JP2003257447A - Separator for fuel cell, manufacturing method therefor, and fuel cell by use of separator for fuel cell - Google Patents
Separator for fuel cell, manufacturing method therefor, and fuel cell by use of separator for fuel cellInfo
- Publication number
- JP2003257447A JP2003257447A JP2002060674A JP2002060674A JP2003257447A JP 2003257447 A JP2003257447 A JP 2003257447A JP 2002060674 A JP2002060674 A JP 2002060674A JP 2002060674 A JP2002060674 A JP 2002060674A JP 2003257447 A JP2003257447 A JP 2003257447A
- Authority
- JP
- Japan
- Prior art keywords
- fuel cell
- sheet
- separator
- expanded graphite
- molding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 91
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 31
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 83
- 229910002804 graphite Inorganic materials 0.000 claims abstract description 83
- 239000010439 graphite Substances 0.000 claims abstract description 81
- 238000000465 moulding Methods 0.000 claims abstract description 63
- 239000003822 epoxy resin Substances 0.000 claims abstract description 38
- 229920000647 polyepoxide Polymers 0.000 claims abstract description 38
- 238000002156 mixing Methods 0.000 claims abstract description 23
- 238000000034 method Methods 0.000 claims description 32
- 239000000843 powder Substances 0.000 claims description 29
- 230000008859 change Effects 0.000 claims description 9
- 239000007787 solid Substances 0.000 claims description 7
- 238000000748 compression moulding Methods 0.000 claims description 3
- 229920000642 polymer Polymers 0.000 claims description 3
- 239000000203 mixture Substances 0.000 abstract description 19
- 230000035515 penetration Effects 0.000 abstract 1
- 229920005989 resin Polymers 0.000 description 50
- 239000011347 resin Substances 0.000 description 50
- 239000007789 gas Substances 0.000 description 26
- 239000000463 material Substances 0.000 description 22
- 239000011521 glass Substances 0.000 description 18
- 230000003014 reinforcing effect Effects 0.000 description 18
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 16
- 239000004744 fabric Substances 0.000 description 15
- 239000000126 substance Substances 0.000 description 15
- 239000002245 particle Substances 0.000 description 13
- 239000011812 mixed powder Substances 0.000 description 12
- 239000003795 chemical substances by application Substances 0.000 description 10
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 230000002378 acidificating effect Effects 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 239000000835 fiber Substances 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 7
- 229920003986 novolac Polymers 0.000 description 7
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 6
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 6
- 239000002253 acid Substances 0.000 description 6
- 238000002844 melting Methods 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 239000000498 cooling water Substances 0.000 description 5
- 239000013078 crystal Substances 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 239000005518 polymer electrolyte Substances 0.000 description 5
- 238000010298 pulverizing process Methods 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 238000007580 dry-mixing Methods 0.000 description 4
- 239000003792 electrolyte Substances 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 229910021382 natural graphite Inorganic materials 0.000 description 4
- 239000007800 oxidant agent Substances 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 3
- 238000012856 packing Methods 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 239000012779 reinforcing material Substances 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- 239000002759 woven fabric Substances 0.000 description 3
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 238000013329 compounding Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 238000001879 gelation Methods 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 238000009830 intercalation Methods 0.000 description 2
- 230000002687 intercalation Effects 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 239000012778 molding material Substances 0.000 description 2
- -1 natural graphite Chemical compound 0.000 description 2
- 239000004745 nonwoven fabric Substances 0.000 description 2
- 150000002978 peroxides Chemical class 0.000 description 2
- KMUONIBRACKNSN-UHFFFAOYSA-N potassium dichromate Chemical compound [K+].[K+].[O-][Cr](=O)(=O)O[Cr]([O-])(=O)=O KMUONIBRACKNSN-UHFFFAOYSA-N 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000010008 shearing Methods 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- 238000003828 vacuum filtration Methods 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229930003836 cresol Natural products 0.000 description 1
- 229920006038 crystalline resin Polymers 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 210000003298 dental enamel Anatomy 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- AXZAYXJCENRGIM-UHFFFAOYSA-J dipotassium;tetrabromoplatinum(2-) Chemical compound [K+].[K+].[Br-].[Br-].[Br-].[Br-].[Pt+2] AXZAYXJCENRGIM-UHFFFAOYSA-J 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000005243 fluidization Methods 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 125000001165 hydrophobic group Chemical group 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 229910001487 potassium perchlorate Inorganic materials 0.000 description 1
- 239000012286 potassium permanganate Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 102200026938 rs80356668 Human genes 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 239000011973 solid acid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 239000002966 varnish Substances 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Fuel Cell (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、燃料電池用セパレ
ータ、その製造法及び燃料電池用セパレータを用いた燃
料電池に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell separator, a method for manufacturing the same, and a fuel cell using the fuel cell separator.
【0002】[0002]
【従来の技術】燃料電池は近年、大量の化石燃料消費に
よる地球温暖化防止策、省エネルギー対策等の観点から
非常に注目され、国、大学の研究機関、大手企業等でも
研究開発が盛んに行われている。2. Description of the Related Art In recent years, fuel cells have received a great deal of attention from the viewpoints of measures to prevent global warming due to the consumption of large amounts of fossil fuels, energy conservation measures, etc., and research and development are actively carried out by national and university research institutions and major companies. It is being appreciated.
【0003】燃料電池の構成部材の一つであるセパレー
タの働きは、導電性及び発生するエネルギーの原料とな
る水素、天然ガス及び酸素の定量的な供給と発生する水
の速やかな排出にあり、電池特性を左右する重要な部材
である。特に、セパレータは一つの電池に数百枚使用さ
れるため、コンパクト化が要求され、現在各社ともデザ
インの改良、薄板化、軽量化かつ安価なセパレータの開
発に凌ぎを削っている。The function of the separator, which is one of the constituent members of the fuel cell, is to quantitatively supply hydrogen, natural gas and oxygen, which are raw materials for conductivity and generated energy, and to quickly discharge generated water. It is an important member that affects the battery characteristics. In particular, since hundreds of separators are used in one battery, downsizing is demanded, and each company is currently surpassing the development of improved designs, thin plates, lightweight and inexpensive separators.
【0004】従来のセパレータは、黒鉛板を流路の形状
などをプログラムした高精度の切削機で長時間にわたり
切削加工し、さらに得られたセパレータに液体樹脂など
を真空含浸し、硬化させガスの不浸透化を図っているの
が現状である。しかし、上記の方法で得られるセパレー
タは切削工程及び不浸透化処理に時間を要するため、セ
パレータ1枚当たりの価格が非常に高く、数百枚単位で
使用される燃料電池用セパレータとしては不適当であ
る。In the conventional separator, a graphite plate is cut for a long time with a high-precision cutting machine in which the shape of the flow path is programmed, and the obtained separator is vacuum impregnated with a liquid resin or the like to be cured and gas The current situation is to make it impervious. However, since the separator obtained by the above method requires a long time for the cutting process and the impermeability treatment, the price per separator is very high and it is not suitable as a separator for a fuel cell used in units of several hundreds. Is.
【0005】また、安価で環境問題を考慮した無溶剤で
材料を調整(乾式法)し、成形用シートに加工し成形し
てモールド型のセパレータとする場合、使用樹脂は粉状
樹脂が好ましいが、一般的な粉状樹脂(熱硬化型)は、
樹脂を構成する分子ユニット内に結晶構造を有する分子
が含まれないか又は含まれていても少ないため、高温領
域での樹脂を構成する分子運動が不安定なものとなり、
成形時における温度管理を非常に厳しくしなければ得ら
れる成形体に不具合が生じる。Further, when the material is prepared (dry method) at a low cost in consideration of environmental problems and without a solvent, processed into a molding sheet and molded into a mold type separator, the resin used is preferably a powdered resin. , General powder resin (thermosetting type),
Since the molecules having a crystal structure are not included in the molecular unit that constitutes the resin, or even if the molecules have few molecules, the molecular motion that constitutes the resin in the high temperature region becomes unstable,
If the temperature control at the time of molding is not made very strict, defects will occur in the obtained molded body.
【0006】この為、移動金型で成形する場合、金型取
りだし、材料充填、金型組み立て、プレスセット等の工
程を繰り返すため、金型の温度が大きく変化し充填され
た材料中に含まれる樹脂に加わる熱履歴も大きく変動
し、ゲル化直前まで樹脂の粘度が大きく変化する。この
状態は圧力を加えた本成形の初期段階まで持続するもの
と考えられる。For this reason, when molding is carried out by a moving mold, the steps of taking out the mold, filling the material, assembling the mold, pressing set, and the like are repeated, so that the temperature of the mold changes greatly and the material is contained in the filled material. The heat history applied to the resin also greatly changes, and the viscosity of the resin changes greatly until just before gelation. It is considered that this state is maintained until the initial stage of main molding under pressure.
【0007】特に、複雑なリブ(凸凹)部、平坦部及び
必要に応じて設けられる穴部から構成されるセパレータ
の成形において、樹脂の安定した流れ(粘度)は、安定
した成形体を製造する上で非常に重要な因子となる。流
れ性の不安定な樹脂を有した材料を用いて前記セパレー
タを成形した場合、樹脂が多い部分、充填材が多い部分
が同じ成形体中に発生し、成形体の密度が大きくばらつ
き、セパレータの重要な特性であるガス不浸透性、機械
強度、電気抵抗等の特性値を低下させるという問題点が
生じる。In particular, in the molding of a separator composed of a complicated rib (concave and convex) portion, a flat portion and a hole portion provided as necessary, a stable resin flow (viscosity) produces a stable molded body. It is a very important factor above. When the separator is molded using a material having a resin whose flowability is unstable, a resin-rich portion and a filler-rich portion occur in the same molded body, and the density of the molded body greatly fluctuates. There arises a problem that characteristic values such as gas impermeability, mechanical strength and electric resistance, which are important characteristics, are reduced.
【0008】[0008]
【発明が解決しようとする課題】本発明は、ガス不浸透
性、機械強度、電気抵抗等に優れた燃料電池用セパレー
タ及びその製造法を提供するものである。また、本発明
は、ガス不浸透性、機械強度、電気抵抗等に優れた燃料
電池用セパレータを用いた燃料電池を提供するものであ
る。SUMMARY OF THE INVENTION The present invention provides a fuel cell separator excellent in gas impermeability, mechanical strength, electrical resistance and the like, and a method for producing the same. Further, the present invention provides a fuel cell using a fuel cell separator excellent in gas impermeability, mechanical strength, electric resistance and the like.
【0009】[0009]
【課題を解決するため手段】本発明は、次のものに関す
る。
1. 結晶性エポキシ樹脂と膨張黒鉛から構成される燃
料電池用セパレータ。
2. 結晶性エポキシ樹脂が、150℃〜180℃の範
囲での粘度変化が0.002Pa.s〜0.008P
a.sの範囲である項1記載の燃料電池用セパレータ。
3. 膨張黒鉛が、膨張黒鉛シート粉砕粉である項1又
は2記載の燃料電池用セパレータ。
4. セパレータが、リブ部及び平坦部を有する項1〜
3のいずれかに記載の燃料電池用セパレータ。The present invention relates to the following. 1. A fuel cell separator composed of crystalline epoxy resin and expanded graphite. 2. The crystalline epoxy resin has a viscosity change of 0.002 Pa.s in the range of 150 ° C to 180 ° C. s ~ 0.008P
a. 2. The fuel cell separator according to item 1, which is in the range of s. 3. Item 3. The fuel cell separator according to Item 1 or 2, wherein the expanded graphite is an expanded graphite sheet pulverized powder. 4. Item 1 in which the separator has a rib portion and a flat portion
3. The fuel cell separator according to any one of 3 above.
【0010】5. 結晶性エポキシ樹脂と膨張黒鉛を混
合した後、シート化して成形することを特徴とする燃料
電池用セパレータの製造法。
6. 結晶性エポキシ樹脂が、150℃〜180℃の範
囲での粘度変化が0.002Pa.s〜0.008P
a.sの範囲である項5記載の燃料電池用セパレータの
製造法。
7. 膨張黒鉛が、膨張黒鉛シート粉砕粉である項5又
は6記載の燃料電池用セパレータの製造法。
8. セパレータが、リブ部及び平坦部を有する項5〜
7のいずれかに記載の燃料電池用セパレータの製造法。
9. 成形法が、圧縮成形法で成形したものである項5
〜8のいずれかに記載の燃料電池用セパレータの製造
法。5. A method for producing a separator for a fuel cell, which comprises forming a sheet by molding after mixing a crystalline epoxy resin and expanded graphite. 6. The crystalline epoxy resin has a viscosity change of 0.002 Pa.s in the range of 150 ° C to 180 ° C. s ~ 0.008P
a. Item 6. The method for producing a fuel cell separator according to Item 5, wherein the range is s. 7. Item 7. The method for producing a fuel cell separator according to Item 5 or 6, wherein the expanded graphite is a crushed powder of expanded graphite sheet. 8. Item 5 in which the separator has a rib portion and a flat portion
8. The method for producing a fuel cell separator according to any one of 7). 9. Item 5 in which the molding method is a compression molding method
9. The method for producing a fuel cell separator according to any one of 8 to 8.
【0011】10. 項1〜4のいずれかに記載の燃料
電池用セパレータ又は項5〜9のいずれかに記載の製造
法により得られる燃料電池用セパレータを有してなる燃
料電池。
11. 固体高分子形である項10記載の燃料電池。10. A fuel cell comprising the fuel cell separator according to any one of Items 1 to 4 or the fuel cell separator obtained by the manufacturing method according to any one of Items 5 to 9. 11. Item 11. The fuel cell according to item 10, which is a solid polymer type.
【0012】[0012]
【発明の実態の形態】本発明における燃料電池用セパレ
ータにおいて、リブ部は、導電性又は通電性を有し、セ
パレータを電解質膜、燃料極及び空気極を介して重ねた
ときにガスの流路を形成するものである。またリブ部
は、セパレータを重ねたときに形成された流路をガスが
通過するときにガス漏れしないように構成される。In the fuel cell separator according to the present invention, the rib portion has conductivity or conductivity, and when the separators are stacked with the electrolyte membrane, the fuel electrode and the air electrode, the gas flow passage is formed. Is formed. Further, the rib portion is configured so that gas does not leak when the gas passes through the flow path formed when the separators are stacked.
【0013】一方、平坦部は、セパレータの把持部を形
成し、上記の流路をガスが通過するときにガス漏れしな
いように構成される。また平坦部は、セパレータを重ね
たときに全体を固定するための把持部となることが好ま
しい。On the other hand, the flat portion forms a grip portion of the separator, and is configured so that gas does not leak when the gas passes through the above-mentioned flow path. Further, it is preferable that the flat portion serves as a grip portion for fixing the whole when the separators are stacked.
【0014】なお、平坦部は結晶性エポキシ樹脂及び膨
張黒鉛を含むことにより、密度を1,300kg/m3
〜1,750kg/m3とすることができ、この密度を
有することにより、十分な機密性を保つことができる。
リブ部も同様に、結晶性エポキシ樹脂及び膨張黒鉛を含
むことにより、密度を1,450kg/m3〜1,75
0kg/m3とすることができ、この密度を有すること
により、十分な機密性を保つことができる。The flat portion has a density of 1,300 kg / m 3 by containing a crystalline epoxy resin and expanded graphite.
It can be set to ˜1,750 kg / m 3, and by having this density, sufficient airtightness can be maintained.
Similarly, the rib portion also has a density of 1,450 kg / m 3 to 1,75 by including a crystalline epoxy resin and expanded graphite.
It can be set to 0 kg / m3, and by having this density, sufficient airtightness can be maintained.
【0015】セパレータは、リブ部及び平坦部以外に穴
部を有していてもよく、特に平坦部内に穴部を有してい
ることが好ましい。穴部は、セパレータを多数重ねたと
きに、重ね方向に長い穴を形成するように構成され、水
素ガス、酸素ガス及び冷却水を通すための穴が形成され
るように構成される。それぞれの穴は、セパレータのリ
ブ部によって形成される水素ガス流路、酸素ガス流路及
び冷却水流 路と連結されるように構成される。な
お、平坦部には、セパレータを重ねたときに固定用のボ
ルトを通すための穴を有していてもよい。The separator may have holes other than the rib and the flat portion, and it is particularly preferable that the separator has the holes. The hole portion is configured to form a long hole in the stacking direction when a large number of separators are stacked, and a hole for passing hydrogen gas, oxygen gas, and cooling water is formed. Each hole is configured to be connected to the hydrogen gas passage, the oxygen gas passage, and the cooling water passage formed by the rib portion of the separator. Note that the flat portion may have a hole for passing a fixing bolt when the separators are stacked.
【0016】リブ部と平坦部が、それぞれ結晶性エポキ
シ樹脂及び膨張黒鉛を含む層を有し、これらの層が連続
している層であることが好ましい。これにより、セパレ
ータを得るための成形時の成形性が良好であり、セパレ
ータに軽量性を付与すると共にセパレータに高靭性、低
弾性という好ましい特性を付与する。It is preferable that the rib portion and the flat portion each have a layer containing a crystalline epoxy resin and expanded graphite, and these layers are continuous. As a result, the moldability at the time of molding for obtaining the separator is good, and the separator is lightweight, and at the same time, the separator is provided with favorable properties such as high toughness and low elasticity.
【0017】また、セパレータの板厚が1mm以下と薄
い場合は、必要に応じて平坦部の強度向上のため平坦
部の少なくとも一部に、補強材を使用しても良い。補強
材の使用方法及び使用材料に特に制限はないが、コスト
を考慮するとガラスクロスを平坦部が形成される成形用
シート部分に積層して、成形する方法が好ましい。補強
材を使用することにより、平坦部の密度を向上させ、リ
ブ部との密度差を小さくすることができる。If the thickness of the separator is as thin as 1 mm or less, the flat portion may be flattened to improve its strength, if necessary.
A reinforcing material may be used for at least a part of the portion. The method of using the reinforcing material and the material to be used are not particularly limited, but in view of cost, a method of laminating the glass cloth on the molding sheet portion where the flat portion is formed and molding is preferable. By using the reinforcing material, the density of the flat portion can be improved and the density difference with the rib portion can be reduced.
【0018】本発明で使用する膨張黒鉛は、原料黒鉛
を、酸性物質及び酸化剤を含む溶液中に浸漬して黒鉛層
間化合物を生成させる工程及び前記黒鉛層間化合物を加
熱して、黒鉛結晶のC軸方向を膨張させて膨張黒鉛とす
る工程により製造することができる。これにより膨張し
た黒鉛が虫状形となり方向性のない複雑に絡み合った形
態となる。The expanded graphite used in the present invention is obtained by immersing raw graphite into a solution containing an acidic substance and an oxidizing agent to form a graphite intercalation compound, and heating the graphite intercalation compound to obtain C of graphite crystal. It can be manufactured by a process of expanding in the axial direction to obtain expanded graphite. As a result, the expanded graphite becomes a bug-like shape and has a entangled complex shape with no directivity.
【0019】膨張黒鉛の倍率は、セパレータの強度とガ
ス不浸透性を確保するため高い方が好ましく、特に制限
はないが150倍以上であることが好ましく、150倍
〜300倍であることがさらに好ましい。The expansive graphite preferably has a high magnification to secure the strength and gas impermeability of the separator, and is not particularly limited, but is preferably 150 times or more, and more preferably 150 times to 300 times. preferable.
【0020】膨張黒鉛を粉砕することにより膨張黒鉛粉
とすることができるが、粉砕の前に得られた膨張黒鉛に
圧力を加えてシート状に圧縮成形し、膨張黒鉛シートと
することが好ましい。得られた膨張黒鉛シートを粉砕す
ることで膨張黒鉛シート粉砕粉を得ることができる。さ
らに、得られた膨張黒鉛シート粉砕粉は、必要に応じ
て、その粉砕粉に含まれる酸性根を低減させるための処
理(高温処理など)を施す。Expanded graphite can be made into expanded graphite powder by crushing the expanded graphite, but it is preferable to apply pressure to the obtained expanded graphite before crushing and compression-mold it into a sheet to obtain an expanded graphite sheet. A crushed powder of the expanded graphite sheet can be obtained by crushing the obtained expanded graphite sheet. Further, the obtained expanded graphite sheet pulverized powder is subjected to a treatment (high temperature treatment or the like) for reducing the acidic roots contained in the pulverized powder, if necessary.
【0021】前記の原料黒鉛としては特に制限はない
が、天然黒鉛、キッシユ黒鉛、熱分解黒鉛等の高度に結
晶が発達した黒鉛が好ましいものとして挙げられる。得
られる特性と経済性のバランスを考慮すると天然黒鉛が
好ましい。用いる天然黒鉛としては、特に制限はなく、
F48C(日本黒鉛(株)製、商品名)、H−50(中
越黒鉛(株)製、商品名)等の市販品を用いることがで
きる。これらは、鱗片状の粉末の形態で使用することが
好ましい。The above-mentioned raw material graphite is not particularly limited, but highly crystallized graphite such as natural graphite, Kissuille graphite and pyrolytic graphite is preferable. Natural graphite is preferable in consideration of the balance between the obtained properties and economy. The natural graphite used is not particularly limited,
Commercial products such as F48C (trade name, manufactured by Nippon Graphite Co., Ltd.) and H-50 (trade name, manufactured by Chuetsu Graphite Co., Ltd.) can be used. These are preferably used in the form of scale-like powder.
【0022】原料黒鉛の処理に用いられる酸性物質は、
一般に硫酸などの黒鉛の層間に進入して十分な膨張能力
を有する酸性根(陰イオン)を発生することができるもの
が使用される。酸性物質の使用量については特に制限は
なく、目的とする膨張倍率で決定され、例えば、黒鉛1
00重量部に対して100重量部〜1000重量部使用
することが好ましい。The acidic substance used to treat the raw graphite is
Generally, a material that can penetrate between layers of graphite such as sulfuric acid to generate an acidic root (anion) having a sufficient expansion ability is used. The amount of the acidic substance used is not particularly limited and is determined by the desired expansion ratio. For example, graphite 1
It is preferable to use 100 to 1000 parts by weight with respect to 00 parts by weight.
【0023】また、酸性物質と共に用いられる酸化剤と
しては、過酸化水素、過塩素酸カリウム、過マンガン酸
カリウム、重クロム酸カリウム等の過酸化物、また硝酸
などの酸化作用のある酸を用いることができ、良好な膨
張黒鉛を得やすいという観点から過酸化水素が特に好ま
しい。 酸化剤として過酸化水素を用いる場合、水溶液
として用いることが好ましく、このとき、過酸化水素の
濃度については特に制限はないが、20重量%〜40重
量%が好ましい。その使用量についても特に制限はない
が、黒鉛100重量部に対して過酸化水素水として5重
量部〜60重量部配合することが好ましい。As the oxidizing agent used together with the acidic substance, peroxides such as hydrogen peroxide, potassium perchlorate, potassium permanganate, potassium dichromate, etc., and acids having an oxidizing action such as nitric acid are used. Hydrogen peroxide is particularly preferable from the viewpoint that it is possible to obtain good expanded graphite easily. When hydrogen peroxide is used as the oxidizing agent, it is preferably used as an aqueous solution. At this time, the concentration of hydrogen peroxide is not particularly limited, but is preferably 20% by weight to 40% by weight. The amount used is also not particularly limited, but it is preferable to add 5 parts by weight to 60 parts by weight as hydrogen peroxide solution to 100 parts by weight of graphite.
【0024】酸性物質及び酸化剤は、水溶液の形態で使
用することが好ましい。酸性物質としての硫酸は、適宜
の濃度で使用されるが、95重量%以上の濃度のものが
好ましく、濃硫酸を使用することが特に好ましい。The acidic substance and the oxidizing agent are preferably used in the form of an aqueous solution. Sulfuric acid as an acidic substance is used at an appropriate concentration, but a concentration of 95% by weight or more is preferable, and concentrated sulfuric acid is particularly preferable.
【0025】前記において、膨張黒鉛シートの製法につ
いても特に制限はないが、一般的には上記で得た膨張黒
鉛を、プレス、ロール等で圧力を加えてシート化するこ
とが好ましい。膨張黒鉛をシート化したときのシートの
厚さ及び密度については特に制限はないが、厚さが0.
5mm〜1. 5mmの範囲及び密度が200kg/m
3〜1,700kg/m3の範囲のものが好ましい。厚
さが0.5mm未満であると得られる成形体が脆くなる
傾向があり、1. 5mmを超えると成形性が悪くなる
傾向がある。また密度が200kg/m3未満であると
電気抵抗が悪化する傾向があり、1,700kg/m3
を超えると機械強度が低下する傾向がある。密度の大き
さは、加圧量、ロールギ ヤップ等の調整により、調整
することができる。また、膨張黒鉛シートの粉砕は、粗
粉砕及び微粉砕により行うことが好ましく、この後、必
要に応じて分級を行う。In the above, the method for producing the expanded graphite sheet is described.
Although there is no particular limitation, generally, the expanded black obtained above
Sheets of lead can be formed by applying pressure with a press, roll, etc.
And are preferred. Of the expanded graphite sheet
The thickness and density are not particularly limited, but the thickness is 0.
Range of 5mm-1.5mm and density is 200kg / m
Three~ 1,700kg / mThreeThe range of is preferable. Thickness
If the size is less than 0.5 mm, the obtained molded product becomes brittle.
There is a tendency, and if it exceeds 1.5 mm, the moldability deteriorates.
Tend. The density is 200 kg / mThreeTo be less than
Electric resistance tends to deteriorate, 1,700 kg / mThree
If it exceeds, mechanical strength tends to decrease. High density
Is adjusted by adjusting the amount of pressurization, roll gap, etc.
can do. In addition, crushing the expanded graphite sheet
It is preferable to carry out pulverization and fine pulverization.
Classify if necessary.
【0026】本発明において、原料としての膨張黒鉛の
密度については特に制限はないが、100kg/m3〜
400kg/m3の範囲が好ましい。膨張黒鉛の密度が
小さすぎると、樹脂との均一混合性が低下し、得られる
成形体(燃料電池用セパレータ)のガス不浸透性が低下
する傾向があり、膨張黒鉛の密度が大きすぎると目的と
する成形体(燃料電池用セパレータ)の機械的強度及び
導電性の向上効果が低下する傾向がある。In the present invention, the density of expanded graphite as a raw material is not particularly limited, but it is 100 kg / m 3 to
A range of 400 kg / m 3 is preferred. If the density of the expanded graphite is too low, the homogeneity of mixing with the resin will decrease, and the gas impermeability of the resulting molded product (separator for fuel cell) will tend to decrease. The effect of improving the mechanical strength and conductivity of the molded body (fuel cell separator) is likely to decrease.
【0027】膨張黒鉛シート粉砕粉の平均粒径について
も特に制限はないが、樹脂との混合性及び成形性を考慮
すると、数平均粒径で5μm〜1000μmの範囲が好
ましく、25μm〜500μmの範囲がより好ましく、
50μm〜400μmの範囲がさらに好ましい。数平均
粒径が5μm未満であると最終成形体、即ち燃料電池用
セパレータ中に形成配向する膨張黒鉛シート粉砕粉の長
さが短く、機械強度が低下する傾向があり、一方、10
00μmを超えると樹脂との混合性が変化する傾向があ
る。The average particle size of the crushed powder of the expanded graphite sheet is not particularly limited, but considering the mixing property with the resin and the moldability, the number average particle size is preferably in the range of 5 μm to 1000 μm, and in the range of 25 μm to 500 μm. Is more preferable,
The range of 50 μm to 400 μm is more preferable. If the number average particle size is less than 5 μm, the length of the crushed powder of the expanded graphite sheet formed and oriented in the final molded product, that is, the fuel cell separator, tends to be short, and the mechanical strength tends to decrease.
If it exceeds 00 μm, the mixing property with the resin tends to change.
【0028】本発明において、使用する樹脂は、安全
性、製造工程の短縮(低コスト)等を考慮すると、乾式
混合(無溶剤混合)が可能であり、かつ粒度分布が安定
した結晶性エポキシ樹脂を用いることが必要とされる。
結晶性エポキシ樹脂の使用形態としては粉末状、粒状等
が好ましい。The resin used in the present invention is a crystalline epoxy resin which can be dry-mixed (solvent-free mixture) and has a stable particle size distribution in consideration of safety, shortening of manufacturing process (low cost) and the like. Is required to be used.
The crystalline epoxy resin is preferably used in the form of powder or particles.
【0029】結晶性樹脂とは、樹脂構造を決定している
分子中に分子が対称に規則正しく周期的に配列するもの
を含むものを指し、その特長として比較的高温でも安定
であり、かつ融点以上の温度では、高流動性を示す。従
ってフィラーの高充填化が可能であり、また得られる硬
化物はバラツキの少ない物性値を示し、疎水基効果によ
る低吸水性なども期待される。The crystalline resin refers to a resin that includes, in the molecule that determines the resin structure, molecules that are symmetrically and regularly arranged periodically, and is characterized by being stable at a relatively high temperature and having a melting point or higher. It shows high fluidity at the temperature of. Therefore, the filler can be highly filled, and the obtained cured product exhibits physical properties with little variation, and is expected to have low water absorption due to the hydrophobic group effect.
【0030】使用する結晶性エポキシ樹脂は、結晶性で
あればよく、結晶化度(結晶部分の質量の全質量に対す
る比)及び化学構造に制限はないが、特性、成形性等を
考慮すると全体を構成する分子構造の1ユニット中に含
まれる結晶構造分子が全体の分子数の70%以上である
熱硬化型のエポキシ樹脂が好ましい。結晶構造分子の含
有量が70%未満であると、高温に安定で、融点以上で
の高流動化が低下する傾向がある。結晶性エポキシ樹脂
は硬化剤及び必要に応じて硬化促進剤が併用して使用さ
れる。The crystalline epoxy resin to be used may be crystalline, and there is no limitation on the crystallinity (ratio of the mass of the crystalline part to the total mass) and the chemical structure. A thermosetting epoxy resin in which the number of crystal structure molecules contained in one unit of the molecular structure constituting the above is 70% or more of the total number of molecules is preferable. When the content of the crystal structure molecule is less than 70%, it tends to be stable at a high temperature and to lower the fluidization at a melting point or higher. The crystalline epoxy resin is used in combination with a curing agent and, if necessary, a curing accelerator.
【0031】本発明で使用する結晶性エポキシ樹脂は、
得られる成形体の不良率の低減、成形サイクルの向上等
を考慮すると、結晶性エポキシ樹脂の150℃〜180
℃の範囲での粘度変化が0.002Pa.s〜0.00
8Pa.sの範囲であることが好ましく、0.003P
a.s〜0.007Pa.sの範囲であることがさらに
好ましい。粘度変化が上記の範囲より大きいと混合する
膨張黒鉛シート粉砕粉に均一に含浸することが困難で、
得られる成形体は樹脂と膨張黒鉛シート粉砕粉が不均一
となった構成となり、機械強度、電気特性等の初期特性
の低い成形体となる傾向があり、一方、粘度変化が上記
の範囲より小さいと膨張黒鉛シート粉砕粉との分離が明
確になり、成形時における成形金型のガス抜き部からの
樹脂分の流出や、得られる成形体の外周部に樹脂量が多
くなる現象が顕著に現れ、得られる成形体も前記と同様
に初期特性が低くなる傾向がある。The crystalline epoxy resin used in the present invention is
Considering the reduction of the defective rate of the obtained molded product and the improvement of the molding cycle, the crystalline epoxy resin has a temperature of 150 ° C to 180 ° C.
The viscosity change in the range of 0.002 Pa is 0.002 Pa.s. s to 0.00
8 Pa. It is preferably in the range of s, 0.003P
a. s-0.007 Pa.s. More preferably, it is in the range of s. It is difficult to uniformly impregnate the expanded graphite sheet pulverized powder to be mixed when the viscosity change is larger than the above range,
The obtained molded product has a structure in which the resin and the crushed powder of the expanded graphite sheet are not uniform, and tends to be a molded product with low initial properties such as mechanical strength and electrical properties, while the viscosity change is smaller than the above range. The separation of the crushed powder and the expanded graphite sheet becomes clear, and the resin component flows out from the degassing part of the molding die at the time of molding, and the phenomenon that the amount of resin increases in the outer peripheral part of the resulting molded product becomes prominent. Also, the obtained molded product tends to have low initial properties as described above.
【0032】結晶性エポキシ樹脂中に含まれる結晶構造
に特に制限はないが、得られる成形体の物性及び成形性
を考慮すると、一般式(A)に示す化学構造単位を主成
分とする樹脂が好ましい。また、最適成形体を製造する
上で重要な因子となる樹脂のゲル化時間は、硬化剤及び
必要に応じて使用する硬化促進剤の種類及び配合量によ
り任意に決定される。The crystal structure contained in the crystalline epoxy resin is not particularly limited, but in consideration of the physical properties and moldability of the obtained molded product, the resin containing the chemical structural unit represented by the general formula (A) as the main component is used. preferable. Further, the gelling time of the resin, which is an important factor in producing an optimum molded body, is arbitrarily determined by the type and amount of the curing agent and, if necessary, the curing accelerator used.
【0033】[0033]
【化1】 [Chemical 1]
【0034】結晶性エポキシ樹脂と併用して使用される
硬化剤については特に制限はなく、芳香族アミン、酸無
水物、フェノールノボラック樹脂等が用いられる。これ
らの硬化剤の中で得られる成形体の特性、コスト等を考
慮するとフェノールノボラック樹脂を用いることが好ま
しい。The curing agent used in combination with the crystalline epoxy resin is not particularly limited, and aromatic amine, acid anhydride, phenol novolac resin and the like are used. It is preferable to use a phenol novolac resin in consideration of the characteristics of the molded product obtained from these curing agents, the cost, and the like.
【0035】必要に応じて使用する硬化促進剤の種類に
ついても特に制限はなく、得られる成形体の物性、コス
ト等を考慮するとトリフェニールフォスフィン(TP
P)が好ましい。There is no particular limitation on the kind of the curing accelerator used if necessary, and triphenylphosphine (TP) is taken into consideration in consideration of the physical properties and cost of the obtained molded product.
P) is preferred.
【0036】前記材料を調整する方法に特に制限はな
く、乾式で混合調整する方法、有機溶剤を使用した湿式
混合調整方法、材料を溶融して混合調整する方法等が挙
げられるが、本発明においては均一混合、安全性、びコ
スト等を考慮すると材料をニーダやロールを用いて溶融
させて混合する溶融ブレンド法が好ましい。There are no particular restrictions on the method for adjusting the above-mentioned materials, and examples thereof include a dry mixing method, a wet mixing adjusting method using an organic solvent, and a method of mixing and adjusting the material by melting. In consideration of uniform mixing, safety, cost, etc., a melt blending method in which materials are melted and mixed using a kneader or a roll is preferable.
【0037】溶融ブレンド法は材料を加熱して、樹脂、
硬化剤及び必要に応じて使用する硬化促進剤等を混合す
るため、混合中における材料の反応によるゲル化及び硬
化に注意する必要があり、使用する装置の混合時におけ
るせん断力の大きさ及び冷却装置の有無等を確認する必
要がある。また、一般的にはブレンドする樹脂の融点以
上に装置混合部の温度を上げ、材料の投入順序は反応を
大きく促進させる材料を最後に投入することが好まし
い。The melt blending method involves heating a material to give a resin,
It is necessary to pay attention to gelation and hardening due to the reaction of the materials during mixing in order to mix the hardening agent and the hardening accelerator to be used if necessary. The magnitude of the shearing force and cooling during the mixing of the equipment used It is necessary to confirm the presence or absence of equipment. In general, it is preferable to raise the temperature of the mixing section of the apparatus above the melting point of the resin to be blended and to charge the materials last so that the reaction can be greatly accelerated.
【0038】前記に示す方法によって得られた樹脂混合
物は冷却後、粉砕、分級されて本発明で使用される樹脂
材料となる。得られた樹脂混合物の粉砕方法に特に制限
はないが、粗粉砕を行いその後微粉砕する方法は、得ら
れる樹脂混合物の平均粒径が安定するので好ましい。得
られた粉砕粉の分級方法にも特に制限はないが、目的と
する粒径に合わせた分級網を有した自動ふるい機を使用
することは、コスト、分級精度の面で好ましい。The resin mixture obtained by the above-mentioned method is cooled, pulverized and classified to obtain the resin material used in the present invention. The method of pulverizing the obtained resin mixture is not particularly limited, but a method of coarsely pulverizing and then finely pulverizing is preferable because the average particle size of the obtained resin mixture is stable. The method for classifying the obtained pulverized powder is also not particularly limited, but it is preferable to use an automatic sieving machine having a classifying mesh according to the target particle size in terms of cost and classification accuracy.
【0039】樹脂混合物の粒度分布に特に制限はない
が、膨張黒鉛シート粉砕粉との乾式での混合性を考慮す
ると、数平均粒径で1μm〜1000μmの範囲が好ま
しく、5μm〜500μmの範囲がさらに好ましい。数
平均粒径で1μm未満であると粒子同士が凝集(ブロキ
ッング)を起こし、作業性が悪いばかりでなく膨張黒鉛
シート粉砕粉との均一混合が望めなくなる傾向があり、
一方、1000μmを超えると前記と同様に膨張黒鉛シ
ート粉砕粉との均一混合が難しくなり、得られるセパレ
ータの密度が大きくばらつく傾向がある。There is no particular limitation on the particle size distribution of the resin mixture, but in consideration of the dry mixing property with the expanded graphite sheet pulverized powder, the number average particle size is preferably in the range of 1 μm to 1000 μm, and more preferably in the range of 5 μm to 500 μm. More preferable. If the number average particle size is less than 1 μm, the particles may agglomerate (broking), resulting in poor workability and a tendency that uniform mixing with the expanded graphite sheet pulverized powder may not be expected.
On the other hand, when it exceeds 1000 μm, it becomes difficult to uniformly mix it with the crushed powder of the expanded graphite sheet as described above, and the density of the obtained separator tends to vary greatly.
【0040】本発明で使用する膨張黒鉛と樹脂混合物と
の混合割合は、目標とする最終成形体である燃料電池用
セパレータの諸特性の値を考慮して決定されるが、通常
混合比率で、膨張黒鉛/樹脂混合物=95/5〜30/
70(重量比)の範囲が好ましく、90/10〜50/
50(重量比)の範囲がより好ましく、80/20〜6
0/40(重量比)の範囲がさらに好ましい。ここで膨
張黒鉛と樹脂混合物との混合比率が95/5を超えると
機械強度が急激に低下する傾向があり、一方、30/7
0未満であると導電性物質である膨張黒鉛の添加量が少
なく、電気特性が低下する傾向がある。The mixing ratio of the expanded graphite and the resin mixture used in the present invention is determined in consideration of the values of various characteristics of the fuel cell separator which is the final molded product to be the target. Expanded graphite / resin mixture = 95 / 5-30 /
The range of 70 (weight ratio) is preferable, and 90/10 to 50 /
The range of 50 (weight ratio) is more preferable, and 80/20 to 6
The range of 0/40 (weight ratio) is more preferable. Here, if the mixing ratio of the expanded graphite and the resin mixture exceeds 95/5, the mechanical strength tends to decrease sharply, while on the other hand, 30/7
If it is less than 0, the amount of expanded graphite that is a conductive substance added is small, and the electrical characteristics tend to deteriorate.
【0041】膨張黒鉛と樹脂混合物の混合方法に特に制
限はなく、膨張黒鉛の微粉化を防止する点で混合時の膨
張黒鉛に大きな剪断断力が加わらないシエイカー、Vブ
レンダー等を使用した乾式混合方法によることが好まし
い。混合時に膨張黒鉛が微粉化した場合、得られる燃料
電池用セパレータの機械強度が低下する傾向がある。There is no particular limitation on the method of mixing the expanded graphite and the resin mixture, and dry mixing using a shaker, a V blender or the like that does not apply a large shearing force to the expanded graphite at the time of mixing in order to prevent the expanded graphite from being pulverized. The method is preferred. If the expanded graphite is pulverized during mixing, the mechanical strength of the resulting fuel cell separator tends to decrease.
【0042】また、上記混合粉は直接、成形材料粉とし
て使用できるが、本発明においては、さらなる混合性の
向上と成形時の作業性を向上させるために、混合粉を加
圧成形しシート状にしたもの(以下成形用シートとい
う)を使用する。成形用シートの製造法に特に制限はな
いが、例えば混合物投入タンク、材料を一定厚さにする
ゲート調整機、一定幅に仕上げるスリッター、前記加工
材料を移送する移送装置、シート化する圧延ロール等か
ら構成される成形用シートの製造装置等を使用すること
ができる。平坦部に穴部を有する場合、成形用シートに
穴部が形成されているようにすると好ましい。The above-mentioned mixed powder can be directly used as a molding material powder, but in the present invention, in order to further improve the mixing property and workability at the time of molding, the mixed powder is pressure-molded to form a sheet. The sheet (hereinafter referred to as the forming sheet) that has been used is used. There is no particular limitation on the method for producing the forming sheet, but for example, a mixture charging tank, a gate adjusting machine for adjusting the material to a constant thickness, a slitter for finishing to a constant width, a transfer device for transferring the processing material, a rolling roll for sheeting, etc. It is possible to use a molding sheet manufacturing apparatus or the like. When the flat portion has a hole, it is preferable that the sheet is formed with the hole.
【0043】成形用シートは、その強度を向上させるた
めに成形用シートに含まれる樹脂の硬化反応を部分的に
進めるか、部分的に(完全にではなく)熱溶融させてか
らセパレータの製造に供することができる。硬化反応又
は熱溶融させる方法に制限はないが、例えば、得られた
成形用シートを加熱する方法、さらに具体的には前記の
圧延ロールを加熱装置が付属されたものとし、この圧延
ロールを通すときに加熱する方法、得られた成形用シー
トを加熱オーブンに通す方法等がある。In order to improve the strength of the molding sheet, the curing reaction of the resin contained in the molding sheet is partially promoted, or the molding sheet is partially (not completely) heat-melted before manufacturing the separator. Can be offered. There is no limitation on the curing reaction or the method of heat-melting, for example, a method of heating the obtained forming sheet, more specifically, the above-mentioned rolling roll shall be equipped with a heating device and passed through this rolling roll. There are a method of occasionally heating and a method of passing the obtained molding sheet through a heating oven.
【0044】本発明で使用する成形用シートの密度、重
ね枚数、形状等については特に制限はなく、得られる成
形体のリブ部と平坦部の面積及び密度比率の設計値によ
り任意に決定される。所望のセパレータ形状が形成でき
る金型を用いて成形する場合、成形用シートを成形後に
所望の密度を得るために必要枚数重ね、また部分的にの
み必要な枚数を重ねて成形する。上記成形体(燃料電池
用セパレータ)を得るための成形方法については特に制
限はないが、圧縮成形法で成形することが好ましい。There is no particular limitation on the density, the number of layers, the shape, etc. of the molding sheet used in the present invention, and it is arbitrarily determined by the design value of the area and density ratio of the rib portion and the flat portion of the obtained molded body. . In the case of molding using a mold capable of forming a desired separator shape, after forming the forming sheets, the necessary number of sheets is overlapped to obtain a desired density, or only a part of the required number of sheets is overlapped and formed. The molding method for obtaining the above molded body (fuel cell separator) is not particularly limited, but compression molding is preferable.
【0045】平坦部の機械強度、電気特性等の改善、密
度の調整などのために、補強シートとして、導電性シー
ト、ガス不浸透性シート又は絶縁性を有する材料を成形
用シートに積層し、成形して一体化することができる。
これらの補強シートは、成形に当たって前記補強層に相
当する部分にのみ 成形用シートと積層してもよく、そ
の他密度等を改善したい部分に任意に成形用シートと積
層することができる。In order to improve the mechanical strength and electrical characteristics of the flat portion, adjust the density, etc., a conductive sheet, a gas impermeable sheet or a material having an insulating property is laminated on the molding sheet as a reinforcing sheet, It can be molded and integrated.
These reinforcing sheets may be laminated with the forming sheet only in the portion corresponding to the reinforcing layer in forming, and may be arbitrarily laminated with the forming sheet in other portions where the density or the like is desired to be improved.
【0046】導電性シート又はガス不浸透性シートとし
ては、膨張黒鉛シート(成形材料として好ましいものと
して使用される膨張黒鉛シート粉砕粉のベースとなるシ
ート)を用いることが好ましい。膨張黒鉛シートの板厚
に制限はないが、成形作業性を考慮すれば0.5mm〜
1.2mmの範囲のものが好ましい。膨張黒鉛シートの
密度については特に制限はなく、一体化して使用する成
形用シートの密度を考慮して選定されるが、例えば20
0kg/m3〜1,200kg/m3の範囲が好まし
い。As the electrically conductive sheet or the gas impermeable sheet, it is preferable to use an expanded graphite sheet (a sheet which is a base of crushed powder of expanded graphite sheet which is preferably used as a molding material). There is no limitation on the thickness of the expanded graphite sheet, but 0.5 mm-
It is preferably in the range of 1.2 mm. The density of the expanded graphite sheet is not particularly limited, and is selected in consideration of the density of the molding sheet to be integrally used.
Range of 0kg / m 3 ~1,200kg / m 3 is preferred.
【0047】導電性シートは、膨張黒鉛シート以外にも
導電性を有しシート状に加工できるものであれば使用す
ることができる。その材質に制限はない。なお、本発明
においては、必要に応じ密度の異なるシートを組み合わ
せて使用することもできる。As the electrically conductive sheet, other than the expanded graphite sheet, any electrically conductive sheet that can be processed into a sheet can be used. There is no limit to the material. In the present invention, sheets having different densities can be used in combination as required.
【0048】ガス不浸透性シートとしては、例えば、ガ
ラス布(ガラス織布又はガラス不織布)、カーボン繊維
等の繊維織布又は不織布に樹脂を含浸し、ハンドリング
をよくしたプリプレグを用いることもできる。繊維織布
又は不織布の中でもガラス布が特に好ましい。また、絶
縁性を有する材料としては、ガラス布(ガラス織布又は
ガラス不織布)に樹脂を含浸し、乾燥させて得られるプ
リプレグ(樹脂の硬化度はBステージ)を用いることが
好ましい。As the gas-impermeable sheet, for example, a glass cloth (glass woven cloth or glass non-woven cloth), a fiber woven cloth or non-woven cloth such as carbon fiber impregnated with a resin, and a prepreg which is easily handled can be used. A glass cloth is particularly preferable among the fiber woven cloth and the non-woven cloth. As the material having an insulating property, it is preferable to use a prepreg (curing degree of resin is B stage) obtained by impregnating glass cloth (glass woven cloth or glass nonwoven cloth) with resin and drying.
【0049】上記ガラス布のガラス組成については特に
制限はないがCガラスやEガラスを用いることができ
る。 ガラスの繊維径については3μm〜18μmの範
囲が好ましい。ガラス布又はその原料のガラス繊維は、
樹脂との接着性を確保するためシラン系の表面処理を行
ったものが好ましく、板厚を0.15mm〜0.33mm
とすることが好ましく、このうちガラス織布は平織りを
主として用いることが好ましい。The glass composition of the glass cloth is not particularly limited, but C glass or E glass can be used. The glass fiber diameter is preferably in the range of 3 μm to 18 μm. Glass cloth or glass fiber of its raw material,
A silane-based surface treatment is preferable in order to secure adhesiveness with the resin, and the plate thickness is 0.15 mm to 0.33 mm.
It is preferable that the glass woven fabric is mainly a plain weave.
【0050】プリプレグ用の樹脂としては、特に制限は
ないが融点及びゲル化時間が成形体に使用される樹脂と
同等のものが好ましく、成形体に用いる樹脂混合物(結
晶性エポキシ樹脂/硬化剤/硬化促進剤混合物)と同じ
ものが好ましい。The resin for the prepreg is not particularly limited, but a resin having the same melting point and gelling time as that of the resin used for the molded body is preferable, and the resin mixture (crystalline epoxy resin / curing agent / curing agent / The same as the curing accelerator mixture) is preferable.
【0051】上記のプリプレグにおいて、樹脂の含浸
は、繊維織布又は繊維不織布に樹脂ワニスを塗工するこ
とにより行うことができる。繊維織布又は繊維不織布に
塗工する樹脂量(固形分)は、ガラス布に対して30重
量%〜60重量%が好ましく、40重量%〜50重量%
がさらに好ましい。樹脂量が30重量%未満ではガス不
浸透性レベルが低下する傾向があり、60重量%を超え
ると繊維比率が少なくなり、強度補強効果が低下する傾
向がある。樹脂は、Bステージ状態まで半硬化させるこ
とが好ましい。In the above prepreg, the resin can be impregnated by applying a resin varnish to a fiber woven fabric or a fiber nonwoven fabric. The resin amount (solid content) applied to the fiber woven fabric or fiber nonwoven fabric is preferably 30% by weight to 60% by weight, and 40% by weight to 50% by weight with respect to the glass cloth.
Is more preferable. If the amount of the resin is less than 30% by weight, the gas impermeability level tends to decrease, and if it exceeds 60% by weight, the fiber ratio tends to be small and the strength reinforcing effect tends to decrease. The resin is preferably semi-cured to the B stage state.
【0052】補強シートの使用形態について、特に制限
はないが、平坦部の補強をしたい部分の形状に加工した
ものなどを使用すれば、成形加工時間の短縮、得られる
成形体の寸法精度向上に大きく影響し有効である。表面
に樹脂を有しない補強シートを使用する場合、成形時に
成形用シートとの接着性又は補強シート同士との接着性
を向上させるために、表面に樹脂を被覆しておいてもよ
い。There are no particular restrictions on the form of use of the reinforcing sheet, but by using a reinforcing sheet that has been processed into the shape of the portion to be reinforced, it is possible to shorten the molding processing time and improve the dimensional accuracy of the resulting molded body. It has a great influence and is effective. When a reinforcing sheet having no resin on the surface is used, the surface may be coated with a resin in order to improve the adhesiveness between the molding sheet and the reinforcing sheets during molding.
【0053】燃料電池用セパレータを得るための成形用
シートの成形法又は成形用シートと補強シートを成形す
るための成形方法については特に制限はないが、圧縮成
形法で成形することが好ましい。成形は、通常、所定の
形状を得るための金型を用いて行われる。成形条件とし
ては、好ましくは、5MPa〜50MPa(特に好まし
くは10MPa〜40MPa)、好ましくは150℃〜
240℃(特に好ましくは170℃〜220℃)で行う
ことが好ましい。成形時間は、0.5〜15分間で十分
である。The forming method of the forming sheet for obtaining the fuel cell separator or the forming method of forming the forming sheet and the reinforcing sheet is not particularly limited, but the compression forming method is preferable. Molding is usually performed using a mold for obtaining a predetermined shape. The molding conditions are preferably 5 MPa to 50 MPa (particularly preferably 10 MPa to 40 MPa), preferably 150 ° C.
It is preferable to carry out at 240 ° C (particularly preferably 170 ° C to 220 ° C). A molding time of 0.5 to 15 minutes is sufficient.
【0054】成形用シートを普通に成形すると、リブ部
に比較して平坦部での密度が低下しやすい。これを改善
し、リブ部と平坦部の密度を均一化したり、平坦部の密
度を高めたりするためには、平坦部に成形用シートを重
ねたり、成形用シートに補強シートを重ねて成形するこ
とが好ましい。When the molding sheet is molded normally, the density at the flat portion is likely to be lower than that at the rib portion. In order to improve this and to make the density of the rib and the flat part uniform or to increase the density of the flat part, a forming sheet is laid on the flat part, or a reinforcing sheet is laid on the forming sheet. It is preferable.
【0055】また、成形用シートと補強シートを一体化
する場合、成形用シートと補強シートを必要枚数任意の
順番で積層し、積層物を金型内で1回で成形する方法、
成形用シート又は補強シートを成形し、得られた成形物
に成形用シート又は補強シートを積層して、また、成形
するという操作を必要回数繰り返して最終成形体とする
方法がある。When the forming sheet and the reinforcing sheet are integrated, the required number of forming sheets and reinforcing sheets are laminated in an arbitrary order, and the laminate is formed in the mold once.
There is a method of forming a forming sheet or a reinforcing sheet, laminating the forming sheet or the reinforcing sheet on the obtained formed product, and repeating the forming operation as many times as necessary to obtain a final formed body.
【0056】本発明の燃料電池用セパレータは、リブ部
と平坦部を有し、平坦部には穴部を有してもよいが、こ
の場合、成形用シートの作製時に穴部を形成しておく
か、成形体を成形後に穴部を打ち抜き加工してもよい。
また、本発明になる燃料電池用セパレータの寸法につい
ては特に制限はなく、燃料電池の大きさにより適宜選定
する。The fuel cell separator of the present invention has ribs and flat portions, and the flat portions may have holes. In this case, the holes are formed when the molding sheet is produced. Alternatively, the holes may be punched after forming the molded body.
The size of the fuel cell separator according to the present invention is not particularly limited, and is appropriately selected according to the size of the fuel cell.
【0057】補強シートを使用する場合であって、しか
も、成形用シートを単体(一枚)で使用する場合、成形
用シートを金型に挿設する前又は後に平坦部となる部分
にセットし、成形時に成形用シートと一体化することが
好ましい。When the reinforcing sheet is used and the forming sheet is used alone (one piece), the forming sheet is set in a flat portion before or after being inserted into the mold. It is preferable to be integrated with the molding sheet during molding.
【0058】本発明のセパレータを用いた燃料電池の作
製は、公知の方法により作製することができる。燃料電
池は、本発明におけるセパレータにより、固体高分子電
解質などからなる電解質層及びこれを挟むようにして形
成されるセルを必要数積層された構造を有する。本発明
におけるセパレータは、電解質の種類によって分類され
るアルカリ形、固体高分子形、リン酸形、溶融炭酸塩
形、固体酸形等の燃料電池のセパレータとして使用でき
る。The fuel cell using the separator of the present invention can be manufactured by a known method. The fuel cell has a structure in which an electrolyte layer made of a solid polymer electrolyte or the like and a required number of cells formed so as to sandwich the electrolyte layer are laminated by the separator of the present invention. The separator of the present invention can be used as a separator for fuel cells of alkaline type, solid polymer type, phosphoric acid type, molten carbonate type, solid acid type, etc., which are classified according to the type of electrolyte.
【0059】以下、本発明の実施例の形態を説明する。
図1は、成形用金型(上型下型兼用)を示す平面図であ
り、2個1組で使用され、片側の面に燃料電池用セパレ
ータのリブ部を形成するための突起部1が形成されてい
る。図2及び図3は、異なる形状の成形用シート2及び
3である。なお図3に示す成形用シート3の中央部(金
型の突起部1が挿入される部分)には切り欠き部4が形
成されている。Embodiments of the present invention will be described below.
FIG. 1 is a plan view showing a molding die (also used as an upper die and a lower die), which is used as a set of two and has a protrusion 1 for forming a rib portion of a fuel cell separator on one surface. Has been formed. 2 and 3 are molding sheets 2 and 3 having different shapes. A notch 4 is formed at the center of the molding sheet 3 shown in FIG. 3 (the part into which the protrusion 1 of the mold is inserted).
【0060】図4は、燃料電池用セパレータ(一例)の
断面図を示す。燃料電池用セパレータ11は、成形用シ
ート12、導電性シート13及び成形用シート12の順
に積層して成形される。燃料電池用セパレータ11は、
リブ部14及び平坦部15である。図5は、本発明の実
施例になる燃料電池用セパレータ(一例)の平面図及び
図6は図5のA−A断面図で、21はガスと冷却水の供
給路を確保するためのリブ(溝)を有するリブ部、22
はガスと冷却水を供給するための穴部、23は穴部22
周辺をシールするためのガスケット、24はセパレータ
を補強するための補強シート及び25は平坦部である。FIG. 4 shows a sectional view of a fuel cell separator (one example). The fuel cell separator 11 is formed by stacking a molding sheet 12, a conductive sheet 13, and a molding sheet 12 in this order. The fuel cell separator 11 is
The rib portion 14 and the flat portion 15. FIG. 5 is a plan view of a fuel cell separator (one example) according to an embodiment of the present invention, and FIG. 6 is a cross-sectional view taken along the line AA of FIG. 5, and 21 is a rib for securing a supply passage for gas and cooling water. Rib portion having (groove), 22
Is a hole for supplying gas and cooling water, and 23 is a hole 22
A gasket for sealing the periphery, 24 is a reinforcing sheet for reinforcing the separator, and 25 is a flat portion.
【0061】また、図7は、固体高分子型燃料電池の一
例のセル構造を示す斜視図である。セル30は、固体高
分子電解質膜31、燃料極32及び空気極33から構成
される三層膜34と、それを両側から挟む燃料電池用セ
パレータ35、36により構成されている。このセル3
0が図7に示すように多段に積み重ねられ、集合体とし
てのセルスタック37が得られる。図中は、セルが4段
重ねられているが、実際には、必要に応じて100段以
上重ねてもよい。FIG. 7 is a perspective view showing the cell structure of an example of the polymer electrolyte fuel cell. The cell 30 is composed of a three-layer film 34 including a solid polymer electrolyte membrane 31, a fuel electrode 32, and an air electrode 33, and fuel cell separators 35 and 36 sandwiching the three-layer film 34 from both sides. This cell 3
0s are stacked in multiple stages as shown in FIG. 7 to obtain a cell stack 37 as an aggregate. Although the cells are stacked in four layers in the figure, in actuality, they may be stacked in 100 layers or more if necessary.
【0062】[0062]
【実施例】以下、実施例により本発明を説明する。
実施例1
(1)膨張黒鉛シート粉砕粉の製造
濃硫酸800gを3リットルのガラスビーカに入れた。
このものに天然黒鉛(固定炭素数99重量%以上、中国
産#599黒鉛)400gを配合し、ガラス製の攪拌羽
根を取り付けた攪拌モータ(60min−1)で10分
間攪拌し、その後、過酸化水素水(濃度35重量%)3
2gを配合し、15分間攪拌した。攪拌終了後、減圧濾
過で酸処理黒鉛と酸成分を分離し、得られた酸処理黒鉛
を別容器に移し、5リットルの水を加え、大型攪拌羽根
で10分間攪拌して、減圧濾過で洗浄酸処理黒鉛と洗浄
水を分離した。EXAMPLES The present invention will be described below with reference to examples. Example 1 (1) Manufacture of crushed powder of expanded graphite sheet 800 g of concentrated sulfuric acid was put into a 3 liter glass beaker.
400 g of natural graphite (fixed carbon number 99% by weight or more, Chinese # 599 graphite) was added to this, and the mixture was stirred for 10 minutes by a stirring motor (60 min −1 ) equipped with a glass stirring blade, and then peroxide was added. Hydrogen water (concentration 35% by weight) 3
2 g was blended and stirred for 15 minutes. After completion of stirring, acid-treated graphite and acid components are separated by vacuum filtration, the obtained acid-treated graphite is transferred to another container, 5 liters of water is added, stirred for 10 minutes with a large stirring blade, and washed by vacuum filtration. Acid-treated graphite and washing water were separated.
【0063】得られた洗浄酸処理黒鉛をホーロー製のバ
ットに移し均一に均し、110℃に昇温した減圧乾燥器
で1時間熱処理して水分を除去した。このものをさらに
800℃に昇温した加熱炉に5分間入れ、膨張黒鉛を得
た。冷却後、この膨張黒鉛をロールで圧延して密度が
1,000kg/m3のシートを作製した。得られたシ
ートを粗粉砕機(ホソカワミクロン(株)製、ロートプ
レックス(商品名))で粉砕後、微粉砕機(奈良機械製
作所(株)製、自由粉砕機M−3(商品名))で粉砕
し、数平均粒径が150μm、嵩密度が190kg/m
3の膨張黒鉛シート粉砕粉を得た。The thus-obtained washed acid-treated graphite was transferred to a enamel vat and uniformly leveled, and heat-treated for 1 hour in a vacuum dryer heated to 110 ° C. to remove water. This was placed in a heating furnace further heated to 800 ° C. for 5 minutes to obtain expanded graphite. After cooling, this expanded graphite was rolled with a roll to prepare a sheet having a density of 1,000 kg / m 3 . The obtained sheet was crushed with a coarse crusher (Hosokawa Micron Co., Ltd., Rotoplex (trade name)), and then with a fine crusher (Nara Machinery Co., Ltd., free crusher M-3 (trade name)). Pulverized to have a number average particle size of 150 μm and a bulk density of 190 kg / m
A crushed powder of expanded graphite sheet No. 3 was obtained.
【0064】嵩密度は、200ミリリットルのガラス製
メスシリンダーに膨張黒鉛シート粉砕粉を上部目盛まで
入れ、口からこぼれないようにして約2cmの高さから
50回、台上でタッピングした後の容積と重量から求め
た。The bulk density is the volume after placing the crushed powder of the expanded graphite sheet into the upper graduated scale in a glass graduated cylinder of 200 ml and tapping on the table 50 times from a height of about 2 cm so as not to spill from the mouth. And calculated from the weight.
【0065】(2)使用する結晶性エポキシ樹脂混合粉
末の製造
結晶性エポキシ樹脂として、前記の一般式(A)に示す
化学構造単位を主成分とする結晶化率が98%の結晶性
エポキシ樹脂(東都化成(株)製、YDC−1312
(商品名))を使用し、硬化剤は一般式(B)に示す化
学構造からなるフェノールノボラック型(自家製、軟化
点86℃)を使用し、また、硬化剤はトリフェニールフ
ォスフィン(TPP)、(和光純薬工業(株)製試薬)
を使用した。なお、上記材料の基本配合比率は、結晶性
エポキシ樹脂/フェノールノボラック樹脂(当量配合)
とし、TPPは1.5phr(エポキシ樹脂量に対し1.
5重量%)とした。(2) Production of crystalline epoxy resin mixed powder to be used As a crystalline epoxy resin, a crystalline epoxy resin containing the chemical structural unit represented by the general formula (A) as a main component and having a crystallization rate of 98%. (YDC-1312 manufactured by Tohto Kasei Co., Ltd.
(Trade name)), the curing agent is a phenol novolac type (home-made, softening point 86 ° C.) having the chemical structure represented by the general formula (B), and the curing agent is triphenylphosphine (TPP). , (Wako Pure Chemical Industries, Ltd. reagent)
It was used. The basic compounding ratio of the above materials is crystalline epoxy resin / phenol novolac resin (equivalent compounding)
And TPP is 1.5 phr (1.
5% by weight).
【0066】[0066]
【化2】 [Chemical 2]
【0067】以下、結晶性エポキシ樹脂混合粉末の製造
方法を説明する。冷却装置付きの卓上型ニーダ(入江商
会社(株)製、PBV型、容量300ミリリットル)の
混合羽根を有するポット内を120℃に昇温させてお
き、一方、前記の結晶性エポキシ樹脂130g、前記の
フェノールノボラック樹脂120g及び前記のトリフェ
ニールフォスフィン1.9gをビニールの袋に入れ、さ
らに袋に空気を入れた後、よく振り乾式混合を行った。The method for producing the crystalline epoxy resin mixed powder will be described below. A pot having a mixing blade of a table-top kneader with a cooling device (PBV type, manufactured by Irie Shosha Co., Ltd., capacity 300 ml) was heated to 120 ° C., while 130 g of the above crystalline epoxy resin, The phenol novolac resin (120 g) and the triphenylphosphine (1.9 g) were placed in a vinyl bag, air was introduced into the bag, and the mixture was shaken well to carry out dry mixing.
【0068】前記混合材料を、前記ニーダの混合羽根を
回転させながらポット内に20秒間で入れ、その後3分
間混錬した。この間ポット内の温度が120℃以上にな
らないよう、冷却水量を調整した。混錬終了後、ポット
内から速やかに混合材料を取りだし室温で放置した。The mixed material was put in the pot for 20 seconds while rotating the mixing blade of the kneader, and then kneaded for 3 minutes. During this time, the amount of cooling water was adjusted so that the temperature inside the pot would not exceed 120 ° C. After the kneading was completed, the mixed material was immediately taken out from the pot and left at room temperature.
【0069】次に、前記で得られた混合物を、二重にし
たビニール袋に入れハンマーで軽く叩き、粗粉砕を行い
このものをさらに冷却装置付きの万能ミキサーで、微粉
砕を行った。得られた混合物の微粉を100μmのふる
いで篩い、100μmを超える粉に対してはさらに粉砕
し、前記のふるいで篩い平均粒子径が30μmの結晶性
エポキシ樹脂混合粉末を得た。Next, the mixture obtained above was placed in a double-layered vinyl bag, lightly hit with a hammer, coarsely crushed, and then finely crushed with a universal mixer equipped with a cooling device. The fine powder of the obtained mixture was sieved with a sieve of 100 μm, and the powder having a diameter of more than 100 μm was further pulverized to obtain a crystalline epoxy resin mixed powder having an average particle diameter of 30 μm.
【0070】(3)成形体(燃料電池用セパレータ)の
製造
実施例1(1)で得た膨張黒鉛シート粉砕粉350重量
部と(2)で製造した結晶性エポキシ樹脂混合粉末15
0重量部(膨張黒鉛シート粉砕粉/結晶性エポキシ樹脂
混合粉末=70/30(重量比))を、卓上Vブレンダ
ーに投入し、3分間ブレンドを行い混合粉を得た。(3) Manufacture of molded body (separator for fuel cell) 350 parts by weight of crushed powder of expanded graphite sheet obtained in Example 1 (1) and crystalline epoxy resin mixed powder 15 produced in (2)
0 part by weight (expanded graphite sheet pulverized powder / crystalline epoxy resin mixed powder = 70/30 (weight ratio)) was put into a tabletop V blender and blended for 3 minutes to obtain a mixed powder.
【0071】次いで、成形用シート成形機で130KP
aの圧力で成形して、密度が600kg/m3及び厚さ
が3.2mmの成形用シート(これを成形用シートAと
いう)を得た。また、上記の混合粉を用い、成形シート
成形機で130KPaの圧力で成形して、密度が600
Kg/m3及び厚さが1.0mmの成形用シート(これを
成形用シートBという)を得た。Next, 130 KP is applied with a sheet forming machine for molding.
Molding was performed under a pressure of a to obtain a molding sheet having a density of 600 kg / m 3 and a thickness of 3.2 mm (this is referred to as molding sheet A). Further, using the above-mentioned mixed powder, it was molded at a pressure of 130 KPa by a molding sheet molding machine to obtain a density of 600.
A molding sheet having a Kg / m3 and a thickness of 1.0 mm (this is referred to as molding sheet B) was obtained.
【0072】次に、金型を用意した。下型を成形面
(縦、横200mm)が平坦な雌型とし、上型を図1の
突起部1を有する金型とした。ただし、上型において、
突起部の高さを1.0mm、突起ピッチを1.0mm、リ
ブの幅を1.0mm及びリブテーパを0度とした。Next, a mold was prepared. The lower mold was a female mold having a flat molding surface (vertical, horizontal 200 mm), and the upper mold was a mold having the protrusion 1 of FIG. However, in the upper mold,
The height of the protrusions was 1.0 mm, the protrusion pitch was 1.0 mm, the rib width was 1.0 mm, and the rib taper was 0 degree.
【0073】上記の下型に図2に示す形状の成形用シー
ト2(成形用シートAを使用) を1枚載置し、さらに
その上に図3に示す中央部に切り欠き部4を有する成形
用シート3(成形用シートBを使用)を1枚載置した
後、その上部に上型の突起部1を有する部分を下に向け
てセットし、その後、面圧15MPa、温度160℃で
10分間成形した。次いで得られた成形体を180℃で
30分間熱処理を行って燃料電池用セパレータを得た。
得られた燃料電池用セパレータの平坦部及びリブ部の厚
さは2.0mm及びリブ部の溝の深さは1.0mmであっ
た。One molding sheet 2 (using the molding sheet A) having the shape shown in FIG. 2 is placed on the lower mold, and a cutout portion 4 at the central portion shown in FIG. 3 is further provided thereon. After placing one molding sheet 3 (using the molding sheet B), the part having the upper mold protrusion 1 is set downward on the upper part thereof, and then at a surface pressure of 15 MPa and a temperature of 160 ° C. Molded for 10 minutes. Then, the obtained molded body was heat-treated at 180 ° C. for 30 minutes to obtain a fuel cell separator.
The thickness of the flat portion and rib portion of the obtained fuel cell separator was 2.0 mm, and the groove depth of the rib portion was 1.0 mm.
【0074】比較例1
(1)膨張黒鉛シート粉砕粉の製造
実施例1(1)で製造したものと同じものを使用した。
(2)使用するエポキシ樹脂混合粉末の製造
実施例1(2)の結晶性エポキシ樹脂混合粉末を使用せ
ず、エポキシ樹脂として(東都化成(株)製、クレゾー
ルノボラックタイプ、YDCN−701(商品名))1
30g、硬化剤として、フェノールノボラック樹脂(自
家製)110g(当量配合)、トリフェニールフォスフ
ィン(TPP)(和光純薬工業(株)、試薬)2.4g
を使用した以外は、実施例1(2)と同様の工程を経て
エポキシ樹脂混合粉末を得た。Comparative Example 1 (1) Production of crushed powder of expanded graphite sheet The same one as produced in Example 1 (1) was used. (2) Production of epoxy resin mixed powder to be used Without using the crystalline epoxy resin mixed powder of Example 1 (2), as an epoxy resin (Toto Kasei Co., Ltd., cresol novolac type, YDCN-701 (trade name) )) 1
30 g, as curing agent, phenol novolac resin (home-made) 110 g (equal amount), triphenylphosphine (TPP) (Wako Pure Chemical Industries, Ltd., reagent) 2.4 g
An epoxy resin mixed powder was obtained through the same steps as in Example 1 (2) except that was used.
【0075】(3)成形体(燃料電池用セパレータ)の
製造
実施例1(3)と同様の工程を経て燃料電池用セパレー
タを得た。得られた燃料電池用セパレータの平坦部及び
リブ部の厚さは2.0mm及びリブ部の溝深さは1.0m
mであった。(3) Manufacture of Molded Article (Fuel Cell Separator) A fuel cell separator was obtained through the same steps as in Example 1 (3). The thickness of the flat portion and the rib portion of the obtained fuel cell separator was 2.0 mm, and the groove depth of the rib portion was 1.0 m.
It was m.
【0076】次に、実施例1及び比較例1で使用した樹
脂について、150℃、160℃、170℃及び180
℃のときの粘度を測定した。その結果を表1に示す。ま
た実施例1及び比較例1で得た燃料電池用セパレータに
ついて、金型に付着したバリ量、リブ部及び平坦部の密
度、ガス不浸透性並びに成形体の外観について評価し
た。その結果を表1に示す。Next, regarding the resins used in Example 1 and Comparative Example 1, 150 ° C., 160 ° C., 170 ° C. and 180 ° C.
The viscosity at the temperature of ° C was measured. The results are shown in Table 1. Further, the fuel cell separators obtained in Example 1 and Comparative Example 1 were evaluated for the amount of burrs attached to the mold, the density of ribs and flat portions, gas impermeability, and the appearance of the molded body. The results are shown in Table 1.
【0077】なお、金型に付着したバリ量及び成形体の
外観(表面膨れ、傷、成形むら)については目視判定し
た。密度は、リブ部の中央部及び平坦部からそれぞれ2
cm角の試料を切り出し、これらの容積と重量を測定
し、計算して求めた。The amount of burrs attached to the mold and the appearance of the molded product (surface swelling, scratches, uneven molding) were visually evaluated. The density is 2 from the center and the flat part of the rib.
A cm square sample was cut out, and their volume and weight were measured and calculated.
【0078】ガス不浸透性については、図8に示す自家
製ガスリーク試験治具を使用して治具中の50mm
(Φ)の大きさのセパレータ試験片41を透過した酸素
量を水中で置換し、酸素を注入後2分以内に発生する気
泡の数を確認した。また、ガス不浸透性を評価するの
に、リブ部については、成形して得られた燃料電池用セ
パレータからセパレータ試験片を切り取って用いたが、
平坦部においてはリブ部を形成せずに全ての面が平坦に
なるように(上型として成形面が平坦な金型を用いて)
別に成形した成形体から切り出した模擬セパレータ試験
片(ただし、実施例1に対応するものとして、成形用シ
ート3として成形用シートBで中央部に切り欠きのない
ものを用い及び上型として上記の成形面が平坦なものを
用いたこと以外は、前記実施例1と同様にして作製し
た)を用いた。For gas impermeability, a homemade gas leak test jig shown in FIG.
The amount of oxygen passing through the separator test piece 41 having a size of (Φ) was replaced in water, and the number of bubbles generated within 2 minutes after the injection of oxygen was confirmed. Further, in order to evaluate the gas impermeability, for the rib portion, a separator test piece was used by cutting from the fuel cell separator obtained by molding,
In the flat part, all surfaces are flat without forming ribs (using a mold with a flat molding surface as the upper mold)
A simulated separator test piece cut out from a separately molded molded body (however, as the one corresponding to Example 1, a molding sheet B having no notch in the center portion was used as the molding sheet 3 and the above-mentioned mold was used as the upper mold. (Prepared in the same manner as in Example 1 except that the molding surface was flat) was used.
【0079】図8において41はセパレータ試験片、4
2は水、43は酸素(面圧:19.6×104Pa)及
び44はゴム製のパッキンである。なお、上記セパレー
タ試験片のパッキンより内側の大きさは34mmであっ
た。In FIG. 8, 41 is a separator test piece, 4
2 is water, 43 is oxygen (surface pressure: 19.6 × 10 4 Pa), and 44 is a rubber packing. The size of the inside of the packing of the separator test piece was 34 mm.
【0080】[0080]
【表1】 [Table 1]
【0081】[0081]
【表2】 [Table 2]
【0082】表1に示されるように、本発明になる実施
例1で使用した結晶性エポキシ樹脂は、比較例1で使用
したエポキシ樹脂に比べ、溶融粘度が低くまた、測定温
度の違いによる粘度変化が小さいことが明らかである。
また、表2に示されるように、本発明になる実施例1で
得た燃料電池用セパレータは、比較例1の燃料電池用セ
パレータに比較してリブ部及び平坦部の密度が大きく、
発生するバリ量も少なく、ガス不浸透性、外観がよいこ
とが明らかである。As shown in Table 1, the crystalline epoxy resin used in Example 1 according to the present invention has a lower melt viscosity than the epoxy resin used in Comparative Example 1 and the viscosity due to the difference in measurement temperature. It is clear that the change is small.
In addition, as shown in Table 2, the fuel cell separator obtained in Example 1 according to the present invention has a higher density of rib portions and flat portions than the fuel cell separator of Comparative Example 1,
It is clear that the amount of burr generated is small, gas impermeability and appearance are good.
【0083】[0083]
【発明の効果】本発明の燃料電池用セパレータは、ガス
不浸透性、機械強度、電気抵抗等に優れた燃料電池用セ
パレータである。また、本発明の製造法によれば、ガス
不浸透性、機械強度、電気抵抗等に優れた燃料電池用セ
パレータが得られる。さらに、本発明の燃料電池は、ガ
ス不浸透性、機械強度、電気抵抗等に優れた燃料電池用
セパレータを有する高性能な燃料電池である。The fuel cell separator of the present invention is a fuel cell separator excellent in gas impermeability, mechanical strength, electric resistance and the like. Further, according to the production method of the present invention, a fuel cell separator having excellent gas impermeability, mechanical strength, electrical resistance and the like can be obtained. Furthermore, the fuel cell of the present invention is a high-performance fuel cell having a fuel cell separator excellent in gas impermeability, mechanical strength, electric resistance and the like.
【図1】 成形用金型(上型下型兼用)を示す平面図で
ある。FIG. 1 is a plan view showing a molding die (also serving as an upper die and a lower die).
【図2】 成形用シートの一例を示す平面図である。FIG. 2 is a plan view showing an example of a molding sheet.
【図3】 他の成形用シートの一例を示す平面図であ
る。FIG. 3 is a plan view showing an example of another molding sheet.
【図4】 片リブ付モデル燃料電池用セパレータを示す
断面図である。FIG. 4 is a cross-sectional view showing a model fuel cell separator with one rib.
【図5】 本発明の実施例になるリブ付き燃料電池セパ
レータの平面図である。FIG. 5 is a plan view of a ribbed fuel cell separator according to an embodiment of the present invention.
【図6】 図5のA−A断面図である。6 is a cross-sectional view taken along the line AA of FIG.
【図7】 固体高分子型燃料電池の一例のセル構造を示
す斜視図である。FIG. 7 is a perspective view showing a cell structure of an example of a polymer electrolyte fuel cell.
【図8】 ガス透過性を調べるためのガスリーク試験治
具の断面図である。FIG. 8 is a cross-sectional view of a gas leak test jig for examining gas permeability.
1 突起部 2 成形用シー
ト
3 成形用シート 4 切り欠き部
11 片リブ付モデル燃料電池用セパレータ
12 成形用シート 13導電性シー
ト
14 リブ部 15 平坦部
21 リブ部 22 穴部
23 ガスケット 24 補強シー
ト
25 平坦部 30 セル
31 固体高分子電解質膜 32 燃料極
33 空気極 34 三層膜
35、36 燃料電池用セパレータ 37 セルスタ
ック
41 セパレータ試験片 42 水
43 酸素 44 パッキン1 Protrusion 2 Forming Sheet 3 Forming Sheet 4 Notch 11 Model Ribbon Fuel Cell Separator 12 Forming Sheet 13 Conductive Sheet 14 Rib 15 Flat 21 Rib 22 Hole 23 Gasket 24 Reinforcing Sheet 25 Flat part 30 Cell 31 Solid polymer electrolyte membrane 32 Fuel electrode 33 Air electrode 34 Three-layer membrane 35, 36 Fuel cell separator 37 Cell stack 41 Separator test piece 42 Water 43 Oxygen 44 Packing
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H026 AA06 BB00 BB02 BB06 CC03 CC08 EE18 HH00 HH08 ─────────────────────────────────────────────────── ─── Continued front page F-term (reference) 5H026 AA06 BB00 BB02 BB06 CC03 CC08 EE18 HH00 HH08
Claims (11)
される燃料電池用セパレータ。1. A fuel cell separator comprising a crystalline epoxy resin and expanded graphite.
0℃の範囲での粘度変化が0.002Pa.s〜0.0
08Pa.sの範囲である請求項1記載の燃料電池用セ
パレータ。2. The crystalline epoxy resin is 150 ° C. to 18 ° C.
The viscosity change in the range of 0 ° C. is 0.002 Pa.s. s ~ 0.0
08 Pa. The fuel cell separator according to claim 1, wherein the range is s.
る請求項1又は2記載の燃料電池用セパレータ。3. The fuel cell separator according to claim 1, wherein the expanded graphite is a crushed powder of expanded graphite sheet.
る請求項1〜3のいずれかに記載の燃料電池用セパレー
タ。4. The fuel cell separator according to claim 1, wherein the separator has a rib portion and a flat portion.
た後、シート化して成形することを特徴とする燃料電池
用セパレータの製造法。5. A method for producing a fuel cell separator, which comprises mixing a crystalline epoxy resin and expanded graphite, and then forming the sheet into a sheet.
0℃の範囲での粘度変化が0.002Pa.s〜0.0
08Pa.sの範囲である請求項5記載の燃料電池用セ
パレータの製造法。6. The crystalline epoxy resin is 150 ° C. to 18 ° C.
The viscosity change in the range of 0 ° C. is 0.002 Pa.s. s ~ 0.0
08 Pa. The method for producing a fuel cell separator according to claim 5, wherein the range is s.
る請求項5又は6記載の燃料電池用セパレータの製造
法。7. The method for producing a fuel cell separator according to claim 5, wherein the expanded graphite is a crushed powder of expanded graphite sheet.
る請求項5〜7のいずれかに記載の燃料電池用セパレー
タの製造法。8. The method for producing a fuel cell separator according to claim 5, wherein the separator has a rib portion and a flat portion.
ある請求項5〜8のいずれかに記載の燃料電池用セパレ
ータの製造法。9. The method for producing a fuel cell separator according to claim 5, wherein the molding method is a compression molding method.
電池用セパレータ又は請求項5〜9のいずれかに記載の
製造法により得られる燃料電池用セパレータを有してな
る燃料電池。10. A fuel cell comprising the fuel cell separator according to any one of claims 1 to 4 or the fuel cell separator obtained by the manufacturing method according to any one of claims 5 to 9.
燃料電池。11. The fuel cell according to claim 10, which is a solid polymer type.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002060674A JP2003257447A (en) | 2002-03-06 | 2002-03-06 | Separator for fuel cell, manufacturing method therefor, and fuel cell by use of separator for fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002060674A JP2003257447A (en) | 2002-03-06 | 2002-03-06 | Separator for fuel cell, manufacturing method therefor, and fuel cell by use of separator for fuel cell |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003257447A true JP2003257447A (en) | 2003-09-12 |
Family
ID=28669949
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002060674A Pending JP2003257447A (en) | 2002-03-06 | 2002-03-06 | Separator for fuel cell, manufacturing method therefor, and fuel cell by use of separator for fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003257447A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005196973A (en) * | 2003-12-26 | 2005-07-21 | Nippon Steel Chem Co Ltd | Composition for fuel cell separator and manufacturing method of fuel cell separator |
JP2006152170A (en) * | 2004-11-30 | 2006-06-15 | Nichias Corp | Conductive epoxy resin composition and preparation process of the same |
JP2006199812A (en) * | 2005-01-20 | 2006-08-03 | Nichias Corp | Conductive epoxy resin composition and separator for fuel cell |
EP1701400A1 (en) | 2005-03-11 | 2006-09-13 | Nichias Corporation | Conductive epoxy resin composition and separator for fuel cell |
EP1995810A1 (en) | 2007-05-25 | 2008-11-26 | Nichias Corporation | Fuel cell separator resin composition and fuel cell separator |
WO2010013740A1 (en) | 2008-08-01 | 2010-02-04 | ニチアス株式会社 | Resin composition for fuel cell separator, process for producing same, and fuel cell separator |
-
2002
- 2002-03-06 JP JP2002060674A patent/JP2003257447A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005196973A (en) * | 2003-12-26 | 2005-07-21 | Nippon Steel Chem Co Ltd | Composition for fuel cell separator and manufacturing method of fuel cell separator |
JP4633356B2 (en) * | 2003-12-26 | 2011-02-16 | 新日鐵化学株式会社 | Composition for fuel cell separator and method for producing fuel cell separator |
JP2006152170A (en) * | 2004-11-30 | 2006-06-15 | Nichias Corp | Conductive epoxy resin composition and preparation process of the same |
JP2006199812A (en) * | 2005-01-20 | 2006-08-03 | Nichias Corp | Conductive epoxy resin composition and separator for fuel cell |
EP1701400A1 (en) | 2005-03-11 | 2006-09-13 | Nichias Corporation | Conductive epoxy resin composition and separator for fuel cell |
EP1995810A1 (en) | 2007-05-25 | 2008-11-26 | Nichias Corporation | Fuel cell separator resin composition and fuel cell separator |
WO2010013740A1 (en) | 2008-08-01 | 2010-02-04 | ニチアス株式会社 | Resin composition for fuel cell separator, process for producing same, and fuel cell separator |
US8663871B2 (en) | 2008-08-01 | 2014-03-04 | Nichias Corporation | Resin composition for fuel cell separator, process for producing same, and fuel cell separator |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2001043217A1 (en) | Fuel cell, fuel cell separator, and method of manufacture thereof | |
WO2011001766A1 (en) | Method for producing a fuel cell separator | |
JP2008027925A (en) | Fuel cell separator | |
JP4731884B2 (en) | Conductive epoxy resin composition, epoxy resin molded body, and method for producing fuel cell separator | |
JP3438865B2 (en) | Fuel cell separator, method for producing the same, and fuel cell using the separator | |
JP2003257447A (en) | Separator for fuel cell, manufacturing method therefor, and fuel cell by use of separator for fuel cell | |
JP3455466B2 (en) | Fuel cell and fuel cell separator | |
US7381493B2 (en) | Separator for fuel cell and process for producing the same | |
CN101283471B (en) | Separator material for fuel cell and process for producing the same | |
DE112009005392T5 (en) | Process for producing a porous article | |
JP2003197215A (en) | Separator for fuel cell and fuel cell using separator for fuel cell | |
JP2000223133A (en) | Gas channel plate-cum-separator for fuel cell | |
JP7237710B2 (en) | Bipolar plate manufacturing method | |
JP3437935B2 (en) | Manufacturing method of fuel cell separator | |
US9048010B2 (en) | Method for preparing an electrically conducting article | |
JP2002203574A (en) | Separator for fuel cell and fuel cell using separator for fuel cell | |
JP2002367623A (en) | Fuel cell separator and fuel cell using the same | |
EP1463134B1 (en) | Process for producing an isotropic separator for fuel cell | |
JP2003297381A (en) | Separator for fuel cell | |
JP2003077487A (en) | Fuel cell separator and fuel cell having the same | |
JP2005108591A (en) | Molding material for fuel cell separator | |
JP2005071886A (en) | Manufacturing method for separator-molding resin composition for fuel cell | |
JP2002110188A (en) | Separator for fuel cell and fuel cell using the same | |
JP2002015753A (en) | Fuel cell separator and fuel cell using the same | |
JP2002208410A (en) | Fuel cell separator and fuel cell using fuel cell separator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050228 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070426 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070524 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20071009 |