JP2020139018A - Carbon member for cell and method of manufacturing the same, bipolar plate for redox flow cell, and separator for fuel cell - Google Patents

Carbon member for cell and method of manufacturing the same, bipolar plate for redox flow cell, and separator for fuel cell Download PDF

Info

Publication number
JP2020139018A
JP2020139018A JP2019034358A JP2019034358A JP2020139018A JP 2020139018 A JP2020139018 A JP 2020139018A JP 2019034358 A JP2019034358 A JP 2019034358A JP 2019034358 A JP2019034358 A JP 2019034358A JP 2020139018 A JP2020139018 A JP 2020139018A
Authority
JP
Japan
Prior art keywords
carbon member
battery
conductive material
thermoplastic resin
resistance value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019034358A
Other languages
Japanese (ja)
Inventor
昭紘 小泉
Akihiro Koizumi
昭紘 小泉
岡田 晃
Akira Okada
晃 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Polymer Co Ltd, Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Polymer Co Ltd
Priority to JP2019034358A priority Critical patent/JP2020139018A/en
Publication of JP2020139018A publication Critical patent/JP2020139018A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Fuel Cell (AREA)

Abstract

To provide a carbon member for a cell capable of obtaining sufficient conductivity and strength, and improving conductivity in a thickness direction, a method of manufacturing the same, a bipolar plate for a redox flow cell, and a separator for a fuel cell.SOLUTION: A carbon member 1 for a cell comprises a conductive material 2, and a thermoplastic resin 3 where the conductive material 2 is a carbonaceous material containing at least any one of a squamous graphite particle, an artificial graphite particle, a spherical graphite particle, and a carbon fiber, the thermoplastic resin 3 is a polyolefin resin, or a polyphenylene sulfide resin, at least any one of the conductive material 2, and the thermoplastic resin 3 is subjected to plasma treatment, and both are mixed. Sufficient conductivity and flexure strength can be obtained since the conductive material 2 and the thermoplastic resin 3 are subjected to plasma treatment to improve compatibility and decrease a void between the conductive material 2 and the thermoplastic resin 3.SELECTED DRAWING: Figure 1

Description

本発明は、レドックスフロー電池や燃料電池等に使用される電池用カーボン部材及びその製造方法、レドックスフロー電池用双極板、並びに燃料電池用セパレータに関するものである。 The present invention relates to a carbon member for a battery used in a redox flow battery, a fuel cell, etc., a method for manufacturing the carbon member, a bipolar plate for the redox flow battery, and a separator for a fuel cell.

レドックスフロー電池用双極板や燃料電池用セパレータには、電池用カーボン部材が使用されている。この電池用カーボン部材は、図示しないが、導電性を確保する黒鉛粒子等の導電材と、強度を確保する熱可塑性樹脂とを含有し、レドックスフロー電池用双極板や燃料電池用セパレータの製造に用いられる場合には、スタック時や稼働中の負荷で割れないよう、一定以上の曲げ強度を発揮する。 A carbon member for a battery is used for a bipolar plate for a redox flow battery and a separator for a fuel cell. Although not shown, this carbon member for a battery contains a conductive material such as graphite particles for ensuring conductivity and a thermoplastic resin for ensuring strength, and is used for manufacturing bipolar plates for redox flow batteries and separators for fuel cells. When used, it exhibits a certain level of bending strength so that it will not crack under a load during stacking or operation.

ところで、レドックスフロー電池用双極板や燃料電池用セパレータの曲げ強度を向上させたい場合には、電池用カーボン部材の熱可塑性樹脂の含有率を増やせば良いが、熱可塑性樹脂の含有率を単に増やすと、導電材の含有率が低下するので、導電性の低下を招くこととなる。この点に鑑み、従来においては、曲げ強度の向上と導電性の維持を両立させるため、様々な発明が提案されている。 By the way, if it is desired to improve the bending strength of the bipolar plate for redox flow batteries and the separator for fuel cells, the content of the thermoplastic resin of the carbon member for the battery may be increased, but the content of the thermoplastic resin is simply increased. As a result, the content of the conductive material decreases, which leads to a decrease in conductivity. In view of this point, various inventions have been conventionally proposed in order to achieve both improvement of bending strength and maintenance of conductivity.

例えば、特許文献1には、成分(A)カーボンナノチューブ、成分(B)下記(1)〜(3)を満たすオレフィン系重合体、及び成分(C)熱可塑性樹脂を含み、成分(A)の配合量が、成分(A)〜(C)の全量100質量%に対して15〜40質量%、成分(B)の配合量が、成分(A)の配合量の0.5〜2倍である樹脂組成物が開示され、(1)重量平均分子量(Mw)が35,000〜150,000、(2)分子量分布(Mw/Mn)が3以下、(3)軟化点が80〜130℃とされる(特許文献1参照)。 For example, Patent Document 1 includes a component (A) carbon nanotube, a component (B) an olefin polymer satisfying the following (1) to (3), and a component (C) a thermoplastic resin, and contains the component (A). The blending amount is 15 to 40% by mass with respect to 100% by mass of the total amount of the components (A) to (C), and the blending amount of the component (B) is 0.5 to 2 times the blending amount of the component (A). A resin composition is disclosed, (1) a weight average molecular weight (Mw) of 35,000 to 150,000, (2) a molecular weight distribution (Mw / Mn) of 3 or less, and (3) a softening point of 80 to 130 ° C. (See Patent Document 1).

また、特許文献2には、粒子状又は不連続繊維状の炭素質材料を含有させた熱可塑性樹脂から成る導電性樹脂板(1)の片面又は両面上に、炭素繊維と熱可塑性樹脂の複合材料から成るCFRTPシート(2)を積層し、これらを熱融着により一体化して構成された燃料電池用セパレータであり、CFRTPシート(2)が、熱可塑性樹脂をマトリックス樹脂とし、このマトリックス樹脂中に、連続炭素繊維を一方向又は複数方向に配列するとともに、樹脂中に粒子状又は不連続繊維状の炭素フィラー材を分散させて構成されている燃料電池用セパレータが示されている(特許文献2参照)。 Further, Patent Document 2 describes a composite of carbon fiber and thermoplastic resin on one or both sides of a conductive resin plate (1) made of a thermoplastic resin containing a particulate or discontinuous fibrous carbonaceous material. A separator for a fuel cell configured by laminating a CFRTP sheet (2) made of a material and integrating these by heat fusion. The CFRTP sheet (2) uses a thermoplastic resin as a matrix resin and is contained in the matrix resin. (Patent Document) shows a separator for a fuel cell, which is formed by arranging continuous carbon fibers in one direction or a plurality of directions and dispersing a granular or discontinuous fibrous carbon filler material in a resin (Patent Document). 2).

特開2016‐41806号公報Japanese Unexamined Patent Publication No. 2016-41806 特開2016‐119181号公報Japanese Unexamined Patent Publication No. 2016-119181

しかしながら、特許文献1の樹脂組成物の場合には、カーボンナノチューブの含有量が少ないので、十分な導電性を得ることができないという問題がある。また、特許文献2の燃料電池用セパレータの場合には、CFRTPシートの連続した長い糸状の炭素繊維により、燃料電池用セパレータの面方向における導電性には優れるものの、厚さ方向における導電性の向上が期待できないという問題がある。 However, in the case of the resin composition of Patent Document 1, there is a problem that sufficient conductivity cannot be obtained because the content of carbon nanotubes is small. Further, in the case of the fuel cell separator of Patent Document 2, the continuous long filamentous carbon fibers of the CFRTP sheet are excellent in the conductivity in the surface direction of the fuel cell separator, but the conductivity in the thickness direction is improved. There is a problem that cannot be expected.

本発明は上記に鑑みなされたもので、十分な導電性と強度を得ることができ、厚さ方向における導電性を向上させることのできる電池用カーボン部材及びその製造方法、レドックスフロー電池用双極板、並びに燃料電池用セパレータを提供することを目的としている。 The present invention has been made in view of the above, and is a carbon member for a battery capable of obtaining sufficient conductivity and strength and improving conductivity in the thickness direction, a method for manufacturing the same, and a bipolar plate for a redox flow battery. , As well as a separator for a fuel cell.

本発明においては上記課題を解決するため、導電材と熱可塑性樹脂とからなるものであって、
導電材と熱可塑性樹脂の少なくともいずれか一方がプラズマ処理された混合物からなることを特徴としている。
In the present invention, in order to solve the above problems, it is composed of a conductive material and a thermoplastic resin.
It is characterized in that at least one of a conductive material and a thermoplastic resin is composed of a plasma-treated mixture.

なお、導電材は、鱗状黒鉛、人造黒鉛、膨張黒鉛、球状黒鉛、及び炭素繊維の少なくともいずれか一種含有の炭素質材料からなることが好ましい。
また、熱可塑性樹脂は、ポリオレフィン系樹脂、又はポリフェニレンスルフィド系樹脂であることが好ましい。
The conductive material is preferably made of a carbonaceous material containing at least one of scaly graphite, artificial graphite, expanded graphite, spheroidal graphite, and carbon fiber.
The thermoplastic resin is preferably a polyolefin resin or a polyphenylene sulfide resin.

また、プラズマ処理は、酸素ガス、窒素ガス、及びアルゴンガスの少なくともいずれかを用いて処理されると良い。
また、プラズマ処理は、水分を含有する酸素ガス、窒素ガス、及びアルゴンガスの少なくともいずれかを用いて処理されると良い。
Further, the plasma treatment may be performed using at least one of oxygen gas, nitrogen gas, and argon gas.
Further, the plasma treatment may be performed using at least one of oxygen gas, nitrogen gas, and argon gas containing water.

また、本発明においては上記課題を解決するため、請求項1ないし5のいずれかに記載した電池用カーボン部材の製造方法であって、
導電材と熱可塑性樹脂の少なくともいずれか一方をプラズマ処理し、これらを混合して金型に充填した後、金型を型締めして加熱圧縮成形することにより、電池用カーボン部材を成形することを特徴としている。
Further, in the present invention, in order to solve the above problems, the method for manufacturing a carbon member for a battery according to any one of claims 1 to 5 is used.
A carbon member for a battery is formed by plasma-treating at least one of a conductive material and a thermoplastic resin, mixing them and filling them in a mold, then molding the mold and heat-compress molding. It is characterized by.

また、本発明においては上記課題を解決するため、請求項1ないし5のいずれかに記載した電池用カーボン部材によりレドックスフロー電池用双極板が形成されることを特徴としている。
さらに、本発明においては上記課題を解決するため、請求項1ないし5のいずれかに記載した電池用カーボン部材により燃料電池用セパレータが形成されることを特徴としている。
Further, in order to solve the above problems, the present invention is characterized in that a bipolar plate for a redox flow battery is formed by the carbon member for a battery according to any one of claims 1 to 5.
Further, in order to solve the above problems, the present invention is characterized in that the fuel cell separator is formed by the battery carbon member according to any one of claims 1 to 5.

ここで、特許請求の範囲における導電材は、粉末粒子状でも良いし、繊維状等でも良い。この導電材の膨張黒鉛には、膨張黒鉛粒子と、膨張化処理された膨張化黒鉛粒子のいずれもが含まれる。また、プラズマ処理は、導電材及び熱可塑性樹脂、導電材、又は熱可塑性樹脂を対象にして実施される。プラズマ処理は、最低でも5分間以上、好ましくは15分間以上、より好ましくは20分間以上実施されると良い。このプラズマ処理用のガスには、水分を含んでも良いし、含まなくても良い。さらに、本発明に係る電池用カーボン部材は、粉末の他、必要に応じ、薄板やシートに成形することが可能である。 Here, the conductive material in the claims may be in the form of powder particles, in the form of fibers, or the like. The expanded graphite of the conductive material includes both expanded graphite particles and expanded graphite particles that have been expanded. Further, the plasma treatment is carried out on the conductive material and the thermoplastic resin, the conductive material, or the thermoplastic resin. The plasma treatment should be carried out for at least 5 minutes, preferably 15 minutes or longer, and more preferably 20 minutes or longer. The gas for plasma treatment may or may not contain water. Further, the carbon member for a battery according to the present invention can be molded into a thin plate or a sheet, if necessary, in addition to powder.

本発明によれば、導電材と熱可塑性樹脂の少なくともいずれか一方をプラズマ処理するので、導電材と熱可塑性樹脂との相溶性が増大し、導電材の間に熱可塑性樹脂が流入し易くなる。この結果、導電材と熱可塑性樹脂との間の空隙が減少し、電池用カーボン部材、この電池用カーボン部材を用いたレドックスフロー電池用双極板や燃料電池用セパレータの導電性や機械的強度が向上する。 According to the present invention, since at least one of the conductive material and the thermoplastic resin is plasma-treated, the compatibility between the conductive material and the thermoplastic resin is increased, and the thermoplastic resin easily flows between the conductive materials. .. As a result, the voids between the conductive material and the thermoplastic resin are reduced, and the conductivity and mechanical strength of the carbon member for the battery, the bipolar plate for the redox flow battery using the carbon member for the battery, and the separator for the fuel cell are improved. improves.

本発明によれば、導電材と熱可塑性樹脂の少なくともいずれか一方にプラズマ処理を施すので、十分な導電性と強度を得ることができ、厚さ方向における導電性を向上させることができるという効果がある。 According to the present invention, since at least one of the conductive material and the thermoplastic resin is subjected to plasma treatment, sufficient conductivity and strength can be obtained, and the conductivity in the thickness direction can be improved. There is.

請求項2記載の発明によれば、導電材が鱗状黒鉛の場合には、優れた成形性や導電性を得ることができる。また、導電材が人造黒鉛の場合には、優れた強度や純度を得ることができ、しかも、金属等の不純物を減少させることができる。膨張黒鉛の場合には、熱可塑性樹脂との混合が容易となる。また、球状黒鉛の場合には、配向性の抑制が期待できる。さらに、炭素繊維の場合には、優れた強度や導電性を得ることができる他、金属等の不純物を減少させることが可能となる。 According to the invention of claim 2, when the conductive material is scaly graphite, excellent moldability and conductivity can be obtained. Further, when the conductive material is artificial graphite, excellent strength and purity can be obtained, and impurities such as metal can be reduced. In the case of expanded graphite, mixing with a thermoplastic resin becomes easy. Further, in the case of spheroidal graphite, suppression of orientation can be expected. Further, in the case of carbon fiber, excellent strength and conductivity can be obtained, and impurities such as metal can be reduced.

請求項3記載の発明によれば、電池用カーボン部材の熱可塑性樹脂として、ポリオレフィン系樹脂、あるいはポリフェニレンスルフィド系樹脂を用いると、この電池用カーボン部材により、レドックスフロー電池用双極板や燃料電池用セパレータを形成した場合、優れた耐湿性や耐水性等を付与することが可能となる。
請求項5記載の発明によれば、水分を含有する酸素ガス、窒素ガス、及びアルゴンガスの少なくともいずれかを用いてプラズマ処理すれば、電池用カーボン部材の親水性の向上を図ることが可能となる。
According to the invention of claim 3, when a polyolefin resin or a polyphenylene sulfide resin is used as the thermoplastic resin of the carbon member for the battery, the carbon member for the battery can be used for a bipolar plate for a redox flow battery or a fuel cell. When the separator is formed, it is possible to impart excellent moisture resistance, water resistance, and the like.
According to the invention of claim 5, it is possible to improve the hydrophilicity of the carbon member for a battery by performing plasma treatment using at least one of oxygen gas, nitrogen gas, and argon gas containing water. Become.

請求項6記載の発明によれば、金型を用いた加熱圧縮成形の際、導電材の間に熱可塑性樹脂が流入し易くなるので、導電材と熱可塑性樹脂との隙間が減少し、電池用カーボン部材の導電性や機械的強度の向上に資することができる。
請求項7記載の発明によれば、レドックスフロー電池用双極板に十分な導電性と強度を付与することができ、レドックスフロー電池用双極板の厚さ方向における導電性をも向上させることができる。
According to the invention of claim 6, during heat compression molding using a mold, the thermoplastic resin easily flows between the conductive materials, so that the gap between the conductive material and the thermoplastic resin is reduced, and the battery It can contribute to the improvement of conductivity and mechanical strength of the carbon member for use.
According to the invention of claim 7, sufficient conductivity and strength can be imparted to the bipolar plate for the redox flow battery, and the conductivity in the thickness direction of the bipolar plate for the redox flow battery can also be improved. ..

請求項8記載の発明によれば、燃料電池用セパレータに十分な導電性と強度を付与することができ、燃料電池用セパレータの厚さ方向における導電性の向上も期待できる。 According to the invention of claim 8, sufficient conductivity and strength can be imparted to the fuel cell separator, and improvement in conductivity in the thickness direction of the fuel cell separator can be expected.

本発明に係る電池用カーボン部材の実施形態におけるプラズマ処理された導電材と熱可塑性樹脂とを模式的に示す拡大説明図である。It is an enlarged explanatory view which shows typically the plasma-treated conductive material and the thermoplastic resin in embodiment of the carbon member for a battery which concerns on this invention. 本発明に係る電池用カーボン部材の実施形態におけるプラズマ処理されていない導電材と熱可塑性樹脂とを模式的に示す拡大説明図である。It is an enlarged explanatory view which shows typically the conductive material which has not been plasma-treated and the thermoplastic resin in embodiment of the carbon member for a battery which concerns on this invention. 本発明に係るレドックスフロー電池用双極板の実施形態を模式的に示す斜視説明図である。It is a perspective explanatory drawing which shows typically the embodiment of the bipolar plate for a redox flow battery which concerns on this invention. 本発明に係る燃料電池用セパレータの実施形態を模式的に示す平面説明図である。It is a plane explanatory view which shows typically the embodiment of the fuel cell separator which concerns on this invention. 本発明に係る燃料電池用セパレータの実施形態を模式的に示す断面説明図である。It is sectional drawing which shows typically the embodiment of the separator for a fuel cell which concerns on this invention.

以下、図面を参照して本発明の好ましい実施の形態を説明すると、本実施形態における電池用カーボン部材1は、図1に示すように、微細な導電材2と熱可塑性樹脂3とを含有し、これら導電材2と熱可塑性樹脂3とがプラズマ処理された混合物からなり、レドックスフロー電池用双極板や燃料電池用セパレータの材料として利用される。 Hereinafter, a preferred embodiment of the present invention will be described with reference to the drawings. As shown in FIG. 1, the battery carbon member 1 in the present embodiment contains a fine conductive material 2 and a thermoplastic resin 3. The conductive material 2 and the thermoplastic resin 3 are plasma-treated mixtures, and are used as materials for a bipolar plate for a redox flow battery and a separator for a fuel cell.

電池用カーボン部材1の導電材2と熱可塑性樹脂3とは、導電材2が熱可塑性樹脂3よりも質量比で多く含有される。例えば、導電材2が100質量部、300質量部、500質量部、800質量部、1000質量部の場合、熱可塑性樹脂3が100質量部配合して混合される。 The conductive material 2 and the thermoplastic resin 3 of the carbon member 1 for a battery contain a larger amount of the conductive material 2 than the thermoplastic resin 3 in terms of mass ratio. For example, when the conductive material 2 is 100 parts by mass, 300 parts by mass, 500 parts by mass, 800 parts by mass, and 1000 parts by mass, the thermoplastic resin 3 is mixed by blending 100 parts by mass.

導電材2は、優れた成形性や導電性が期待できる鱗状黒鉛粒子、強度や純度に優れる人造黒鉛粒子、鱗状黒鉛粒子よりも熱可塑性樹脂3と混合し易い膨張黒鉛粒子、配向性の抑制が期待できる球状黒鉛粒子、及び強度や導電性に優れる軽量の炭素繊維の少なくともいずれか一種を含有した炭素質材料からなる。これらは、炭素質材料であれば、特に限定されるものではないが、金属不純物を確実に排除する観点からすると、人造黒鉛粒子と炭素繊維の少なくともいずれかが最適である。 The conductive material 2 includes scaly graphite particles that can be expected to have excellent moldability and conductivity, artificial graphite particles having excellent strength and purity, expanded graphite particles that are easier to mix with the thermoplastic resin 3 than scaly graphite particles, and suppression of orientation. It is composed of promising spheroidal graphite particles and a carbonaceous material containing at least one of lightweight carbon fibers having excellent strength and conductivity. These are not particularly limited as long as they are carbonaceous materials, but from the viewpoint of reliably eliminating metal impurities, at least one of artificial graphite particles and carbon fibers is optimal.

導電材2が各種黒鉛粒子の場合、各種黒鉛粒子の平均粒子径は、優れた混合性、成形性、導電性、実用性を得る観点から、10μm以上150μm以下、好ましくは15μm以上140μm以下、より好ましくは22μm以上130μm以下が最適である。鱗状黒鉛粒子の具体例としては、平均粒子径が30μmのCB‐150〔日本黒鉛工業株式会社製:製品名〕等があげられ、具体的な人造黒鉛粒子としては、平均粒子径が25μmのPAG‐5〔日本黒鉛工業株式会社製:製品名〕や平均粒子径が130μmのPAG‐120〔日本黒鉛工業株式会社製:製品名〕等があげられる。 When the conductive material 2 is various graphite particles, the average particle size of the various graphite particles is 10 μm or more and 150 μm or less, preferably 15 μm or more and 140 μm or less, from the viewpoint of obtaining excellent mixability, moldability, conductivity, and practicality. The optimum size is 22 μm or more and 130 μm or less. Specific examples of scaly graphite particles include CB-150 [manufactured by Nippon Graphite Industry Co., Ltd .: product name] having an average particle diameter of 30 μm, and specific artificial graphite particles include PAG having an average particle diameter of 25 μm. -5 [manufactured by Nippon Graphite Industry Co., Ltd .: product name] and PAG-120 [manufactured by Nippon Graphite Industry Co., Ltd .: product name] having an average particle size of 130 μm can be mentioned.

また、具体的な膨張黒鉛粒子としては、平均粒子径が22μmの膨張化黒鉛粒子〔富士黒鉛工業株式会社製:製品名BSP‐20〕等があげられ、具体的な球状黒鉛粒子としては、平均粒子径が22μmのCGB‐20〔日本黒鉛工業株式会社製:製品名〕等が該当する。 Specific examples of expanded graphite particles include expanded graphite particles having an average particle diameter of 22 μm [manufactured by Fuji Graphite Industry Co., Ltd .: product name BSP-20], and specific spheroidal graphite particles include average. CGB-20 [manufactured by Nippon Graphite Industry Co., Ltd .: product name] having a particle size of 22 μm is applicable.

導電材2が炭素繊維の場合、優れた強度や導電性を得たり、製造時の分散性を向上させるため、平均繊維長が0.03mm以上9mm以下、好ましくは0.04mm以上8.5mm以下、より好ましくは0.05mm以上8mm以下のミルドファイバー、あるいはチョップファイバーが最適である。炭素繊維の具体例としては、平均繊維長が160μmのHT M800〔帝人株式会社製:製品名〕等があげられる。 When the conductive material 2 is carbon fiber, the average fiber length is 0.03 mm or more and 9 mm or less, preferably 0.04 mm or more and 8.5 mm or less in order to obtain excellent strength and conductivity and improve dispersibility during manufacturing. , More preferably, a milled fiber of 0.05 mm or more and 8 mm or less, or a chop fiber is optimal. Specific examples of the carbon fiber include HT M800 [manufactured by Teijin Limited: product name] having an average fiber length of 160 μm.

熱可塑性樹脂3は、比較的低温(160〜170℃)での成形が容易なポリオレフィン系樹脂、あるいは耐熱性や耐薬品性等に優れた高融点のポリフェニレンスルフィド系樹脂が選択して使用され、導電材2の表面を被覆したり、導電材2の間に充填される。この熱可塑性樹脂3の形状は、粒子状、粉末状、繊維状を特に問うものではない。具体的なポリオレフィン系樹脂としては、プライムポリマー株式会社製の耐水性に優れる安価なポリプロピレン(PP)樹脂があげられ、ポリフェニレンスルフィド系樹脂としては、耐水性に優れる東レ株式会社製のポリフェニレンスルフィド(PPS)樹脂が該当する。 As the thermoplastic resin 3, a polyolefin-based resin that can be easily molded at a relatively low temperature (160 to 170 ° C.) or a polyphenylene sulfide-based resin having a high melting point and excellent heat resistance and chemical resistance is selected and used. The surface of the conductive material 2 is coated or filled between the conductive materials 2. The shape of the thermoplastic resin 3 does not particularly matter whether it is in the form of particles, powder, or fibers. Specific examples of the polyolefin-based resin include inexpensive polypropylene (PP) resin manufactured by Prime Polymer Co., Ltd., which has excellent water resistance, and examples of the polyphenylene sulfide-based resin include polyphenylene sulfide (PPS) manufactured by Toray Co., Ltd., which has excellent water resistance. ) Resin is applicable.

上記構成において、電池用カーボン部材1を製造する場合には、先ず、所定量の導電材2と熱可塑性樹脂3とを用意して混合することにより粉末の混合物を調製し、この混合物を専用の容器に収容してプラズマ処理装置にセットし、このプラズマ処理装置の高電圧電極間のプラズマ領域にプラズマ処理用のガスを導入し、高密度にプラズマ処理して混合物の相溶性や密着性を増大させる。具体的には、プラズマ処理用のガスを導入して活性化させた後、エアフローで下方の混合物に吹き付けて表面改質することにより、混合物の導電材2と熱可塑性樹脂3との相溶性や密着性を増大させる。 In the above configuration, when manufacturing the carbon member 1 for a battery, first, a predetermined amount of the conductive material 2 and the thermoplastic resin 3 are prepared and mixed to prepare a powder mixture, and this mixture is dedicated. It is housed in a container and set in a plasma processing device, a gas for plasma processing is introduced into the plasma region between the high voltage electrodes of this plasma processing device, and high-density plasma treatment is performed to increase the compatibility and adhesion of the mixture. Let me. Specifically, after activating by introducing a gas for plasma treatment, the mixture is sprayed with an air flow on the lower mixture to reform the surface, thereby increasing the compatibility between the conductive material 2 of the mixture and the thermoplastic resin 3. Increases adhesion.

プラズマ処理装置は、常温の大気圧雰囲気下でプラズマ処理が可能な大気圧プラズマ処理装置でも良いし、真空雰囲気下でプラズマ処理が可能な真空プラズマ処理装置でも良い。但し、減圧を必要とせず、小型の設備でも大量生産が可能な大気圧プラズマ処理装置が好適である。 The plasma processing apparatus may be an atmospheric pressure plasma processing apparatus capable of plasma processing in an atmospheric pressure atmosphere at room temperature, or a vacuum plasma processing apparatus capable of plasma processing in a vacuum atmosphere. However, an atmospheric pressure plasma processing device that does not require depressurization and can be mass-produced even with a small facility is preferable.

大気圧プラズマ処理装置でプラズマ処理する場合、混合物の多量の導電材2と熱可塑性樹脂3とを一度のプラズマ処理で処理することができ、量産性の向上が期待できる。この場合、十分な導電性と機械的強度を得る観点から、少なくとも5分間以上、好ましくは30分以上プラズマ処理すると良い。大気圧プラズマ処理装置としては、例えばS5000‐BM〔株式会社魁半導体製:製品名〕等を使用することができる。 When plasma treatment is performed by the atmospheric pressure plasma processing apparatus, a large amount of the conductive material 2 and the thermoplastic resin 3 of the mixture can be treated by one plasma treatment, and improvement in mass productivity can be expected. In this case, from the viewpoint of obtaining sufficient conductivity and mechanical strength, plasma treatment may be performed for at least 5 minutes or longer, preferably 30 minutes or longer. As the atmospheric pressure plasma processing apparatus, for example, S5000-BM [manufactured by Kai Semiconductor Co., Ltd .: product name] or the like can be used.

これに対し、真空プラズマ処理装置でプラズマ処理する場合、混合物の導電材2と熱可塑性樹脂3とを比較的短時間で安定してプラズマ処理することができ、電池用カーボン部材1により、レドックスフロー電池用双極板や燃料電池用セパレータを成形するとき、機械的強度を向上させることができる。この場合、十分な導電性と機械的強度を得るため、少なくとも5分間以上、好ましくは15分以上、より好ましくは20分以上プラズマ処理すると良い。真空プラズマ処理装置としては、例えばYHS‐DφS〔株式会社魁半導体製:製品名〕等を使用することができる。 On the other hand, when plasma processing is performed by the vacuum plasma processing apparatus, the conductive material 2 and the thermoplastic resin 3 of the mixture can be stably plasma-processed in a relatively short time, and the redox flow is performed by the carbon member 1 for the battery. When molding a bipolar plate for a battery or a separator for a fuel cell, the mechanical strength can be improved. In this case, in order to obtain sufficient conductivity and mechanical strength, plasma treatment may be performed for at least 5 minutes or longer, preferably 15 minutes or longer, and more preferably 20 minutes or longer. As the vacuum plasma processing apparatus, for example, YHS-DφS [manufactured by Kai Semiconductor Co., Ltd .: product name] or the like can be used.

プラズマ処理用のガスとしては、特に限定されるものではないが、酸素ガス、不活性の窒素ガス、及び付加価値の高い不活性のアルゴンガスの少なくともいずれか一種が選択される。このガスは、親水性を向上させたい場合には、水分である水蒸気を含有する酸素ガス、窒素ガス、及びアルゴンガスの少なくともいずれかが採用される。 The gas for plasma treatment is not particularly limited, but at least one of oxygen gas, inert nitrogen gas, and high value-added inert argon gas is selected. When it is desired to improve the hydrophilicity of this gas, at least one of oxygen gas containing water vapor as water vapor, nitrogen gas, and argon gas is adopted.

真空プラズマ処理装置YHS‐DφS〔株式会社魁半導体製:製品名〕でプラズマ処理する場合、70℃に保温した純水にバブリングさせ、水蒸気を含有した酸素ガスをプラズマ処理用のガスとするとともに、圧力が90Paになるよう酸素ガスのガス流量を調整し、真空プラズマ処理装置の出力を60Wに設定し、真空プラズマ処理装置のチャンバの角度を10°、混合物を回転速度10rpmで攪拌しながら処理時間30分で処理することができる。 When plasma processing is performed with the vacuum plasma processing device YHS-DφS [manufactured by Kaoru Semiconductor Co., Ltd .: product name], bubbling is performed with pure water kept at 70 ° C., and oxygen gas containing water vapor is used as a gas for plasma processing. Adjust the gas flow rate of oxygen gas so that the pressure becomes 90 Pa, set the output of the vacuum plasma processing device to 60 W, set the chamber angle of the vacuum plasma processing device to 10 °, and stir the mixture at a rotation speed of 10 rpm for the processing time. It can be processed in 30 minutes.

混合物をプラズマ処理し、混合物の導電材2と熱可塑性樹脂3との相溶性が増したら、プラズマ処理装置から粉末の混合物を取り出し、プラズマ処理した混合物を型開きした金型に充填し、金型を型締めして加熱圧縮成形すれば、電池用カーボン部材1を成形することができる。 When the mixture is plasma-treated and the compatibility between the conductive material 2 and the thermoplastic resin 3 of the mixture is increased, the powder mixture is taken out from the plasma processing device, the plasma-treated mixture is filled in an opened mold, and the mold is formed. The carbon member 1 for a battery can be molded by molding and heat compression molding.

混合物を金型に充填する際、プラズマ処理した混合物を型開きした金型に直ちに充填するのではなく、シランカップリング剤を溶剤で一定濃度に希釈した溶液中にプラズマ処理した混合物を投入して攪拌し、乾燥させた後、型開きした金型に充填すれば、電池用カーボン部材1の機械的強度を向上させることができる。この点に関し、シランカップリング剤を溶剤で一定濃度に希釈した溶液中にプラズマ処理していない混合物を単に投入して攪拌し、乾燥させた後、金型に充填しても、表面官能基数が乏しいので、電池用カーボン部材1の機械的強度の向上は期待できないが、プラズマ処理した混合物を投入して攪拌し、乾燥させて金型に充填すれば、機械的強度の向上が大いに期待できる。 When filling the mold with the mixture, instead of immediately filling the mold with the plasma-treated mixture in the mold-opened mold, the plasma-treated mixture is put into a solution obtained by diluting the silane coupling agent to a constant concentration with a solvent. The mechanical strength of the carbon member 1 for a battery can be improved by filling the mold with an open mold after stirring and drying. In this regard, even if the mixture that has not been plasma-treated is simply added to a solution obtained by diluting the silane coupling agent to a constant concentration with a solvent, stirred, dried, and then filled in a mold, the number of surface functional groups is increased. Since it is scarce, it cannot be expected that the mechanical strength of the carbon member 1 for a battery will be improved. However, if the plasma-treated mixture is added, stirred, dried and filled in a mold, the mechanical strength can be greatly improved.

混合物を加熱圧縮成形する際、混合物は、導電材2と熱可塑性樹脂3との表面が官能基化(水酸基、カルボキシル基、アミノ基等)され、これら導電材2と熱可塑性樹脂3との相溶性が増しているので、プラズマ処理されていない場合(図2参照)よりも導電材2の間に熱可塑性樹脂3が流入し易くなる(図1参照)。この結果、導電材2と熱可塑性樹脂3との間の空隙が減少し、電池用カーボン部材1の機械的強度等が向上する。 When the mixture is heat-compressed, the surfaces of the conductive material 2 and the thermoplastic resin 3 are functionalized (hydroxyl groups, carboxyl groups, amino groups, etc.), and the phases of the conductive material 2 and the thermoplastic resin 3 are phased with each other. Since the solubility is increased, the thermoplastic resin 3 is more likely to flow into the conductive material 2 than in the case where the plasma treatment is not performed (see FIG. 2) (see FIG. 1). As a result, the voids between the conductive material 2 and the thermoplastic resin 3 are reduced, and the mechanical strength of the carbon member 1 for the battery is improved.

上記によれば、導電材2と熱可塑性樹脂3とをプラズマ処理して相溶性を向上させ、導電材2と熱可塑性樹脂3との間の空隙を減少させるので、十分な導電性や曲げ強度を得ることができる。また、XY方向の導電性の向上が期待できる他、Z方向(図1の上下方向、厚み方向)の導電性をも向上させることができる。さらに、導電材2と熱可塑性樹脂3との相溶性が増すと、流動性を示すメルトフローレート(MFR)の値が高くなるので、後の成形加工性を著しく向上させることが可能となる。 According to the above, the conductive material 2 and the thermoplastic resin 3 are plasma-treated to improve compatibility and reduce the voids between the conductive material 2 and the thermoplastic resin 3, so that sufficient conductivity and bending strength are obtained. Can be obtained. Further, in addition to being expected to improve the conductivity in the XY direction, the conductivity in the Z direction (vertical direction and thickness direction in FIG. 1) can also be improved. Further, when the compatibility between the conductive material 2 and the thermoplastic resin 3 is increased, the value of the melt flow rate (MFR) indicating the fluidity is increased, so that the later molding processability can be remarkably improved.

次に、図3は本発明の第2の実施形態を示すもので、この場合には、プラズマ処理して製造した電池用カーボン部材1により、平面矩形のレドックスフロー電池用双極板10を形成するようにしている。 Next, FIG. 3 shows a second embodiment of the present invention. In this case, the carbon member 1 for a battery manufactured by plasma treatment forms a planar rectangular redox flow battery bipolar plate 10. I am trying to do it.

レドックスフロー電池用双極板10を製造する方法としては、特に限定されるものではないが、例えば専用金型等に電池用カーボン部材1を充填して加熱加圧した後、冷却することにより、平面矩形の薄板を成形する方法があげられる。 The method for manufacturing the bipolar plate 10 for a redox flow battery is not particularly limited, but for example, a special mold or the like is filled with a carbon member 1 for a battery, heated and pressurized, and then cooled to be flat. A method of forming a rectangular thin plate can be mentioned.

また、別の製造方法として、プレス機の専用金型等に電池用カーボン部材1をセットして加熱加圧することにより、導電材2と熱可塑性樹脂3とが均一に分散した複合シートを必要枚数成形し、吸引治具内に複合シートをセットしてその露出面に別の導電材2を新たに充填し、吸引治具を閉鎖して減圧することで導電成形体を成形し、その後、成形した導電成形体の露出面に別の複合シートを積層して加熱圧縮することで薄板を成形する方法があげられる。その他の部分については、上記実施形態と同様であるので説明を省略する。 Further, as another manufacturing method, a required number of composite sheets in which the conductive material 2 and the thermoplastic resin 3 are uniformly dispersed are obtained by setting the carbon member 1 for a battery in a dedicated mold of a press machine or the like and heating and pressurizing it. Molded, a composite sheet is set in the suction jig, another conductive material 2 is newly filled in the exposed surface, the suction jig is closed and the pressure is reduced to form the conductive molded body, and then molding is performed. A method of forming a thin plate by laminating another composite sheet on the exposed surface of the conductive molded body and heating and compressing it can be mentioned. Since the other parts are the same as those in the above embodiment, the description thereof will be omitted.

本実施形態においても上記実施形態と同様の作用効果が期待でき、しかも、レドックスフロー電池用双極板10に十分な導電性と強度を付与することができ、レドックスフロー電池用双極板10の厚さ方向における導電性を向上させることができるのは明らかである。また、電池用カーボン部材1のメルトフローレートの値が高いので、成形加工が実に容易となる。 Also in this embodiment, the same action and effect as those in the above embodiment can be expected, and sufficient conductivity and strength can be imparted to the bipolar plate 10 for redox flow batteries, and the thickness of the bipolar plate 10 for redox flow batteries 10 can be imparted. It is clear that the conductivity in the direction can be improved. Further, since the value of the melt flow rate of the carbon member 1 for the battery is high, the molding process becomes really easy.

次に、図4と図5は本発明の第3の実施形態を示すもので、この場合には、プラズマ処理して製造した電池用カーボン部材1により、平面矩形で断面波形の燃料電池用セパレータ11を成形するようにしている。 Next, FIGS. 4 and 5 show a third embodiment of the present invention. In this case, a fuel cell separator having a rectangular plane and a corrugated cross section is provided by the carbon member 1 for a battery manufactured by plasma treatment. 11 is molded.

燃料電池用セパレータ11を製造する方法としては、特に限定されるものではないが、例えば専用金型等に電池用カーボン部材1を充填して加熱加圧した後、冷却することにより、薄板を成形する方法があげられる。 The method for manufacturing the fuel cell separator 11 is not particularly limited, but for example, a thin plate is formed by filling a special mold or the like with the carbon member 1 for a battery, heating and pressurizing, and then cooling. There is a way to do it.

また、別の製造方法として、プレス機の専用金型等に電池用カーボン部材1をセットして加熱加圧することにより、導電材2と熱可塑性樹脂3とが均一に分散した複合シートを必要枚数成形し、吸引治具内に複合シートをセットしてその露出面に別の導電材2を新たに充填し、吸引治具を閉鎖して減圧することで導電成形体を成形し、その後、成形した導電成形体の露出部に複合シートを積層して加熱圧縮することで薄板を成形する方法があげられる。その他の部分については、上記実施形態と同様であるので説明を省略する。 Further, as another manufacturing method, a required number of composite sheets in which the conductive material 2 and the thermoplastic resin 3 are uniformly dispersed are obtained by setting the carbon member 1 for a battery in a dedicated mold of a press machine or the like and heating and pressurizing it. Molded, a composite sheet is set in the suction jig, another conductive material 2 is newly filled in the exposed surface, the suction jig is closed and the pressure is reduced to form the conductive molded body, and then molding is performed. A method of forming a thin plate by laminating a composite sheet on an exposed portion of the conductive molded body and heating and compressing the composite sheet can be mentioned. Since the other parts are the same as those in the above embodiment, the description thereof will be omitted.

本実施形態においても上記実施形態と同様の作用効果が期待でき、しかも、燃料電池用セパレータ11に十分な導電性と強度を付与することができ、燃料電池用セパレータ11の厚さ方向における導電性を向上させることができるのは明らかである。さらに、電池用カーボン部材1のメルトフローレート値が高いので、成形加工がきわめて容易となる。 In this embodiment as well, the same action and effect as those in the above embodiment can be expected, and sufficient conductivity and strength can be imparted to the fuel cell separator 11, and the fuel cell separator 11 is conductive in the thickness direction. It is clear that can be improved. Further, since the carbon member 1 for the battery has a high melt flow rate value, the molding process becomes extremely easy.

なお、上記実施形態では導電材2と熱可塑性樹脂3とをプラズマ処理したが、何らこれに限定されるものではない。例えば、導電材2のみをプラズマ処理して熱可塑性樹脂3と混合しても良いし、熱可塑性樹脂3のみをプラズマ処理して導電材2と混合しても良い。 In the above embodiment, the conductive material 2 and the thermoplastic resin 3 are plasma-treated, but the present invention is not limited to this. For example, only the conductive material 2 may be plasma-treated and mixed with the thermoplastic resin 3, or only the thermoplastic resin 3 may be plasma-treated and mixed with the conductive material 2.

以下、本発明に係る電池用カーボン部材の実施例を比較例と共に説明する。
〔実施例1〕
先ず、電池用カーボン部材を製造するため、導電材500質量部と熱可塑性樹脂100質量部とを用意して混合することにより、粉末の混合物を調製し、この混合物を大気圧プラズマ処理装置にセットし、この大気圧プラズマ処理装置の高電圧電極間のプラズマ領域にプラズマ処理用の窒素ガスを導入した後、プラズマ処理して混合物の導電材と熱可塑性樹脂との相溶性を増大させた。
Hereinafter, examples of the carbon member for batteries according to the present invention will be described together with comparative examples.
[Example 1]
First, in order to manufacture a carbon member for a battery, a mixture of powders is prepared by preparing and mixing 500 parts by mass of a conductive material and 100 parts by mass of a thermoplastic resin, and this mixture is set in an atmospheric pressure plasma processing apparatus. Then, after introducing nitrogen gas for plasma treatment into the plasma region between the high voltage electrodes of this atmospheric pressure plasma processing apparatus, plasma treatment was performed to increase the compatibility between the conductive material of the mixture and the thermoplastic resin.

導電材としては、平均粒子径が30μmの鱗状黒鉛粒子〔日本黒鉛工業株式会社製:製品名CB‐150〕を使用した。また、熱可塑性樹脂としては、MFRが15g/10minのポリプロピレン樹脂〔プライムポリマー株式会社製:製品名PP J105P〕を使用した。MFRは、ポリプロピレン樹脂の場合、温度230℃、荷重2.16kgを作用させて測定したときの値である(JIS K7210)。大気圧プラズマ処理装置は、S5000‐BM〔株式会社魁半導体製:製品名〕を使用した。 As the conductive material, scaly graphite particles having an average particle diameter of 30 μm [manufactured by Nippon Graphite Industry Co., Ltd .: product name CB-150] were used. Further, as the thermoplastic resin, a polypropylene resin having an MFR of 15 g / 10 min [manufactured by Prime Polymer Co., Ltd .: product name PP J105P] was used. In the case of polypropylene resin, MFR is a value measured by applying a temperature of 230 ° C. and a load of 2.16 kg (JIS K7210). As the atmospheric pressure plasma processing apparatus, S5000-BM [manufactured by Kai Semiconductor Co., Ltd .: product name] was used.

混合物を大気圧プラズマ処理装置にセットする際、窒素ガスで混合物が飛散しないよう多孔性のフィルタで蓋をした。また、大気圧プラズマ処理装置でプラズマ処理する場合には、水蒸気含有の窒素ガスを流量30L/10minで供給し、大気圧プラズマ処理装置の出力を100Wに設定し、混合物を回転速度70rpmで攪拌しながら処理時間30分で処理した。 When the mixture was set in the atmospheric pressure plasma processing apparatus, it was covered with a porous filter to prevent the mixture from being scattered by nitrogen gas. When plasma treatment is performed with the atmospheric pressure plasma processing apparatus, nitrogen gas containing water vapor is supplied at a flow rate of 30 L / 10 min, the output of the atmospheric pressure plasma processing apparatus is set to 100 W, and the mixture is stirred at a rotation speed of 70 rpm. However, the processing time was 30 minutes.

次いで、大気圧プラズマ処理装置から粉末の混合物を取り出し、プラズマ処理した混合物を型開きした金型に充填し、金型を型締めして加熱圧縮成形することにより、電池用カーボン部材を厚さ2mmの試験用の薄板に成形した。金型は、熱可塑性樹脂がポリプロピレン樹脂なので、240℃で加熱圧縮成形した。 Next, the powder mixture is taken out from the atmospheric pressure plasma processing apparatus, the plasma-treated mixture is filled in a mold opened, and the mold is molded and heat-compressed to form a carbon member for a battery having a thickness of 2 mm. It was molded into a thin plate for testing. Since the thermoplastic resin of the mold is polypropylene resin, the mold was heat-compressed at 240 ° C.

電池用カーボン部材を成形したら、この電池用カーボン部材の曲げ強度、面方向体積抵抗値、及び厚み方向体積抵抗値をそれぞれ測定し、測定結果を表1にまとめた。電池用カーボン部材の曲げ強度は、JIS K7171(ISO178)の規格に基づき、電池用カーボン部材から短冊形の試験片を切り出し、この試験片を用いて曲げ強さを測定・評価した。また、電池用カーボン部材の面方向体積抵抗値は、四端子四探針法により測定した。具体的には、電池用カーボン部材から5cm×5cmの大きさの試験片を切り出し、試験片の体積抵抗値を測定機である低抵抗率計[三菱化学(株)製:製品名ロレスタGP MCP‐T610]により測定し、測定値を面方向体積抵抗値とした。 After molding the carbon member for the battery, the bending strength, the volume resistance value in the surface direction, and the volume resistance value in the thickness direction of the carbon member for the battery were measured, and the measurement results are summarized in Table 1. The bending strength of the carbon member for batteries was determined by cutting out a strip-shaped test piece from the carbon member for batteries based on the JIS K7171 (ISO178) standard, and measuring and evaluating the bending strength using this test piece. The volumetric resistance value in the surface direction of the carbon member for the battery was measured by the four-terminal four-probe method. Specifically, a test piece having a size of 5 cm x 5 cm is cut out from a carbon member for a battery, and the volume resistivity value of the test piece is measured by a low resistivity meter [Mitsubishi Chemical Co., Ltd .: Product name: Loresta GP MCP. -T610] was used, and the measured value was taken as the surface resistivity value.

電池用カーボン部材の厚み方向の体積抵抗値については、先ず、電池用カーボン部材から5cm×2.5cmの大きさの試験片を切り出し、この試験片をガラス管の間に挟んだ。ガラス管は、φ1cmのガラスU字管の屈曲した底部が切断され、この切断された底部に螺子穴付きのホルダが接着されたタイプとした。 Regarding the volume resistance value in the thickness direction of the carbon member for batteries, first, a test piece having a size of 5 cm × 2.5 cm was cut out from the carbon member for batteries, and this test piece was sandwiched between glass tubes. The glass tube was a type in which the bent bottom of a φ1 cm glass U-shaped tube was cut and a holder with a screw hole was adhered to the cut bottom.

試験片をガラス管の間に挟んだら、試験片とガラス管の両側部との間から水銀が漏れないよう螺子で固定し、ガラス管の両側部に水銀を一定量注入するとともに、水銀と用意した抵抗計〔日置電機株式会社製〕とを用意したリード線で接続し、導通するよう厚み方向の抵抗値を測定した後、以下の式で厚み方向の体積抵抗値に換算した。 After sandwiching the test piece between the glass tubes, fix it with a screw so that mercury does not leak from between the test piece and both sides of the glass tube, inject a certain amount of mercury into both sides of the glass tube, and prepare with mercury. The resistance meter [manufactured by Hioki Denki Co., Ltd.] was connected with the prepared lead wire, the resistance value in the thickness direction was measured so as to conduct, and then converted to the volume resistance value in the thickness direction by the following formula.

厚み方向の体積抵抗値〔mΩ・cm〕=厚み方向の抵抗値〔mΩ〕×0.5〔cm〕×0.5〔cm〕×π÷試験片の厚み〔cm〕
厚み方向の抵抗値は、面方向の体積抵抗値を測定した5cm×5cmの試験片を半分に切断し、この試験片の厚み方向の抵抗値を測定し、上記式で体積抵抗値に換算した値の平均値とした。
Volume resistance value in the thickness direction [mΩ · cm] = Resistance value in the thickness direction [mΩ] × 0.5 [cm] × 0.5 [cm] × π ÷ Thickness of test piece [cm]
The resistance value in the thickness direction was obtained by cutting a 5 cm × 5 cm test piece whose volume resistance value in the surface direction was measured in half, measuring the resistance value in the thickness direction of this test piece, and converting it into a volume resistance value by the above formula. The average value was used.

〔実施例2〕
基本的には実施例1と同様だが、熱可塑性樹脂を、MFRが9g/10minのポリプロピレン樹脂〔プライムポリマー株式会社製:製品名PP H700〕500質量部に変更した。その他は実施例1と同様にして電池用カーボン部材を成形し、この電池用カーボン部材の曲げ強度、面方向体積抵抗値、及び厚み方向体積抵抗値をそれぞれ測定してその測定結果を表1にまとめた。
[Example 2]
Basically the same as in Example 1, but the thermoplastic resin was changed to 500 parts by mass of a polypropylene resin [manufactured by Prime Polymer Co., Ltd .: product name PP H700] having an MFR of 9 g / 10 min. Other than that, the carbon member for the battery was molded in the same manner as in Example 1, and the bending strength, the volume resistance value in the plane direction, and the volume resistance value in the thickness direction of the carbon member for the battery were measured, and the measurement results are shown in Table 1. Summarized.

〔実施例3〕
基本的には実施例1と同様だが、導電材を、平均粒子径が25μmの人造黒鉛粒子〔日本黒鉛工業株式会社製:製品名PAG‐5〕500質量部に変更した。その他は実施例1と同様にして電池用カーボン部材を成形し、この電池用カーボン部材の曲げ強度、面方向体積抵抗値、及び厚み方向体積抵抗値をそれぞれ測定してその測定結果を表1にまとめた。
[Example 3]
Basically the same as in Example 1, but the conductive material was changed to 500 parts by mass of artificial graphite particles [manufactured by Nippon Graphite Industry Co., Ltd .: product name PAG-5] having an average particle diameter of 25 μm. Other than that, the carbon member for the battery was molded in the same manner as in Example 1, and the bending strength, the volume resistance value in the plane direction, and the volume resistance value in the thickness direction of the carbon member for the battery were measured, and the measurement results are shown in Table 1. Summarized.

〔実施例4〕
基本的には実施例1と同様だが、導電材を、平均粒子径が130μmの人造黒鉛粒子〔日本黒鉛工業株式会社製:製品名PAG‐120〕500質量部に変更した。その他は実施例1と同様にして電池用カーボン部材を成形し、この電池用カーボン部材の曲げ強度、面方向体積抵抗値、及び厚み方向体積抵抗値をそれぞれ測定してその測定結果を表1にまとめた。
[Example 4]
Basically the same as in Example 1, but the conductive material was changed to 500 parts by mass of artificial graphite particles [manufactured by Nippon Graphite Industry Co., Ltd .: product name PAG-120] having an average particle diameter of 130 μm. Other than that, the carbon member for the battery was molded in the same manner as in Example 1, and the bending strength, the volume resistance value in the plane direction, and the volume resistance value in the thickness direction of the carbon member for the battery were measured, and the measurement results are shown in Table 1. Summarized.

〔実施例5〕
基本的には実施例1と同様だが、導電材を、平均粒子径が22μmの膨張化黒鉛粒子〔富士黒鉛工業株式会社製:製品名BSP‐20〕500質量部に変更した。その他は実施例1と同様にして電池用カーボン部材を成形し、この電池用カーボン部材の曲げ強度、面方向体積抵抗値、及び厚み方向体積抵抗値をそれぞれ測定してその測定結果を表1にまとめた。
[Example 5]
Basically the same as in Example 1, but the conductive material was changed to 500 parts by mass of expanded graphite particles [manufactured by Fuji Kokuen Industry Co., Ltd .: product name BSP-20] having an average particle diameter of 22 μm. Other than that, the carbon member for the battery was molded in the same manner as in Example 1, and the bending strength, the volume resistance value in the plane direction, and the volume resistance value in the thickness direction of the carbon member for the battery were measured, and the measurement results are shown in Table 1. Summarized.

〔実施例6〕
基本的には実施例1と同様だが、導電材を、平均粒子径が22μmの球状黒鉛粒子〔日本黒鉛工業株式会社製:製品名CGB‐20〕500質量部に変更した。その他は実施例1と同様にして電池用カーボン部材を成形し、この電池用カーボン部材の曲げ強度、面方向体積抵抗値、及び厚み方向体積抵抗値をそれぞれ測定してその測定結果を表1に記載した。
[Example 6]
Basically the same as in Example 1, but the conductive material was changed to 500 parts by mass of spheroidal graphite particles [manufactured by Nippon Graphite Industry Co., Ltd .: product name CGB-20] having an average particle diameter of 22 μm. Other than that, the carbon member for the battery was molded in the same manner as in Example 1, and the bending strength, the volume resistance value in the plane direction, and the volume resistance value in the thickness direction of the carbon member for the battery were measured, and the measurement results are shown in Table 1. Described.

〔実施例7〕
基本的には実施例1と同様だが、導電材を、平均繊維長が160μmの炭素繊維〔帝人株式会社製:製品名HT M800〕500質量部に変更した。その他は実施例1と同様にして電池用カーボン部材を成形し、この電池用カーボン部材の曲げ強度、面方向体積抵抗値、及び厚み方向体積抵抗値をそれぞれ測定してその測定結果を表2に記載した。
[Example 7]
Basically the same as in Example 1, but the conductive material was changed to 500 parts by mass of carbon fiber [manufactured by Teijin Limited: product name HT M800] having an average fiber length of 160 μm. Other than that, the carbon member for the battery was molded in the same manner as in Example 1, and the bending strength, the volume resistance value in the plane direction, and the volume resistance value in the thickness direction of the carbon member for the battery were measured, and the measurement results are shown in Table 2. Described.

〔実施例8〕
基本的には実施例1と同様だが、導電材を、平均粒子径が130μmの人造黒鉛粒子〔日本黒鉛工業株式会社製:製品名PAG‐120〕400質量部、及び平均繊維長が160μmの炭素繊維〔帝人株式会社製:製品名HT M800〕100質量部の2種類に変更した。その他は実施例1と同様にして電池用カーボン部材を成形し、この電池用カーボン部材の曲げ強度、面方向体積抵抗値、及び厚み方向体積抵抗値をそれぞれ測定してその測定結果を表2に記載した。
[Example 8]
Basically the same as in Example 1, but the conductive material is artificial graphite particles with an average particle diameter of 130 μm [manufactured by Nippon Graphite Industry Co., Ltd .: product name PAG-120] 400 parts by mass, and carbon with an average fiber length of 160 μm. Fiber [Made by Teijin Limited: Product name HT M800] 100 parts by mass was changed to two types. Other than that, a carbon member for a battery was molded in the same manner as in Example 1, and the bending strength, the volume resistance value in the plane direction, and the volume resistance value in the thickness direction of the carbon member for the battery were measured, and the measurement results are shown in Table 2. Described.

〔実施例9〕
基本的には実施例1と同様だが、導電材を、平均粒子径が25μmの人造黒鉛粒子〔日本黒鉛工業株式会社製:製品名PAG‐5〕1000質量部に変更した。その他は実施例1と同様にして電池用カーボン部材を成形し、この電池用カーボン部材の曲げ強度、面方向体積抵抗値、及び厚み方向体積抵抗値をそれぞれ測定してその測定結果を表2に記載した。
[Example 9]
Basically the same as in Example 1, but the conductive material was changed to 1000 parts by mass of artificial graphite particles [manufactured by Nippon Graphite Industry Co., Ltd .: product name PAG-5] having an average particle diameter of 25 μm. Other than that, the carbon member for the battery was molded in the same manner as in Example 1, and the bending strength, the volume resistance value in the plane direction, and the volume resistance value in the thickness direction of the carbon member for the battery were measured, and the measurement results are shown in Table 2. Described.

〔実施例10〕
導電材350質量部と熱可塑性樹脂100質量部とを用意して混合することにより粉末の混合物を調製し、この混合物を大気圧プラズマ処理装置にセットし、この大気圧プラズマ処理装置の高電圧電極間のプラズマ領域にプラズマ処理用の窒素ガスを導入した後、プラズマ処理して混合物の導電材と熱可塑性樹脂との相溶性を増大させた。導電材としては、平均粒子径が25μmの人造黒鉛粒子〔プライムポリマー株式会社製:製品名PAG‐5〕を使用した。また、熱可塑性樹脂としては、MFRが120g/10minのポリフェニレンスルフィド樹脂〔東レ株式会社製:製品名PPS E2180〕を使用した。MFRは、ポリフェニレンスルフィド樹脂の場合、温度316℃、荷重5kgを作用させて測定したときの値である(JIS K7210)。
[Example 10]
A mixture of powders is prepared by preparing and mixing 350 parts by mass of a conductive material and 100 parts by mass of a thermoplastic resin, and this mixture is set in an atmospheric pressure plasma processing apparatus, and a high voltage electrode of this atmospheric pressure plasma processing apparatus is set. After introducing nitrogen gas for plasma treatment into the plasma region between them, plasma treatment was performed to increase the compatibility between the conductive material of the mixture and the thermoplastic resin. As the conductive material, artificial graphite particles having an average particle diameter of 25 μm [manufactured by Prime Polymer Co., Ltd .: product name PAG-5] were used. Further, as the thermoplastic resin, a polyphenylene sulfide resin having an MFR of 120 g / 10 min [manufactured by Toray Industries, Inc .: product name PPS E2180] was used. In the case of a polyphenylene sulfide resin, MFR is a value measured at a temperature of 316 ° C. and a load of 5 kg (JIS K7210).

混合物を大気圧プラズマ処理装置にセットする際、窒素ガスで混合物が飛散しないよう多孔性のフィルタで蓋をした。また、大気圧プラズマ処理装置でプラズマ処理する場合には、水蒸気含有の窒素ガスを流量30L/10minで供給し、大気圧プラズマ処理装置の出力を100Wに設定し、混合物を回転速度70rpmで攪拌しながら処理時間30分で処理した。 When the mixture was set in the atmospheric pressure plasma processing apparatus, it was covered with a porous filter to prevent the mixture from being scattered by nitrogen gas. When plasma treatment is performed with the atmospheric pressure plasma processing apparatus, nitrogen gas containing water vapor is supplied at a flow rate of 30 L / 10 min, the output of the atmospheric pressure plasma processing apparatus is set to 100 W, and the mixture is stirred at a rotation speed of 70 rpm. However, the processing time was 30 minutes.

次いで、大気圧プラズマ処理装置から粉末の混合物を取り出し、プラズマ処理した混合物を型開きした金型に充填し、金型を型締めして加熱圧縮成形することにより、電池用カーボン部材を厚さ2mmの試験用の薄板に成形した。金型は、熱可塑性樹脂がポリプロピレン樹脂なので、370℃で加熱圧縮成形した。 Next, the powder mixture is taken out from the atmospheric pressure plasma processing apparatus, the plasma-treated mixture is filled in a mold opened, and the mold is molded and heat-compressed to form a carbon member for a battery having a thickness of 2 mm. It was molded into a thin plate for testing. Since the thermoplastic resin of the mold is polypropylene resin, the mold was heat-compressed at 370 ° C.

電池用カーボン部材を成形したら、実施例1と同様にして電池用カーボン部材の曲げ強度、面方向体積抵抗値、及び厚み方向体積抵抗値をそれぞれ測定し、測定結果を表3にまとめた。 After molding the carbon member for the battery, the bending strength, the volume resistance value in the surface direction, and the volume resistance value in the thickness direction of the carbon member for the battery were measured in the same manner as in Example 1, and the measurement results are summarized in Table 3.

〔実施例11〕
基本的には実施例10と同様だが、導電材を、平均粒子径が130μmの人造黒鉛粒子〔日本黒鉛工業株式会社製:製品名PAG‐120〕350質量部に変更した。その他は実施例10と同様にして電池用カーボン部材を成形し、この電池用カーボン部材の曲げ強度、面方向体積抵抗値、及び厚み方向体積抵抗値をそれぞれ測定してその測定結果を表3にまとめた。
[Example 11]
Basically the same as in Example 10, but the conductive material was changed to 350 parts by mass of artificial graphite particles [manufactured by Nippon Graphite Industry Co., Ltd .: product name PAG-120] having an average particle diameter of 130 μm. Other than that, a carbon member for a battery was molded in the same manner as in Example 10, and the bending strength, the volume resistance value in the surface direction, and the volume resistance value in the thickness direction of the carbon member for the battery were measured, and the measurement results are shown in Table 3. Summarized.

〔実施例12〕
基本的には実施例10と同様だが、導電材を、平均繊維長が160μmの炭素繊維〔帝人株式会社製:製品名HT M800〕350質量部に変更した。その他は実施例10と同様にして電池用カーボン部材を成形し、この電池用カーボン部材の曲げ強度、面方向体積抵抗値、及び厚み方向体積抵抗値をそれぞれ測定してその測定結果を表3に記載した。
[Example 12]
Basically the same as in Example 10, but the conductive material was changed to 350 parts by mass of carbon fiber [manufactured by Teijin Limited: product name HT M800] having an average fiber length of 160 μm. Other than that, a carbon member for a battery was molded in the same manner as in Example 10, and the bending strength, the volume resistance value in the surface direction, and the volume resistance value in the thickness direction of the carbon member for the battery were measured, and the measurement results are shown in Table 3. Described.

〔実施例13〕
基本的には実施例10と同様だが、導電材を、平均粒子径が25μmの人造黒鉛粒子〔プライムポリマー株式会社製:製品名PAG‐5〕1000質量部に変更した。また、熱可塑性樹脂として、MFRが600g/10minのポリフェニレンスルフィド樹脂〔東レ株式会社製:製品名PPS M2888〕を用いた。その他は実施例10と同様にして電池用カーボン部材を成形し、この電池用カーボン部材の曲げ強度、面方向体積抵抗値、及び厚み方向体積抵抗値をそれぞれ測定してその測定結果を表3に記載した。
[Example 13]
Basically the same as in Example 10, but the conductive material was changed to 1000 parts by mass of artificial graphite particles [manufactured by Prime Polymer Co., Ltd .: product name PAG-5] having an average particle diameter of 25 μm. Further, as the thermoplastic resin, a polyphenylene sulfide resin having an MFR of 600 g / 10 min [manufactured by Toray Industries, Inc .: product name PPS M2888] was used. Other than that, a carbon member for a battery was molded in the same manner as in Example 10, and the bending strength, the volume resistance value in the surface direction, and the volume resistance value in the thickness direction of the carbon member for the battery were measured, and the measurement results are shown in Table 3. Described.

〔実施例14〕
電池用カーボン部材を製造するため、導電材500質量部を大気圧プラズマ処理装置にセットし、この大気圧プラズマ処理装置の高電圧電極間のプラズマ領域にプラズマ処理用の窒素ガスを導入して実施例1と同様にプラズマ処理した。導電材は、平均粒子径が25μmの人造黒鉛粒子〔プライムポリマー株式会社製:製品名PAG‐5〕500質量部とした。
[Example 14]
In order to manufacture a carbon member for a battery, 500 parts by mass of a conductive material is set in an atmospheric pressure plasma processing apparatus, and nitrogen gas for plasma processing is introduced into a plasma region between high voltage electrodes of this atmospheric pressure plasma processing apparatus. Plasma treatment was performed in the same manner as in Example 1. The conductive material was 500 parts by mass of artificial graphite particles [manufactured by Prime Polymer Co., Ltd .: product name PAG-5] having an average particle diameter of 25 μm.

導電材をプラズマ処理したら、用意したプラズマ未処理の熱可塑性樹脂100質量部と混合することにより、粉末の混合物を調製した。熱可塑性樹脂としては、MFRが15g/10minのポリプロピレン樹脂〔プライムポリマー株式会社製:製品名PP J105P〕を使用した。 After plasma-treating the conductive material, a powder mixture was prepared by mixing with 100 parts by mass of the prepared thermoplastic resin not treated with plasma. As the thermoplastic resin, a polypropylene resin having an MFR of 15 g / 10 min [manufactured by Prime Polymer Co., Ltd .: product name PP J105P] was used.

次いで、粉末の混合物を型開きした金型に充填し、金型を型締めして加熱圧縮成形することにより、電池用カーボン部材を厚さ2mmの試験用の薄板に成形した。金型は、熱可塑性樹脂がポリプロピレン樹脂なので、240℃で加熱圧縮成形した。
電池用カーボン部材を成形したら、実施例1と同様にして電池用カーボン部材の曲げ強度、面方向体積抵抗値、及び厚み方向体積抵抗値をそれぞれ測定し、測定結果を表4にまとめた。
Next, the mixture of powders was filled in an open mold, and the mold was compacted and heat-compressed to form a carbon member for a battery into a thin plate for testing having a thickness of 2 mm. Since the thermoplastic resin of the mold is polypropylene resin, the mold was heat-compressed at 240 ° C.
After molding the carbon member for the battery, the bending strength, the volume resistance value in the surface direction, and the volume resistance value in the thickness direction of the carbon member for the battery were measured in the same manner as in Example 1, and the measurement results are summarized in Table 4.

〔実施例15〕
基本的には実施例14と同様だが、導電材を、平均粒子径が130μmの人造黒鉛粒子〔日本黒鉛工業株式会社製:製品名PAG‐120〕350質量部に変更した。また、プラズマ未処理の熱可塑性樹脂を、MFRが120g/10minのポリフェニレンスルフィド樹脂〔東レ株式会社製:製品名PPS E2180〕に変更した。MFRは、ポリフェニレンスルフィド樹脂の場合、温度316℃、荷重5kgを作用させて測定したときの値である(JIS K7210)。その他は実施例14と同様にして電池用カーボン部材を成形し、この電池用カーボン部材の曲げ強度、面方向体積抵抗値、及び厚み方向体積抵抗値をそれぞれ測定してその測定結果を表4に記載した。
[Example 15]
Basically the same as in Example 14, but the conductive material was changed to 350 parts by mass of artificial graphite particles [manufactured by Nippon Graphite Industry Co., Ltd .: product name PAG-120] having an average particle diameter of 130 μm. Further, the plasma-untreated thermoplastic resin was changed to a polyphenylene sulfide resin having an MFR of 120 g / 10 min [manufactured by Toray Industries, Inc .: product name PPS E2180]. In the case of a polyphenylene sulfide resin, MFR is a value measured at a temperature of 316 ° C. and a load of 5 kg (JIS K7210). Other than that, a carbon member for a battery was formed in the same manner as in Example 14, and the bending strength, the volume resistance value in the surface direction, and the volume resistance value in the thickness direction of the carbon member for the battery were measured, and the measurement results are shown in Table 4. Described.

〔実施例16〕
電池用カーボン部材を製造するため、熱可塑性樹脂100質量部を大気圧プラズマ処理装置にセットし、この大気圧プラズマ処理装置の高電圧電極間のプラズマ領域にプラズマ処理用の窒素ガスを導入して実施例1と同様にプラズマ処理した。熱可塑性樹脂としては、MFRが15g/10minのポリプロピレン樹脂〔プライムポリマー株式会社製:製品名PP J105P〕を使用した。
[Example 16]
In order to manufacture a carbon member for a battery, 100 parts by mass of a thermoplastic resin is set in an atmospheric pressure plasma processing apparatus, and nitrogen gas for plasma processing is introduced into a plasma region between high voltage electrodes of this atmospheric pressure plasma processing apparatus. Plasma treatment was performed in the same manner as in Example 1. As the thermoplastic resin, a polypropylene resin having an MFR of 15 g / 10 min [manufactured by Prime Polymer Co., Ltd .: product name PP J105P] was used.

熱可塑性樹脂をプラズマ処理したら、用意したプラズマ未処理の導電材500質量部と混合することにより、粉末の混合物を調製した。導電材は、平均粒子径が25μmの人造黒鉛粒子〔プライムポリマー株式会社製:製品名PAG‐5〕500質量部を使用した。 After plasma-treating the thermoplastic resin, a powder mixture was prepared by mixing with 500 parts by mass of the prepared conductive material not treated with plasma. As the conductive material, 500 parts by mass of artificial graphite particles [manufactured by Prime Polymer Co., Ltd .: product name PAG-5] having an average particle diameter of 25 μm were used.

次いで、粉末の混合物を型開きした金型に充填し、金型を型締めして加熱圧縮成形することにより、電池用カーボン部材を試験用の薄板に成形した。電池用カーボン部材を成形したら、実施例1と同様にして電池用カーボン部材の曲げ強度、面方向体積抵抗値、及び厚み方向体積抵抗値をそれぞれ測定し、測定結果を表4にまとめた。 Next, the mixture of powders was filled in an opened mold, and the mold was compacted and heat-compressed to form a carbon member for a battery into a thin plate for testing. After molding the carbon member for the battery, the bending strength, the volume resistance value in the surface direction, and the volume resistance value in the thickness direction of the carbon member for the battery were measured in the same manner as in Example 1, and the measurement results are summarized in Table 4.

〔実施例17〕
基本的には実施例16と同様だが、プラズマ未処理の導電材を、平均粒子径が25μmの人造黒鉛粒子〔日本黒鉛工業株式会社製:製品名PAG‐5〕350質量部に変更した。また、熱可塑性樹脂を、MFRが120g/10minのポリフェニレンスルフィド樹脂〔東レ株式会社製:製品名PPS E2180〕に変更した。その他は実施例16と同様にして電池用カーボン部材を成形し、この電池用カーボン部材の曲げ強度、面方向体積抵抗値、及び厚み方向体積抵抗値をそれぞれ測定してその測定結果を表4に記載した。
[Example 17]
Basically the same as in Example 16, the plasma-untreated conductive material was changed to 350 parts by mass of artificial graphite particles [manufactured by Nippon Graphite Industry Co., Ltd .: product name PAG-5] having an average particle diameter of 25 μm. Further, the thermoplastic resin was changed to a polyphenylene sulfide resin having an MFR of 120 g / 10 min [manufactured by Toray Industries, Inc .: product name PPS E2180]. Other than that, the carbon member for the battery was molded in the same manner as in Example 16, the bending strength, the volume resistance value in the plane direction, and the volume resistance value in the thickness direction of the carbon member for the battery were measured, and the measurement results are shown in Table 4. Described.

〔実施例18〕
電池用カーボン部材を製造するため、導電材500質量部と熱可塑性樹脂100質量部とを用意して混合することにより、粉末の混合物を調製し、この混合物を大気圧プラズマ処理装置にセットし、この大気圧プラズマ処理装置の高電圧電極間のプラズマ領域にプラズマ処理用の酸素ガスを導入した後、プラズマ処理して混合物の導電材と熱可塑性樹脂との相溶性を増大させた。
[Example 18]
In order to manufacture a carbon member for a battery, 500 parts by mass of a conductive material and 100 parts by mass of a thermoplastic resin are prepared and mixed to prepare a powder mixture, and this mixture is set in an atmospheric pressure plasma processing apparatus. After introducing oxygen gas for plasma treatment into the plasma region between the high voltage electrodes of this atmospheric pressure plasma processing device, plasma treatment was performed to increase the compatibility between the conductive material of the mixture and the thermoplastic resin.

導電材としては、平均粒子径が25μmの人造黒鉛粒子〔日本黒鉛工業株式会社製:製品名PAG‐5〕を使用した。また、熱可塑性樹脂としては、MFRが15g/10minのポリプロピレン樹脂〔プライムポリマー株式会社製:製品名PP J105P〕を使用した。MFRは、ポリプロピレン樹脂の場合、温度230℃、荷重2.16kgを作用させて測定したときの値である(JIS K7210)。大気圧プラズマ処理装置は、S5000‐BM〔株式会社魁半導体製:製品名〕を使用した。 As the conductive material, artificial graphite particles having an average particle diameter of 25 μm [manufactured by Nippon Graphite Industry Co., Ltd .: product name PAG-5] were used. Further, as the thermoplastic resin, a polypropylene resin having an MFR of 15 g / 10 min [manufactured by Prime Polymer Co., Ltd .: product name PP J105P] was used. In the case of polypropylene resin, MFR is a value measured by applying a temperature of 230 ° C. and a load of 2.16 kg (JIS K7210). As the atmospheric pressure plasma processing apparatus, S5000-BM [manufactured by Kai Semiconductor Co., Ltd .: product name] was used.

混合物を大気圧プラズマ処理装置にセットする際、酸素ガスで混合物が飛散しないよう多孔性のフィルタで蓋をした。また、大気圧プラズマ処理装置でプラズマ処理する場合には、水蒸気を含有しない酸素ガスを流量30L/10minで供給し、大気圧プラズマ処理装置の出力を100Wに設定し、混合物を回転速度70rpmで攪拌しながら処理時間30分で処理した。 When the mixture was set in the atmospheric pressure plasma processing apparatus, it was covered with a porous filter to prevent the mixture from being scattered by oxygen gas. When plasma treatment is performed with the atmospheric pressure plasma processing apparatus, oxygen gas containing no water vapor is supplied at a flow rate of 30 L / 10 min, the output of the atmospheric pressure plasma processing apparatus is set to 100 W, and the mixture is stirred at a rotation speed of 70 rpm. The processing time was 30 minutes.

その他は実施例1と同様にして電池用カーボン部材を試験用の薄板に成形し、電池用カーボン部材を成形したら、実施例1と同様にして電池用カーボン部材の曲げ強度、面方向体積抵抗値、及び厚み方向体積抵抗値をそれぞれ測定し、測定結果を表5にまとめた。 Other than that, the carbon member for the battery was formed into a thin plate for testing in the same manner as in Example 1, and after the carbon member for the battery was formed, the bending strength and the volume resistance value in the plane direction of the carbon member for the battery were formed in the same manner as in Example 1. , And the volume resistance value in the thickness direction were measured, respectively, and the measurement results are summarized in Table 5.

〔実施例19〕
基本的には実施例18と同様だが、導電材を、平均粒子径が130μmの人造黒鉛粒子〔日本黒鉛工業株式会社製:製品名PAG‐120〕500質量部に変更した。その他は実施例18と同様にして電池用カーボン部材を成形し、この電池用カーボン部材の曲げ強度、面方向体積抵抗値、及び厚み方向体積抵抗値をそれぞれ測定してその測定結果を表5に記載した。
[Example 19]
Basically the same as in Example 18, but the conductive material was changed to 500 parts by mass of artificial graphite particles [manufactured by Nippon Graphite Industry Co., Ltd .: product name PAG-120] having an average particle diameter of 130 μm. Other than that, the carbon member for the battery was molded in the same manner as in Example 18, the bending strength, the volume resistance value in the plane direction, and the volume resistance value in the thickness direction of the carbon member for the battery were measured, and the measurement results are shown in Table 5. Described.

〔実施例20〕
基本的には実施例18と同様だが、導電材を、平均粒子径が25μmの人造黒鉛粒子〔日本黒鉛工業株式会社製:製品名PAG‐5〕350質量部に変更した。また、熱可塑性樹脂を、MFRが120g/10minのポリフェニレンスルフィド樹脂〔東レ株式会社製:製品名PPS E2180〕に変更した。その他は実施例18と同様にして電池用カーボン部材を成形し、この電池用カーボン部材の曲げ強度、面方向体積抵抗値、及び厚み方向体積抵抗値をそれぞれ測定してその測定結果を表5に記載した。
[Example 20]
Basically the same as in Example 18, but the conductive material was changed to 350 parts by mass of artificial graphite particles [manufactured by Nippon Graphite Industry Co., Ltd .: product name PAG-5] having an average particle diameter of 25 μm. Further, the thermoplastic resin was changed to a polyphenylene sulfide resin having an MFR of 120 g / 10 min [manufactured by Toray Industries, Inc .: product name PPS E2180]. Other than that, the carbon member for the battery was molded in the same manner as in Example 18, the bending strength, the volume resistance value in the plane direction, and the volume resistance value in the thickness direction of the carbon member for the battery were measured, and the measurement results are shown in Table 5. Described.

〔実施例21〕
基本的には実施例20と同様だが、導電材を、平均粒子径が130μmの人造黒鉛粒子〔日本黒鉛工業株式会社製:製品名PAG‐120〕350質量部に変更した。その他は実施例20と同様にして電池用カーボン部材を成形し、この電池用カーボン部材の曲げ強度、面方向体積抵抗値、及び厚み方向体積抵抗値をそれぞれ測定してその測定結果を表5に記載した。
[Example 21]
Basically, the same as in Example 20, but the conductive material was changed to 350 parts by mass of artificial graphite particles [manufactured by Nippon Graphite Industry Co., Ltd .: product name PAG-120] having an average particle diameter of 130 μm. Other than that, a carbon member for a battery was formed in the same manner as in Example 20, and the bending strength, the volume resistance value in the surface direction, and the volume resistance value in the thickness direction of the carbon member for the battery were measured, and the measurement results are shown in Table 5. Described.

Figure 2020139018
Figure 2020139018

Figure 2020139018
Figure 2020139018

Figure 2020139018
Figure 2020139018

Figure 2020139018
Figure 2020139018

Figure 2020139018
Figure 2020139018

〔比較例1〕
先ず、電池用カーボン部材を製造するため、導電材500質量部と熱可塑性樹脂100質量部とを用意して混合することにより、プラズマ未処理の粉末の混合物を調製した。導電材としては、平均粒子径が30μmの鱗状黒鉛粒子〔日本黒鉛工業株式会社製:製品名CB‐150〕を使用した。また、熱可塑性樹脂としては、MFRが15g/10minのポリプロピレン樹脂〔プライムポリマー株式会社製:製品名PP J105P〕を使用した。
[Comparative Example 1]
First, in order to manufacture a carbon member for a battery, a mixture of powders untreated with plasma was prepared by preparing and mixing 500 parts by mass of a conductive material and 100 parts by mass of a thermoplastic resin. As the conductive material, scaly graphite particles having an average particle diameter of 30 μm [manufactured by Nippon Graphite Industry Co., Ltd .: product name CB-150] were used. Further, as the thermoplastic resin, a polypropylene resin having an MFR of 15 g / 10 min [manufactured by Prime Polymer Co., Ltd .: product name PP J105P] was used.

次いで、プラズマ未処理の混合物を型開きした金型に充填し、金型を型締めして加熱圧縮成形することにより、電池用カーボン部材を厚さ2mmの試験用の薄板に成形した。金型は、熱可塑性樹脂がポリプロピレン樹脂なので、240℃で加熱圧縮成形した。
電池用カーボン部材を成形したら、実施例1と同様に、電池用カーボン部材の曲げ強度、面方向体積抵抗値、及び厚み方向体積抵抗値をそれぞれ測定し、測定結果を表6にまとめた。
Next, the untreated plasma mixture was filled in an open mold, and the mold was compacted and heat-compressed to form a carbon member for a battery into a thin plate for testing having a thickness of 2 mm. Since the thermoplastic resin of the mold is polypropylene resin, the mold was heat-compressed at 240 ° C.
After molding the carbon member for the battery, the bending strength, the volume resistance value in the surface direction, and the volume resistance value in the thickness direction of the carbon member for the battery were measured in the same manner as in Example 1, and the measurement results are summarized in Table 6.

〔比較例2〕
基本的には比較例1と同様だが、熱可塑性樹脂を、MFRが9g/10minのポリプロピレン樹脂〔プライムポリマー株式会社製:製品名PP H700〕500質量部に変更した。その他は比較例1と同様にして電池用カーボン部材を成形し、この電池用カーボン部材の曲げ強度、面方向体積抵抗値、及び厚み方向体積抵抗値をそれぞれ測定してその測定結果を表6にまとめた。
[Comparative Example 2]
Basically the same as in Comparative Example 1, but the thermoplastic resin was changed to 500 parts by mass of a polypropylene resin [manufactured by Prime Polymer Co., Ltd .: product name PP H700] having an MFR of 9 g / 10 min. Other than that, the carbon member for the battery was molded in the same manner as in Comparative Example 1, and the bending strength, the volume resistance value in the plane direction, and the volume resistance value in the thickness direction of the carbon member for the battery were measured and the measurement results are shown in Table 6. Summarized.

〔比較例3〕
基本的には比較例1と同様だが、導電材を、平均粒子径が25μmの人造黒鉛粒子〔日本黒鉛工業株式会社製:製品名PAG‐5〕500質量部に変更した。その他は比較例1と同様にして電池用カーボン部材を成形し、この電池用カーボン部材の曲げ強度、面方向体積抵抗値、及び厚み方向体積抵抗値をそれぞれ測定してその測定結果を表6にまとめた。
[Comparative Example 3]
Basically the same as in Comparative Example 1, but the conductive material was changed to 500 parts by mass of artificial graphite particles [manufactured by Nippon Graphite Industry Co., Ltd .: product name PAG-5] having an average particle diameter of 25 μm. Other than that, the carbon member for the battery was molded in the same manner as in Comparative Example 1, and the bending strength, the volume resistance value in the plane direction, and the volume resistance value in the thickness direction of the carbon member for the battery were measured and the measurement results are shown in Table 6. Summarized.

〔比較例4〕
基本的には比較例1と同様だが、導電材を、平均粒子径が130μmの人造黒鉛粒子〔日本黒鉛工業株式会社製:製品名PAG‐120〕500質量部に変更した。その他は比較例1と同様にして電池用カーボン部材を成形し、この電池用カーボン部材の曲げ強度、面方向体積抵抗値、及び厚み方向体積抵抗値をそれぞれ測定してその測定結果を表6にまとめた。
[Comparative Example 4]
Basically the same as in Comparative Example 1, but the conductive material was changed to 500 parts by mass of artificial graphite particles [manufactured by Nippon Graphite Industry Co., Ltd .: product name PAG-120] having an average particle diameter of 130 μm. Other than that, the carbon member for the battery was molded in the same manner as in Comparative Example 1, and the bending strength, the volume resistance value in the plane direction, and the volume resistance value in the thickness direction of the carbon member for the battery were measured and the measurement results are shown in Table 6. Summarized.

〔比較例5〕
基本的には比較例1と同様だが、導電材を、平均粒子径が22μmの膨張化黒鉛粒子〔富士黒鉛工業株式会社製:製品名BSP‐20〕500質量部に変更した。その他は比較例1と同様にして電池用カーボン部材を成形し、この電池用カーボン部材の曲げ強度、面方向体積抵抗値、及び厚み方向体積抵抗値をそれぞれ測定してその測定結果を表6にまとめた。
[Comparative Example 5]
Basically the same as in Comparative Example 1, but the conductive material was changed to 500 parts by mass of expanded graphite particles [manufactured by Fuji Kokuen Industry Co., Ltd .: product name BSP-20] having an average particle diameter of 22 μm. Other than that, the carbon member for the battery was molded in the same manner as in Comparative Example 1, and the bending strength, the volume resistance value in the plane direction, and the volume resistance value in the thickness direction of the carbon member for the battery were measured and the measurement results are shown in Table 6. Summarized.

〔比較例6〕
基本的には比較例1と同様だが、導電材を、平均粒子径が22μmの球状黒鉛粒子〔日本黒鉛工業株式会社製:製品名CGB‐20〕500質量部に変更した。その他は比較例1と同様にして電池用カーボン部材を成形し、この電池用カーボン部材の曲げ強度、面方向体積抵抗値、及び厚み方向体積抵抗値をそれぞれ測定してその測定結果を表6に記載した。
[Comparative Example 6]
Basically the same as in Comparative Example 1, but the conductive material was changed to 500 parts by mass of spheroidal graphite particles [manufactured by Nippon Graphite Industry Co., Ltd .: product name CGB-20] having an average particle diameter of 22 μm. Other than that, the carbon member for the battery was molded in the same manner as in Comparative Example 1, and the bending strength, the volume resistance value in the plane direction, and the volume resistance value in the thickness direction of the carbon member for the battery were measured and the measurement results are shown in Table 6. Described.

〔比較例7〕
基本的には比較例1と同様だが、導電材を、平均繊維長が160μmの炭素繊維〔帝人株式会社製:製品名HT M800〕500質量部に変更した。その他は比較例1と同様にして電池用カーボン部材を成形し、この電池用カーボン部材の曲げ強度、面方向体積抵抗値、及び厚み方向体積抵抗値をそれぞれ測定してその測定結果を表7に記載した。
[Comparative Example 7]
Basically the same as in Comparative Example 1, but the conductive material was changed to 500 parts by mass of carbon fiber [manufactured by Teijin Limited: product name HT M800] having an average fiber length of 160 μm. Other than that, the carbon member for the battery was molded in the same manner as in Comparative Example 1, and the bending strength, the volume resistance value in the plane direction, and the volume resistance value in the thickness direction of the carbon member for the battery were measured and the measurement results are shown in Table 7. Described.

〔比較例8〕
基本的には比較例1と同様だが、導電材を、平均粒子径が130μmの人造黒鉛粒子〔日本黒鉛工業株式会社製:製品名PAG‐120〕400質量部、及び平均繊維長が160μmの炭素繊維〔帝人株式会社製:製品名HT M800〕100質量部に変更した。その他は比較例1と同様にして電池用カーボン部材を成形し、この電池用カーボン部材の曲げ強度、面方向体積抵抗値、及び厚み方向体積抵抗値をそれぞれ測定してその測定結果を表7に記載した。
[Comparative Example 8]
Basically the same as in Comparative Example 1, but the conductive material is artificial graphite particles with an average particle diameter of 130 μm [manufactured by Nippon Graphite Industry Co., Ltd .: product name PAG-120] 400 parts by mass, and carbon with an average fiber length of 160 μm. Fiber [Made by Teijin Limited: Product name HT M800] was changed to 100 parts by mass. Other than that, the carbon member for the battery was molded in the same manner as in Comparative Example 1, and the bending strength, the volume resistance value in the plane direction, and the volume resistance value in the thickness direction of the carbon member for the battery were measured and the measurement results are shown in Table 7. Described.

〔比較例9〕
基本的には比較例1と同様だが、導電材を、平均粒子径が25μmの人造黒鉛粒子〔日本黒鉛工業株式会社製:製品名PAG‐5〕1000質量部に変更した。その他は比較例1と同様にして電池用カーボン部材を成形し、この電池用カーボン部材の曲げ強度、面方向体積抵抗値、及び厚み方向体積抵抗値をそれぞれ測定してその測定結果を表7に記載した。
[Comparative Example 9]
Basically the same as in Comparative Example 1, but the conductive material was changed to 1000 parts by mass of artificial graphite particles [manufactured by Nippon Graphite Industry Co., Ltd .: product name PAG-5] having an average particle diameter of 25 μm. Other than that, the carbon member for the battery was molded in the same manner as in Comparative Example 1, and the bending strength, the volume resistance value in the plane direction, and the volume resistance value in the thickness direction of the carbon member for the battery were measured and the measurement results are shown in Table 7. Described.

〔比較例10〕
導電材350質量部と熱可塑性樹脂100質量部とを用意して混合することにより、プラズマ未処理の粉末の混合物を調製した。導電材としては、平均粒子径が25μmの人造黒鉛粒子〔プライムポリマー株式会社製:製品名PAG‐5〕を使用した。また、熱可塑性樹脂としては、MFRが120g/10minのポリフェニレンスルフィド樹脂〔東レ株式会社製:製品名PPS E2180〕を使用した。
[Comparative Example 10]
A mixture of powders untreated with plasma was prepared by preparing and mixing 350 parts by mass of the conductive material and 100 parts by mass of the thermoplastic resin. As the conductive material, artificial graphite particles having an average particle diameter of 25 μm [manufactured by Prime Polymer Co., Ltd .: product name PAG-5] were used. Further, as the thermoplastic resin, a polyphenylene sulfide resin having an MFR of 120 g / 10 min [manufactured by Toray Industries, Inc .: product name PPS E2180] was used.

次いで、プラズマ未処理の混合物を型開きした金型に充填し、金型を型締めして加熱圧縮成形することにより、電池用カーボン部材を厚さ2mmの試験用の薄板に成形した。電池用カーボン部材を成形したら、比較例1と同様、電池用カーボン部材の曲げ強度、面方向体積抵抗値、及び厚み方向体積抵抗値をそれぞれ測定し、測定結果を表8にまとめた。 Next, the untreated plasma mixture was filled in an open mold, and the mold was compacted and heat-compressed to form a carbon member for a battery into a thin plate for testing having a thickness of 2 mm. After molding the carbon member for the battery, the bending strength, the volume resistance value in the surface direction, and the volume resistance value in the thickness direction of the carbon member for the battery were measured in the same manner as in Comparative Example 1, and the measurement results are summarized in Table 8.

〔比較例11〕
基本的には比較例10と同様だが、導電材を、平均粒子径が130μmの人造黒鉛粒子〔日本黒鉛工業株式会社製:製品名PAG‐120〕350質量部に変更した。その他は比較例10と同様にして電池用カーボン部材を成形し、この電池用カーボン部材の曲げ強度、面方向体積抵抗値、及び厚み方向体積抵抗値をそれぞれ測定してその測定結果を表8にまとめた。
[Comparative Example 11]
Basically the same as in Comparative Example 10, but the conductive material was changed to 350 parts by mass of artificial graphite particles [manufactured by Nippon Graphite Industry Co., Ltd .: product name PAG-120] having an average particle diameter of 130 μm. Other than that, a carbon member for a battery was molded in the same manner as in Comparative Example 10, and the bending strength, the volume resistance value in the plane direction, and the volume resistance value in the thickness direction of the carbon member for the battery were measured, and the measurement results are shown in Table 8. Summarized.

〔比較例12〕
基本的には比較例10と同様だが、導電材を、平均繊維長が160μmの炭素繊維〔帝人株式会社製:製品名HT M800〕350質量部に変更した。その他は比較例10と同様にして電池用カーボン部材を成形し、この電池用カーボン部材の曲げ強度、面方向体積抵抗値、及び厚み方向体積抵抗値をそれぞれ測定してその測定結果を表8に記載した。
[Comparative Example 12]
Basically the same as in Comparative Example 10, but the conductive material was changed to 350 parts by mass of carbon fiber [manufactured by Teijin Limited: product name HT M800] having an average fiber length of 160 μm. Other than that, a carbon member for a battery was molded in the same manner as in Comparative Example 10, and the bending strength, the volume resistance value in the plane direction, and the volume resistance value in the thickness direction of the carbon member for the battery were measured, and the measurement results are shown in Table 8. Described.

〔比較例13〕
基本的には比較例10と同様だが、導電材を、平均粒子径が25μmの人造黒鉛粒子〔プライムポリマー株式会社製:製品名PAG‐5〕1000質量部に変更した。また、熱可塑性樹脂として、MFRが600g/10minのポリフェニレンスルフィド樹脂〔東レ株式会社製:製品名PPS M2888〕を用いた。その他は比較例10と同様にして電池用カーボン部材を成形し、この電池用カーボン部材の曲げ強度、面方向体積抵抗値、及び厚み方向体積抵抗値をそれぞれ測定してその測定結果を表8に記載した。
[Comparative Example 13]
Basically the same as in Comparative Example 10, but the conductive material was changed to 1000 parts by mass of artificial graphite particles [manufactured by Prime Polymer Co., Ltd .: product name PAG-5] having an average particle diameter of 25 μm. Further, as the thermoplastic resin, a polyphenylene sulfide resin having an MFR of 600 g / 10 min [manufactured by Toray Industries, Inc .: product name PPS M2888] was used. Other than that, a carbon member for a battery was molded in the same manner as in Comparative Example 10, and the bending strength, the volume resistance value in the plane direction, and the volume resistance value in the thickness direction of the carbon member for the battery were measured, and the measurement results are shown in Table 8. Described.

Figure 2020139018
Figure 2020139018

Figure 2020139018
Figure 2020139018

Figure 2020139018
Figure 2020139018

〔評 価〕
各実施例の場合には、混合物の導電材と熱可塑性樹脂の少なくともいずれかをプラズマ処理してこれらの相溶性を増大させているので、電池用カーボン部材の曲げ強度を向上させ、優れた面方向体積抵抗値と厚み面方向体積抵抗値を得ることができた。
[Rating]
In the case of each embodiment, at least one of the conductive material and the thermoplastic resin of the mixture is plasma-treated to increase the compatibility between them, so that the bending strength of the carbon member for the battery is improved and the excellent surface is obtained. The directional volume resistance value and the thickness surface direction volume resistance value could be obtained.

これに対し、各比較例の場合には、混合物の導電材と熱可塑性樹脂のいずれもがプラズマ未処理なので、実施例に比べ、電池用カーボン部材の曲げ強度を十分に向上させ得ないことがあった。 On the other hand, in the case of each comparative example, since both the conductive material and the thermoplastic resin of the mixture are not plasma-treated, the bending strength of the carbon member for the battery cannot be sufficiently improved as compared with the examples. there were.

本発明に係る電池用カーボン部材及びその製造方法、レドックスフロー電池用双極板、並びに燃料電池用セパレータは、レドックスフロー電池用双極板や燃料電池用セパレータの製造分野等で使用される。 The carbon member for a battery and its manufacturing method, the bipolar plate for a redox flow battery, and the separator for a fuel cell according to the present invention are used in the field of manufacturing a bipolar plate for a redox flow battery and a separator for a fuel cell.

1 電池用カーボン部材
2 導電材
3 熱可塑性樹脂
10 レドックスフロー電池用双極板
11 燃料電池用セパレータ
1 Carbon member for battery 2 Conductive material 3 Thermoplastic resin 10 Bipolar plate for redox flow battery 11 Separator for fuel cell

Claims (8)

導電材と熱可塑性樹脂とからなる電池用カーボン部材であって、導電材と熱可塑性樹脂の少なくともいずれか一方がプラズマ処理された混合物からなることを特徴とする電池用カーボン部材。 A carbon member for a battery made of a conductive material and a thermoplastic resin, wherein at least one of the conductive material and the thermoplastic resin is made of a plasma-treated mixture. 導電材は、鱗状黒鉛、人造黒鉛、膨張黒鉛、球状黒鉛、及び炭素繊維の少なくともいずれか一種含有の炭素質材料からなる請求項1記載の電池用カーボン部材。 The carbon member for a battery according to claim 1, wherein the conductive material is a carbonaceous material containing at least one of scaly graphite, artificial graphite, expanded graphite, spheroidal graphite, and carbon fiber. 熱可塑性樹脂は、ポリオレフィン系樹脂、又はポリフェニレンスルフィド系樹脂である請求項1又は2記載の電池用カーボン部材。 The carbon member for a battery according to claim 1 or 2, wherein the thermoplastic resin is a polyolefin resin or a polyphenylene sulfide resin. プラズマ処理は、酸素ガス、窒素ガス、及びアルゴンガスの少なくともいずれかを用いて処理される請求項1、2、又は3記載の電池用カーボン部材。 The carbon member for a battery according to claim 1, 2 or 3, wherein the plasma treatment is performed using at least one of oxygen gas, nitrogen gas, and argon gas. プラズマ処理は、水分を含有する酸素ガス、窒素ガス、及びアルゴンガスの少なくともいずれかを用いて処理される請求項1、2、又は3記載の電池用カーボン部材。 The carbon member for a battery according to claim 1, 2 or 3, wherein the plasma treatment is performed using at least one of oxygen gas, nitrogen gas, and argon gas containing water. 請求項1ないし5のいずれかに記載した電池用カーボン部材の製造方法であって、導電材と熱可塑性樹脂の少なくともいずれか一方をプラズマ処理し、これらを混合して金型に充填した後、金型を型締めして加熱圧縮成形することにより、電池用カーボン部材を成形することを特徴とする電池用カーボン部材の製造方法。 The method for manufacturing a carbon member for a battery according to any one of claims 1 to 5, wherein at least one of a conductive material and a thermoplastic resin is plasma-treated, mixed and filled in a mold. A method for manufacturing a carbon member for a battery, which comprises molding a carbon member for a battery by molding a mold and heating and compression molding. 請求項1ないし5のいずれかに記載した電池用カーボン部材により形成されることを特徴とするレドックスフロー電池用双極板。 A bipolar plate for a redox flow battery, which is formed of the carbon member for a battery according to any one of claims 1 to 5. 請求項1ないし5のいずれかに記載した電池用カーボン部材により形成されることを特徴とする燃料電池用セパレータ。 A separator for a fuel cell, which is formed of the carbon member for a battery according to any one of claims 1 to 5.
JP2019034358A 2019-02-27 2019-02-27 Carbon member for cell and method of manufacturing the same, bipolar plate for redox flow cell, and separator for fuel cell Pending JP2020139018A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019034358A JP2020139018A (en) 2019-02-27 2019-02-27 Carbon member for cell and method of manufacturing the same, bipolar plate for redox flow cell, and separator for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019034358A JP2020139018A (en) 2019-02-27 2019-02-27 Carbon member for cell and method of manufacturing the same, bipolar plate for redox flow cell, and separator for fuel cell

Publications (1)

Publication Number Publication Date
JP2020139018A true JP2020139018A (en) 2020-09-03

Family

ID=72264494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019034358A Pending JP2020139018A (en) 2019-02-27 2019-02-27 Carbon member for cell and method of manufacturing the same, bipolar plate for redox flow cell, and separator for fuel cell

Country Status (1)

Country Link
JP (1) JP2020139018A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113527885A (en) * 2021-07-30 2021-10-22 中国科学院苏州纳米技术与纳米仿生研究所南昌研究院 Carbon fiber/polyphenylene sulfide composite material and preparation method and application thereof
US20230072808A1 (en) * 2021-09-09 2023-03-09 Institute of Nuclear Energy Research, Atomic Energy Council, Executive Yuan, R.O.C. Method of Optimizing Surface of Carbon Electrode for Flow Battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06290796A (en) * 1993-03-30 1994-10-18 Shin Etsu Polymer Co Ltd Bipolar plate with reaction electrode layer for secondary battery
JP2011513167A (en) * 2008-02-28 2011-04-28 ビーエーエスエフ ソシエタス・ヨーロピア Graphite nanoplatelets and compositions
JP2012160406A (en) * 2011-02-02 2012-08-23 Shin Etsu Polymer Co Ltd Hydrophilic separator, and method of manufacturing the same
WO2018123807A1 (en) * 2016-12-27 2018-07-05 昭和電工株式会社 Thermoplastic resin composition, molded body, fuel cell separator, bipolar plate for redox flow cell, and method for producing molded body
JP2019029668A (en) * 2017-07-28 2019-02-21 旭化成株式会社 Method for manufacturing conducting pattern and plasma processing device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06290796A (en) * 1993-03-30 1994-10-18 Shin Etsu Polymer Co Ltd Bipolar plate with reaction electrode layer for secondary battery
JP2011513167A (en) * 2008-02-28 2011-04-28 ビーエーエスエフ ソシエタス・ヨーロピア Graphite nanoplatelets and compositions
JP2012160406A (en) * 2011-02-02 2012-08-23 Shin Etsu Polymer Co Ltd Hydrophilic separator, and method of manufacturing the same
WO2018123807A1 (en) * 2016-12-27 2018-07-05 昭和電工株式会社 Thermoplastic resin composition, molded body, fuel cell separator, bipolar plate for redox flow cell, and method for producing molded body
JP2019029668A (en) * 2017-07-28 2019-02-21 旭化成株式会社 Method for manufacturing conducting pattern and plasma processing device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113527885A (en) * 2021-07-30 2021-10-22 中国科学院苏州纳米技术与纳米仿生研究所南昌研究院 Carbon fiber/polyphenylene sulfide composite material and preparation method and application thereof
CN113527885B (en) * 2021-07-30 2023-04-28 江西省纳米技术研究院 Carbon fiber/polyphenylene sulfide composite material and preparation method and application thereof
US20230072808A1 (en) * 2021-09-09 2023-03-09 Institute of Nuclear Energy Research, Atomic Energy Council, Executive Yuan, R.O.C. Method of Optimizing Surface of Carbon Electrode for Flow Battery

Similar Documents

Publication Publication Date Title
JP4417886B2 (en) Manufacturing method of material for molding fuel cell separator
Lee et al. Effect of carbon fillers on properties of polymer composite bipolar plates of fuel cells
Lee et al. Structural optimization of graphite for high-performance fluorinated ethylene–propylene composites as bipolar plates
Lee et al. Effects of hybrid carbon fillers of polymer composite bipolar plates on the performance of direct methanol fuel cells
US20040127621A1 (en) Expanded graphite and products produced therefrom
CN107819136B (en) Laminated structure bipolar plate and preparation method thereof
Kim et al. Synergy effects of hybrid carbon system on properties of composite bipolar plates for fuel cells
EP3550650B1 (en) Method for producing separator for fuel cells
JP2020139018A (en) Carbon member for cell and method of manufacturing the same, bipolar plate for redox flow cell, and separator for fuel cell
Liao et al. One-step functionalization of carbon nanotubes by free-radical modification for the preparation of nanocomposite bipolar plates in polymer electrolyte membrane fuel cells
Kim et al. Carbon nanotube-interlocked Si/CNF self-supporting electrode using continuable spraying architecture system for flexible lithium-ion batteries
Wang Conductive thermoplastic composite blends for flow field plates for use in polymer electrolyte membrane fuel cells (PEMFC)
Wei et al. Preparation and properties of graphite/polypropylene composite material reinforced by chopped carbon fibers for proton‐exchange membrane fuel cell bipolar plates
JP2006164816A (en) Sheet manufactured by papermaking method and separator for fuel cell
Dwikutub Critical powder loading and rheological properties of polypropylene/graphite composite feedstock for bipolar plate application
Bouatia et al. Development and characterisation of electrically conductive polymeric‐based blends for proton exchange membrane fuel cell bipolar plates
Düsenberg et al. Production and analysis of electrically conductive polymer–Carbon-black composites for powder based Additive Manufacturing
WO2015040278A1 (en) Carbon-containing composites and their electrochemical applications
KR101741010B1 (en) Fabricating method of bipolar plate for redox flow batteries
JP4716649B2 (en) Conductive molding material, fuel cell separator using the same, and method for producing the same
US9048010B2 (en) Method for preparing an electrically conducting article
Selamat et al. The effects of thickness reduction and particle sizes on the properties graphite–Polypropylene composite
Grundler et al. CarbonNanoTubes (CNT) in bipolar plates for PEM fuel cell applications
JP2020145014A (en) Fuel cell separator and manufacturing method thereof
JP2003257447A (en) Separator for fuel cell, manufacturing method therefor, and fuel cell by use of separator for fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230815