JP2000223133A - Gas channel plate-cum-separator for fuel cell - Google Patents

Gas channel plate-cum-separator for fuel cell

Info

Publication number
JP2000223133A
JP2000223133A JP11020254A JP2025499A JP2000223133A JP 2000223133 A JP2000223133 A JP 2000223133A JP 11020254 A JP11020254 A JP 11020254A JP 2025499 A JP2025499 A JP 2025499A JP 2000223133 A JP2000223133 A JP 2000223133A
Authority
JP
Japan
Prior art keywords
resin
separator
fuel cell
expanded graphite
gas channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11020254A
Other languages
Japanese (ja)
Inventor
Atsushi Yamaji
敦 山路
Yoshikazu Tanaka
田中義和
Koichi Isobe
磯部鴻一
Hisafumi Miyashita
宮下尚史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Carbon Co Ltd
Original Assignee
Nippon Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Carbon Co Ltd filed Critical Nippon Carbon Co Ltd
Priority to JP11020254A priority Critical patent/JP2000223133A/en
Publication of JP2000223133A publication Critical patent/JP2000223133A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a low-cost material of a gas channel plate-cum-separator for a fuel cell, made of an expanded graphite sheet and allowing enlargement of a strength. SOLUTION: This gas channel plate-cum-separator made of expanded graphite for a fuel cell having plural ribs forming a gas channel on one side or both sides has a bulk density of 1.4-1.7. The gas channel plate-cum-separator is manufactured by pulverizing an expanded graphite sheet of 0.6-1.0 bulk density, and regulating to particle size of 500 μm maximum particle diameter and 150-300 μm mean particle diameter, adding and mixing a granular resin or a liquid resin with the ground graphite sheet, then forming it by molding, vacuum hot pressing, or the like.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は燃料電池用リブ付セパレ
ーターに関し、特定の工程により得られる、かさ密度が
1.4〜1.7の膨張黒鉛複合材を使用した電導性、不
浸透性、耐食性等にすぐれた燃料電池用リブ付セパレー
ターに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ribbed separator for a fuel cell, which is made of an expanded graphite composite material having a bulk density of 1.4 to 1.7 obtained by a specific process. The present invention relates to a ribbed separator for a fuel cell having excellent corrosion resistance and the like.

【0002】[0002]

【従来の技術】燃料電池は、水素、メタノール等と空気
(酸素)とを電気化学的に反応させ、直接電気を発生さ
せる。
2. Description of the Related Art In a fuel cell, hydrogen, methanol or the like is electrochemically reacted with air (oxygen) to directly generate electricity.

【0003】この時、単位セル(1個の電池)から取り
出せる電圧、電流が低いため、各単位セルを数十〜数百
個、直列または並列に積層、接続して使用される。
At this time, since the voltage and current that can be taken out of the unit cell (one battery) are low, several tens to several hundreds of the unit cells are stacked and connected in series or in parallel.

【0004】この際に、各単位セルに電導性をもたせ、
単位セルに供給される燃料および空気の分離境界膜の機
能をはたすものが隔壁板(以下セパレーター)である。
At this time, each unit cell is provided with conductivity,
A partition plate (hereinafter referred to as a separator) serves as a separation boundary film between fuel and air supplied to the unit cell.

【0005】このためセパレーターは、電気伝導性、気
液に対する不浸透性が要求され、また燃料や空気、電解
質(リン酸、硫酸等)、イオンに対する耐食性も要求さ
れる。
[0005] For this reason, the separator is required to have electrical conductivity and impermeability to gas and liquid, and also to have corrosion resistance to fuel, air, electrolytes (phosphoric acid, sulfuric acid, etc.) and ions.

【0006】このような燃料電池用セパレーターに用い
る材料として各種のカーボン材料や金属材料が用いられ
ているが、以下のような問題がある。
Various carbon materials and metal materials have been used as materials for such fuel cell separators, but have the following problems.

【0007】まずカーボン材料としてガラス状カーボン
または気体の不浸透化処理を行った炭素材料があるが、
これらはいずれも材料費が高価である上に、加工費用、
処理費用が高価のため燃料電池の実用化には大きな弊害
となっている。
First, as a carbon material, there is a glassy carbon or a carbon material subjected to gas impermeability treatment.
All of these are expensive material costs, processing costs,
Since the processing cost is expensive, it is a great harm to the practical use of the fuel cell.

【0008】また、金属材料として、ステンレス、チタ
ン系の金属等の耐食金属が使用されるが、電解質による
イオン化や加工の困難さ、重量が大となる等の問題があ
る。そこで、膨張黒鉛材料を燃料電池用セパレーターと
して用いることが試みられている。
[0008] Corrosion-resistant metals such as stainless steel and titanium-based metals are used as the metal material. However, there are problems such as difficulty in ionization and processing by the electrolyte and increase in weight. Thus, attempts have been made to use expanded graphite materials as fuel cell separators.

【0009】例えば、特開昭61−7570号には、膨
張黒鉛シート(密度0.3g/cm3 、板厚1mm)を
複数枚積層し加圧成形した板厚1.8mm、密度が1.
7g/cm3 の燃料電池用隔壁板が記載されている。
For example, Japanese Patent Application Laid-Open No. 61-7570 discloses that a plurality of expanded graphite sheets (density: 0.3 g / cm 3, thickness: 1 mm) are laminated and pressure-formed to a thickness of 1.8 mm and a density of 1.
A 7 g / cm @ 3 partition plate for a fuel cell is described.

【0010】特開昭61−7571号には膨張倍率の異
なる膨張黒鉛をそれぞれ加圧成形して得られた膨張黒鉛
シートを組合わせて積重ね加圧成形する板厚5mm、密
度1.4g/cm3 の燃料電池用溝付セパレータが開示
されている。
Japanese Unexamined Patent Publication (Kokai) No. 61-7571 discloses that a sheet having a thickness of 5 mm and a density of 1.4 g / cm 3 is obtained by stacking and forming an expanded graphite sheet obtained by pressing and forming expanded graphites having different expansion ratios. Discloses a grooved separator for a fuel cell.

【0011】また、特開昭61−10872号には、水
もしくは有機溶剤を含浸した厚さ1mmの膨張黒鉛シー
ト及び水もしくは有機溶剤を含浸しない厚さ1mmの膨
張黒鉛シートを組合わせて積層し、予備成形したのち、
乾燥し、加圧成形する全体厚さ5mmの溝付燃料電池用
隔壁板の製造法が記載されている。
Japanese Patent Application Laid-Open No. Sho 61-10872 discloses a laminate in which a 1 mm-thick expanded graphite sheet impregnated with water or an organic solvent and a 1 mm-thick expanded graphite sheet not impregnated with water or an organic solvent are combined. , After preforming,
A method for producing a grooved fuel cell partition plate having a total thickness of 5 mm, which is dried and pressure-formed, is described.

【0012】しかし、これらは、いずれも、積層体であ
るため、かさ密度を十分に上げにくく、リン酸等に対す
る不浸透性が不十分となる問題がある。また厚さが大き
いため小型化やコストの点改善すべき点が残っている。
[0012] However, since these are all laminates, there is a problem that it is difficult to sufficiently increase the bulk density and the impermeability to phosphoric acid or the like becomes insufficient. Further, since the thickness is large, there are still points to be reduced in size and cost.

【0013】また、国際公開番号W097/02612
号には、平均粒径が5μm〜12μm、粉末全粒子の内
80%以上の粒径が0.1μm〜20μmの膨張黒鉛粉
末と、熱可塑性樹脂、熱硬化性樹脂あるいはその焼成物
からなり片面又は両面にガス供給溝を形成したセパレー
タが開示されている。
[0013] International Publication No. W097 / 02612
No. 1 is composed of expanded graphite powder having an average particle size of 5 μm to 12 μm, and 80% or more of all powder particles having a particle size of 0.1 μm to 20 μm, a thermoplastic resin, a thermosetting resin or a fired product thereof. Alternatively, a separator having gas supply grooves formed on both surfaces is disclosed.

【0014】しかしこの方法において使用される膨張黒
鉛は80〜300倍に膨張した天然黒鉛であり、かさ密
度が極端に小さく、膨張黒鉛を粉砕して粒径を調整する
ことが設備的に難しいこと。樹脂と混合する技術も容易
でなく樹脂量も多くなり易くなるため電気伝導性が低く
なる。
However, the expanded graphite used in this method is natural graphite expanded to 80 to 300 times, and has an extremely small bulk density, and it is difficult for equipment to adjust the particle size by pulverizing the expanded graphite. . The technique of mixing with the resin is not easy, and the amount of the resin tends to increase, so that the electric conductivity is lowered.

【0015】さらに本出願人による特開平10−125
337号には膨張黒鉛粉をかさ密度0.6〜1.0の膨
張黒鉛シートに予備成形した後、最終形状が得られる金
型またはデザインロールにより、かさ密度1.0〜1.
7の最終成形品に加圧成形した燃料電池用セパレータを
開示している。
Further, Japanese Patent Application Laid-Open No. H10-125 by the present applicant
No. 337 pre-forms expanded graphite powder into an expanded graphite sheet having a bulk density of 0.6 to 1.0, and then uses a mold or a design roll capable of obtaining a final shape to obtain a bulk density of 1.0 to 1..
No. 7 discloses a fuel cell separator press-formed into the final molded product.

【0016】本出願人による特開平10−125337
号では、圧縮変形によりセル積層時の締め付けトルクが
大きいとガス流路の断面積が減少する恐れがあり、電池
本体のコンパクト化を図るためリブ幅及びガス流入口周
囲の幅をできるだけ小さくする必要があるが、この部分
の強度が十分に取れないとガス透過を十分に押さえられ
ない。さらに剛性を高めこれを解決したセパレータが求
められていた。
JP-A-10-125337 by the present applicant
In (2), if the tightening torque during cell stacking is large due to compression deformation, the cross-sectional area of the gas flow path may decrease, and the rib width and the width around the gas inlet need to be as small as possible to make the battery body compact. However, if the strength of this part is not sufficient, gas permeation cannot be sufficiently suppressed. There has been a demand for a separator that has increased rigidity and has solved this problem.

【0017】[0017]

【発明の課題】上記のような従来の材料の問題点に鑑
み、本発明は、かさ密度が十分で、気液に対する不浸透
性、電気伝導性、耐食性に優れ、小型で製作費も安価な
燃料電池用セパレーターを提供し、燃料電池の実用化に
寄与するものである。
SUMMARY OF THE INVENTION In view of the above-mentioned problems of the conventional materials, the present invention has a sufficient bulk density, is excellent in gas-liquid impermeability, electrical conductivity and corrosion resistance, is small, and has a low production cost. A fuel cell separator is provided to contribute to the practical use of a fuel cell.

【0018】[0018]

【課題解決の手段】上記の課題を解決するために本発明
者が提案するのは、かさ密度0.6〜1.0の膨張黒鉛
シートを粉砕して、最大粒子径500μm、平均粒子径
150〜300μmの粒度に調整し、これに粒状樹脂又
は液状樹脂を添加、混合し、モールド成型、真空ホット
プレス成型等の方法で成形して得られる片面又は両面に
ガス流路となる複数のリブを有するかさ密度が1.4〜
1.7の膨張黒鉛製燃料電池用ガス流路板兼セパレータ
である。
In order to solve the above-mentioned problems, the present inventor proposes that an expanded graphite sheet having a bulk density of 0.6 to 1.0 is pulverized to a maximum particle diameter of 500 μm and an average particle diameter of 150 μm. Adjust to a particle size of ~ 300 μm, add a granular resin or liquid resin to this, mix, mold molding, vacuum hot press molding, etc. to obtain a plurality of ribs that become gas flow paths on one or both sides obtained by molding. Has a bulk density of 1.4 to
1.7 is a gas flow path plate and separator for an expanded graphite fuel cell.

【0019】以下に本発明を詳細に説明する。まずかさ
密度0.6〜1.0の膨張黒鉛シートを衝撃式粉砕機等
の粉砕機を用いて粉砕し、最大粒子500μm、平均粒
子径150〜300μmの粒度に調整する。最大粒子径
が500μmよりも大きいと、剛性が不均一となり、ガ
ス流路溝の寸法安定性が不足する。
Hereinafter, the present invention will be described in detail. First, an expanded graphite sheet having a bulk density of 0.6 to 1.0 is pulverized using a pulverizer such as an impact pulverizer to adjust the particle size to a maximum particle size of 500 μm and an average particle size of 150 to 300 μm. If the maximum particle diameter is larger than 500 μm, the rigidity becomes non-uniform, and the dimensional stability of the gas channel groove is insufficient.

【0020】平均粒子径が150μmよりも小さいと樹
脂量が過大となり電気伝導性が低くなる不都合が生じ、
平均粒子径が300μmよりも大きいと剛性が不十分と
なる。
If the average particle size is smaller than 150 μm, the amount of the resin becomes excessively large, resulting in a disadvantage that the electric conductivity is lowered.
If the average particle diameter is larger than 300 μm, the rigidity becomes insufficient.

【0021】次に、粉状樹脂又は溶剤で粘度を調整した
液状樹脂を添加混合する。樹脂として熱硬化性樹脂(フ
ェノール樹脂、尿素樹脂、フラン樹脂、不飽和ポリエス
テル樹脂、アルキド樹脂、エポキシ樹脂、けい素樹脂
等)、熱可塑性樹脂(ポリプロピレン樹脂、ポリアセタ
ール樹脂、ポリカーボネイト樹脂、飽和ポリスチレン樹
脂、ポリアミド樹脂、フッ素樹脂、ABS樹脂等)であ
る。
Next, a powdery resin or a liquid resin whose viscosity has been adjusted with a solvent is added and mixed. Thermosetting resin (phenol resin, urea resin, furan resin, unsaturated polyester resin, alkyd resin, epoxy resin, silicon resin, etc.), thermoplastic resin (polypropylene resin, polyacetal resin, polycarbonate resin, saturated polystyrene resin, Polyamide resin, fluorine resin, ABS resin, etc.).

【0022】樹脂量は膨張黒鉛シートの粉砕粉に対し外
割で6〜3wt%を添加する2wt%以下であると強度
剛性が不足し、7wt%以上のときは電気伝導性が悪化
してしまう不具合を生じる。
If the resin content is 2 wt% or less, which is 6 to 3 wt% added to the pulverized powder of the expanded graphite sheet, the strength and rigidity are insufficient, and if it is 7 wt% or more, the electric conductivity is deteriorated. Causes malfunction.

【0023】樹脂の添加混合は通常のミキサー等により
行う。樹脂が粉体の場合はヘンシェルミキサー、V型ミ
キサー等の混合機が適当であり、樹脂液体の場合はナウ
タミキサー等の混合機が用いられるが、稀釈用溶剤例え
ばメタノール、キシレン等で5〜10倍に稀釈した樹脂
溶液を用いると均一に樹脂が分散添着するので作業性が
良い。
The addition and mixing of the resin is carried out by a usual mixer or the like. If the resin is a powder, a mixer such as a Henschel mixer or a V-type mixer is suitable. If the resin is a resin, a mixer such as a Nauta mixer is used. Use of a twice-diluted resin solution uniformly disperses and impregnates the resin, thereby improving workability.

【0024】混合物は所定重量計量されリブ、溝等最終
形状が得られる金型により面圧100〜500kg/c
m2 で加圧成形される。熱圧成形も可能であるが、効率
の点から冷間成形したあと熱処理して硬化させるのが好
ましい。
The mixture is weighed to a predetermined weight and has a surface pressure of 100 to 500 kg / c using a mold capable of obtaining a final shape such as ribs and grooves.
It is pressed at m2. Although hot-press molding is possible, it is preferable to perform cold-forming and then heat-treat and cure from the viewpoint of efficiency.

【0025】熱処理は前記成形体を加熱硬化炉に入れ、
例えば常温から約1時間かけて150℃まで昇温し、そ
の温度で30分間保持した後1時間以上の冷却時間をか
けて50℃以下にする。
In the heat treatment, the molded body is placed in a heating and curing oven,
For example, the temperature is raised from room temperature to 150 ° C. over about one hour, and is maintained at that temperature for 30 minutes, and then cooled to 50 ° C. or less over one hour or more.

【0026】上記のようにして得られた本発明品は、厚
さが2.3mmでかさ密度1.40〜1.70[g/c
m2 ]ガス透過率は10-6(cm2 /sec)以下で気
液に対する不浸透にすぐれている。
The product of the present invention obtained as described above has a thickness of 2.3 mm and a bulk density of 1.40 to 1.70 g / c.
[m @ 2] gas permeability is 10 @ -6 (cm @ 2 / sec) or less and excellent in impermeability to gas and liquid.

【0027】また電気比抵抗は成形方向(板厚方向)が
30,000〜10,000μΩ−cmであり、成形方
向と直角方向(板面方向)が1,000〜1,100μ
Ω−cmで電気伝導性にもすぐれている。
The electrical resistivity is 30,000 to 10,000 μΩ-cm in the forming direction (plate thickness direction), and 1,000 to 1,100 μm in the direction perpendicular to the forming direction (plate surface direction).
Excellent electrical conductivity at Ω-cm.

【0028】更にガス透過率を減少させるためには成形
後液状樹脂又は粉末樹脂を溶剤稀釈したものを減圧、浸
漬加圧して含浸を行うこともできる。含浸後は加熱処理
等により樹脂の硬化を行う。
In order to further reduce the gas permeability, impregnation can be carried out by reducing the pressure of the liquid resin or the powdered resin after the molding and diluting the resin with a solvent under reduced pressure and pressure. After the impregnation, the resin is cured by a heat treatment or the like.

【0029】本発明の燃料電池用セパレータは気液に対
する不浸透性、電気伝導性、耐食性、寸法安定性にすぐ
れ加工費、材料費が安価である。本発明は燃料電池の実
用化に資するところ大であり、工業上有用である。
The fuel cell separator of the present invention is excellent in gas-liquid impermeability, electric conductivity, corrosion resistance, and dimensional stability, and has low processing cost and material cost. INDUSTRIAL APPLICABILITY The present invention greatly contributes to practical use of a fuel cell and is industrially useful.

【0030】[0030]

【実施例】【Example】

【実施例1】膨張黒鉛シート(かさ密度1.0)を奈良
製造(株)自由粉砕機(M−5型)で粉砕し最大粒子径
500μm、平均粒子径200μmの粉粒体を得る。こ
の粉粒体にフェノール樹脂を4wt%添加混合し成形圧
150kg/cm2 で成形し、150℃に加熱して硬化
させ、かさ密度1.50、板面方向の電気比抵抗が1,
050μΩ−cm、引張り強さ125kg/cm2 の製
品を得た。
EXAMPLE 1 An expanded graphite sheet (bulk density: 1.0) is pulverized by a free pulverizer (Model M-5) manufactured by Nara Seisakusho to obtain a powder having a maximum particle diameter of 500 μm and an average particle diameter of 200 μm. A phenol resin was added to the powder and granules at 4 wt%, mixed and formed at a molding pressure of 150 kg / cm 2, cured by heating to 150 ° C., and had a bulk density of 1.50 and an electrical resistivity in the plate surface direction of 1,
A product having a 050 μΩ-cm and a tensile strength of 125 kg / cm 2 was obtained.

【0031】[0031]

【実施例2】実施例1のフェノール樹脂にかえて、ポリ
アミド樹脂(ナイロン6)4wt%を添加し、成形し
た。120℃で加熱処理した。得られた製品のかさ密度
は1.49g/cm2 、板面方向の電気比抵抗1,10
0μΩ−cm、引張り強さ123kg/cm2 の製品を
得た。
EXAMPLE 2 Instead of the phenolic resin of Example 1, 4 wt% of a polyamide resin (nylon 6) was added and molded. Heat treatment was performed at 120 ° C. The bulk density of the obtained product is 1.49 g / cm2, and the electrical resistivity in the plate surface direction is 1,10.
A product having 0 μΩ-cm and a tensile strength of 123 kg / cm 2 was obtained.

【0032】[0032]

【実施例3】実施例1のフェノール樹脂にかえて、フェ
ノール樹脂4wt%を7倍のメタノールで溶解稀釈した
溶液を添加し、混合成形した。150℃で加熱硬化させ
た。得られた製品のかさ密度は1.57g/cm2 、板
面方向の電気比抵抗970μΩ−cm、引張り強さ13
0kg/cm2 の製品を得た。
Example 3 Instead of the phenolic resin of Example 1, a solution obtained by dissolving and diluting 4 wt% of phenolic resin with 7 times methanol was added and mixed and molded. It was cured by heating at 150 ° C. The bulk density of the obtained product is 1.57 g / cm 2, the electrical resistivity in the plate surface direction is 970 μΩ-cm, and the tensile strength is 13
A product of 0 kg / cm2 was obtained.

【0033】[0033]

【比較例1】実施例1で使用した膨張黒鉛シートの粉粒
体を用いて、樹脂添加をしないで、成型圧150kg/
cm2 で成型したところ、かさ密度1.51,板面方向
の電気比抵抗1,000μΩ−cm、引張り強さ75k
g/cm2 の製品を得た。
[Comparative Example 1] Using the powdery granules of the expanded graphite sheet used in Example 1, without adding a resin, a molding pressure of 150 kg /
When molded in cm 2, the bulk density was 1.51, the electrical resistivity in the plate surface direction was 1,000 μΩ-cm, and the tensile strength was 75 k.
g / cm @ 2 of product.

【0034】実施例のものはいずれも比較例に対比して
板面方向の電気比抵抗が同等で引張り強度が1.6倍以
上であり従って剛性もアップし組込み時の締付圧力に耐
えて変形量が小さくセパレータ材として燃料電池の実用
化に寄与するものである。
In each of the examples, the electrical resistivity in the plate surface direction is equal to that of the comparative example, and the tensile strength is 1.6 times or more. Therefore, the rigidity is increased, and it can withstand the tightening pressure during assembly. The deformation amount is small and contributes to the practical use of the fuel cell as a separator material.

【0035】 [0035]

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4F204 AA29 AA37 AB18 AC01 AC04 AG28 AH33 FA01 FB01 FF01 FF06 4G046 EA03 EA05 EB13 EC00 EC01 EC02 EC06 5H026 AA04 BB01 BB02 BB06 BB08 CC03 EE06 EE18 HH01 HH05 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4F204 AA29 AA37 AB18 AC01 AC04 AG28 AH33 FA01 FB01 FF01 FF06 4G046 EA03 EA05 EB13 EC00 EC01 EC02 EC06 5H026 AA04 BB01 BB02 BB06 BB08 CC03 EE06 EE18 HH01 H05

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】かさ密度0.6〜1.0膨張黒鉛シートを
粉砕して、最大粒子500μm、平均粒子径150〜3
00μmの粒度に調整し、これに粒状樹脂又は、液状樹
脂を添加、混合し、モールド成形、真空ホットプレス成
型等の方法で、成形して得られる片面又は両面にガス流
路となる複数のリブを有するかさ密度が1.4〜1.7
の膨張黒鉛製燃料電池用ガス流路板兼セパレーター。
An expanded graphite sheet having a bulk density of 0.6 to 1.0 is pulverized to have a maximum particle size of 500 μm and an average particle size of 150 to 3.
A plurality of ribs serving as gas flow paths on one or both sides obtained by molding to a particle size of 00 μm, adding a granular resin or a liquid resin thereto, mixing and molding by a method such as molding, vacuum hot press molding or the like. Having a bulk density of 1.4 to 1.7
Gas flow plate and separator for expanded graphite fuel cells.
JP11020254A 1999-01-28 1999-01-28 Gas channel plate-cum-separator for fuel cell Withdrawn JP2000223133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11020254A JP2000223133A (en) 1999-01-28 1999-01-28 Gas channel plate-cum-separator for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11020254A JP2000223133A (en) 1999-01-28 1999-01-28 Gas channel plate-cum-separator for fuel cell

Publications (1)

Publication Number Publication Date
JP2000223133A true JP2000223133A (en) 2000-08-11

Family

ID=12022071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11020254A Withdrawn JP2000223133A (en) 1999-01-28 1999-01-28 Gas channel plate-cum-separator for fuel cell

Country Status (1)

Country Link
JP (1) JP2000223133A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001086743A2 (en) * 2000-05-10 2001-11-15 Ballard Power Systems, Inc. Method and apparatus for embossing expanded graphite sheet material under reduced pressure
JP2002110188A (en) * 2000-09-29 2002-04-12 Hitachi Chem Co Ltd Separator for fuel cell and fuel cell using the same
WO2002093670A1 (en) * 2001-05-11 2002-11-21 Kureha Chemical Industry Company, Limited Separator for solid state polymer type fuel cell and method for producing the same
US6494926B1 (en) * 1999-09-22 2002-12-17 Nisshinbo Industries, Inc. Fuel cell separator and production method thereof
JP2003022814A (en) * 2001-07-06 2003-01-24 Honda Motor Co Ltd Method of annealing treatment for separator of fuel cell
WO2003049212A3 (en) * 2001-12-03 2005-09-01 Mosaic Energy L L C Cold-pressing method for bipolar plate manufacturing
JP2005305974A (en) * 2004-04-26 2005-11-04 Showa Denko Kk Injection compression molding method of conductive structure
JP2007122899A (en) * 2005-10-25 2007-05-17 Kyocera Chemical Corp Manufacturing method of conductive separator for fuel cell by cold press method
JP2010248572A (en) * 2009-04-15 2010-11-04 Toyota Motor Corp Titanium-based material and production method of the same, and fuel cell separator
JP2016531018A (en) * 2013-07-16 2016-10-06 フラウンホーファー−ゲゼルシャフト ツァー フェルデルング デア アンゲヴァンテン フォーシャング アインゲトラーゲナー フェアアインFraunhofer−Gesellschaft Zur Forderung Der Angewandten Forschung E.V. How to produce composite semi-finished products

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6494926B1 (en) * 1999-09-22 2002-12-17 Nisshinbo Industries, Inc. Fuel cell separator and production method thereof
WO2001086743A3 (en) * 2000-05-10 2003-01-23 Ballard Power Systems Method and apparatus for embossing expanded graphite sheet material under reduced pressure
US6797091B2 (en) 2000-05-10 2004-09-28 Ballard Power Systems Inc. Method for embossing expanded graphite sheet material under reduced pressure
WO2001086743A2 (en) * 2000-05-10 2001-11-15 Ballard Power Systems, Inc. Method and apparatus for embossing expanded graphite sheet material under reduced pressure
JP2002110188A (en) * 2000-09-29 2002-04-12 Hitachi Chem Co Ltd Separator for fuel cell and fuel cell using the same
WO2002093670A1 (en) * 2001-05-11 2002-11-21 Kureha Chemical Industry Company, Limited Separator for solid state polymer type fuel cell and method for producing the same
US7128996B2 (en) 2001-05-11 2006-10-31 Kureha Corporation Separator for solid polymer fuel cells, and production process thereof
JP4648582B2 (en) * 2001-07-06 2011-03-09 本田技研工業株式会社 Annealing method for fuel cell separator
JP2003022814A (en) * 2001-07-06 2003-01-24 Honda Motor Co Ltd Method of annealing treatment for separator of fuel cell
WO2003049212A3 (en) * 2001-12-03 2005-09-01 Mosaic Energy L L C Cold-pressing method for bipolar plate manufacturing
JP2005305974A (en) * 2004-04-26 2005-11-04 Showa Denko Kk Injection compression molding method of conductive structure
JP4515140B2 (en) * 2004-04-26 2010-07-28 昭和電工株式会社 Method for injection compression molding of conductive structure
JP2007122899A (en) * 2005-10-25 2007-05-17 Kyocera Chemical Corp Manufacturing method of conductive separator for fuel cell by cold press method
JP2010248572A (en) * 2009-04-15 2010-11-04 Toyota Motor Corp Titanium-based material and production method of the same, and fuel cell separator
JP2016531018A (en) * 2013-07-16 2016-10-06 フラウンホーファー−ゲゼルシャフト ツァー フェルデルング デア アンゲヴァンテン フォーシャング アインゲトラーゲナー フェアアインFraunhofer−Gesellschaft Zur Forderung Der Angewandten Forschung E.V. How to produce composite semi-finished products
JP2019089337A (en) * 2013-07-16 2019-06-13 フラウンホーファー−ゲゼルシャフト ツァー フェルデルング デア アンゲヴァンテン フォーシャング アインゲトラーゲナー フェアアインFraunhofer−Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Method of producing composite semi-finished product
US11329292B2 (en) 2013-07-16 2022-05-10 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method to produce a composite semi-finished product

Similar Documents

Publication Publication Date Title
EP0933825B1 (en) Method of manufacturing a separator for a fuel cell
EP1608034B1 (en) Molding material for fuel cell separator and method for preparing the same
JP5057263B2 (en) Separator material for polymer electrolyte fuel cell and method for producing the same
JP2008027925A (en) Fuel cell separator
WO2011001766A1 (en) Method for producing a fuel cell separator
JP2000223133A (en) Gas channel plate-cum-separator for fuel cell
EP1965457A1 (en) Separator material for fuel cell and process for producing the same
CN1330026C (en) Technique for mfg. two-polar plates of proton exchange film fuel cell
JP3824795B2 (en) Method for producing separator member for polymer electrolyte fuel cell
JP3573444B2 (en) Carbonaceous separator member for polymer electrolyte fuel cell and method of manufacturing the same
JP3616255B2 (en) Separator member for polymer electrolyte fuel cell and method for producing the same
JP5249610B2 (en) Manufacturing method of fuel cell separator
JP4037955B2 (en) Method for producing polymer electrolyte fuel cell separator member
JPH11354138A (en) Ribbed fuel-cell separator, its manufacture, and fuel cell
WO2012043319A1 (en) Composition for forming fuel cell separator, fuel cell separator, method for producing fuel cell separator, and fuel cell
CN115000442A (en) Fuel cell bipolar plate and preparation method thereof
JP2003197215A (en) Separator for fuel cell and fuel cell using separator for fuel cell
JP3561241B2 (en) Separator for direct methanol fuel cell and direct methanol fuel cell
JP3808478B2 (en) Molding material for fuel cell separator
JPH10125337A (en) Separator for fuel cell
JP2003257447A (en) Separator for fuel cell, manufacturing method therefor, and fuel cell by use of separator for fuel cell
JP2002075394A (en) Separator member for fuel cell
JP2002025572A (en) Separator having groove for solid high polymer molecule fuel cell
JP4339582B2 (en) Fuel cell separator and method for producing the same
JPS6012672A (en) Separating plate for fuel cell

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060404