apparatus for frequency controlling power system including secondary cell
WO2004010524A1 (en) * 2002-07-18 2004-01-29 Honda Giken Kogyo Kabushiki Kaisha Method of manufacturing separator for fuel cell, and method of connecting the separator to electrode diffusion layer
JP2004235085A (en) * 2003-01-31 2004-08-19 Hitachi Maxell Ltd Fuel cell
WO2004100296A1 (en) * 2003-05-08 2004-11-18 Dainippon Ink And Chemicals, Inc. Method for producing separator for fuel cell, separator for fuel cell and fuel cell
CN1294668C (en) * 2003-10-22 2007-01-10 三星Sdi株式会社 Composite material for bipolar plate
US7634312B2 (en) 2000-04-18 2009-12-15 Yamato Scale Co., Ltd. Visceral fat determining device
WO2011129215A1 (en) * 2010-04-16 2011-10-20 住友電気工業株式会社 Bipolar plate for redox flow battery
US8236463B2 (en) 2008-10-10 2012-08-07 Deeya Energy, Inc. Magnetic current collector
JP2013527964A (en) * 2009-12-31 2013-07-04 エスゲーエル カーボン ソシエタス ヨーロピア Composite laminate materials for use in redox flow batteries
KR101370851B1 (en) * 2012-11-05 2014-03-07 한국과학기술원 Multi-layered electrode for redox flow battery and redox flow battery comprising said multi-layered electrode
WO2014168081A1 (en) 2013-04-11 2014-10-16 昭和電工株式会社 Carbon member, carbon member manufacturing method, redox flow battery and fuel cell
JP2015138692A (en) * 2014-01-23 2015-07-30 東洋紡株式会社 integrated carbon electrode
WO2018117192A1 (en) * 2016-12-21 2018-06-28 京セラ株式会社 Flow battery
JP2020139018A (en) * 2019-02-27 2020-09-03 信越ポリマー株式会社 Carbon member for cell and method of manufacturing the same, bipolar plate for redox flow cell, and separator for fuel cell
CN113437321A (en) * 2021-06-28 2021-09-24 开封平煤新型炭材料科技有限公司 Method for preparing graphite composite bipolar plate by continuous molding
WO2023053281A1 (en) * 2021-09-29 2023-04-06 住友電気工業株式会社 Bipolar plate, cell frame, cell stack, and redox flow battery

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001003213A1 (en) * 1999-07-01 2001-01-11 Squirrel Holdings Ltd. Bipolar electrode for electrochemical redox reactions
JP2001037085A (en) * 1999-07-22 2001-02-09 Kansai Electric Power Co Inc:The Method and apparatus for frequency controlling power system including secondary cell
US7634312B2 (en) 2000-04-18 2009-12-15 Yamato Scale Co., Ltd. Visceral fat determining device
WO2004010524A1 (en) * 2002-07-18 2004-01-29 Honda Giken Kogyo Kabushiki Kaisha Method of manufacturing separator for fuel cell, and method of connecting the separator to electrode diffusion layer
JP2004235085A (en) * 2003-01-31 2004-08-19 Hitachi Maxell Ltd Fuel cell
WO2004100296A1 (en) * 2003-05-08 2004-11-18 Dainippon Ink And Chemicals, Inc. Method for producing separator for fuel cell, separator for fuel cell and fuel cell
CN100337357C (en) * 2003-05-08 2007-09-12 大日本油墨化学工业株式会社 Manufacturing method of fuel cell separator, and fuel cell
CN1294668C (en) * 2003-10-22 2007-01-10 三星Sdi株式会社 Composite material for bipolar plate
US8236463B2 (en) 2008-10-10 2012-08-07 Deeya Energy, Inc. Magnetic current collector
JP2013527964A (en) * 2009-12-31 2013-07-04 エスゲーエル カーボン ソシエタス ヨーロピア Composite laminate materials for use in redox flow batteries
JP2011228059A (en) * 2010-04-16 2011-11-10 Sumitomo Electric Ind Ltd Dipole plate for redox flow battery
WO2011129215A1 (en) * 2010-04-16 2011-10-20 住友電気工業株式会社 Bipolar plate for redox flow battery
KR101370851B1 (en) * 2012-11-05 2014-03-07 한국과학기술원 Multi-layered electrode for redox flow battery and redox flow battery comprising said multi-layered electrode
KR20150125710A (en) 2013-04-11 2015-11-09 쇼와 덴코 가부시키가이샤 Carbon member, carbon member manufacturing method, redox flow battery and fuel cell
WO2014168081A1 (en) 2013-04-11 2014-10-16 昭和電工株式会社 Carbon member, carbon member manufacturing method, redox flow battery and fuel cell
US10109870B2 (en) 2013-04-11 2018-10-23 Showa Denko K.K. Carbon member, carbon member manufacturing method, redox flow battery and fuel cell
JP2015138692A (en) * 2014-01-23 2015-07-30 東洋紡株式会社 integrated carbon electrode
WO2018117192A1 (en) * 2016-12-21 2018-06-28 京セラ株式会社 Flow battery
CN110313094A (en) * 2016-12-21 2019-10-08 京瓷株式会社 Flow battery
JPWO2018117192A1 (en) * 2016-12-21 2019-10-31 京セラ株式会社 Flow battery
JP2020139018A (en) * 2019-02-27 2020-09-03 信越ポリマー株式会社 Carbon member for cell and method of manufacturing the same, bipolar plate for redox flow cell, and separator for fuel cell
CN113437321A (en) * 2021-06-28 2021-09-24 开封平煤新型炭材料科技有限公司 Method for preparing graphite composite bipolar plate by continuous molding
WO2023053281A1 (en) * 2021-09-29 2023-04-06 住友電気工業株式会社 Bipolar plate, cell frame, cell stack, and redox flow battery

Similar Documents

Publication Publication Date Title
JPH06290796A (en) Bipolar plate with reaction electrode layer for secondary battery
US6444355B1 (en) Adhesive for battery, battery using the same and method of fabricating the same
US5348817A (en) Bipolar lead-acid battery
US4275130A (en) Bipolar battery construction
JP4894129B2 (en) Thin battery and battery pack
US20100091430A1 (en) Hybrid Energy Storage Device and Method of Making Same
US20110162198A1 (en) Method of producing solid electrolyte-electrode assembly
JPWO2016031689A1 (en) Electrical connection structure
CN113036148B (en) Energy storage system based on conductivity-controllable polymer current collector and preparation process thereof
JP2012230916A (en) Method for manufacturing collector
JP6598245B2 (en) Secondary battery manufacturing method and manufacturing apparatus thereof
KR20060026485A (en) High performance type three-dimensional cell
JPH11506264A (en) Electrical connection to polymer stack battery structure
JPWO2008114738A1 (en) Lead-acid battery and battery pack
WO2010035120A1 (en) Bipolar secondary battery, method for manufacturing the bipolar secondary battery, bipolar electrode, method for manufacturing the bipolar electrode and assembled battery
Pradhan et al. Substrate materials and novel designs for bipolar lead-acid batteries: A review
WO2006105187A1 (en) Bipolar battery having carbon foam current collectors
CN212136623U (en) Battery cell structure and lithium ion battery
CN112159634A (en) Carbon powder conductive adhesive, flow battery electrode prepared by using carbon powder conductive adhesive and galvanic pile
US3706601A (en) Method of producing an electrode with a polymer binder by rolling
CN111640582B (en) High-voltage electrochemical capacitor, preparation method and energy storage module thereof
JPH09293649A (en) Electric double layered capacitor
KR101871484B1 (en) Negative current collector for redox flow battery, and making method thereof
JPH0732023B2 (en) Bipolar plate for redox flow battery
JPH0845793A (en) Electric double layered capacitor