JPH11354138A - Ribbed fuel-cell separator, its manufacture, and fuel cell - Google Patents

Ribbed fuel-cell separator, its manufacture, and fuel cell

Info

Publication number
JPH11354138A
JPH11354138A JP11078795A JP7879599A JPH11354138A JP H11354138 A JPH11354138 A JP H11354138A JP 11078795 A JP11078795 A JP 11078795A JP 7879599 A JP7879599 A JP 7879599A JP H11354138 A JPH11354138 A JP H11354138A
Authority
JP
Japan
Prior art keywords
fuel cell
separator
resin
flat plate
rib
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11078795A
Other languages
Japanese (ja)
Other versions
JP3437936B2 (en
Inventor
Tomonori Seki
智憲 関
Atsushi Fujita
藤田  淳
Akitsugu Tashiro
了嗣 田代
Harufumi Hasuda
春文 蓮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP07879599A priority Critical patent/JP3437936B2/en
Publication of JPH11354138A publication Critical patent/JPH11354138A/en
Application granted granted Critical
Publication of JP3437936B2 publication Critical patent/JP3437936B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To secure gas non-permeability, electrical conductivity, and a liquid non-swelling property, by dispersing expanded graphite in a resin and molding ribs in one body with a flat plate, and realize weight reduction, by enabling the thickness of a flat plate part to be thinly formed. SOLUTION: A separator is formed of a material made by dispersing expanded graphite in a resin. The material is obtained by integrally molding, preferably, integrally hot-press molding, expanded graphite with a thermosetting resin or thermoplastic resin. As the expanded graphite, expanded graphite is used having worm-like shapes and compression characteristics made by immersing graphite in a strong oxidizing solution, such as a mixture of concentrated sulfuric acid and nitric acid, thereby producing a graphite interlayer compound, rinsing the graphite, and rapidly heating it so as to cause graphite crystals to extend in the C axis direction. Preferably, the height of ribs molded in one body with a flat plate is O. 5 mm or more, and more preferably, 1.0 mm or more. Preferably, a ratio (A/B) of the rib height A to the thickness B of the flat plate is 2 or more.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、燃料電池の燃料ガ
スと酸化剤ガス(空気又は酸素)を分離するリブ付き燃
料電池セパレータ、その製造法及び燃料電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell separator with ribs for separating a fuel gas and an oxidizing gas (air or oxygen) of a fuel cell, a method of manufacturing the same, and a fuel cell.

【0002】[0002]

【従来の技術】燃料電池は、エネルギー効率が高く環境
汚染を低くできることより、将来小型発電機、EV用電
源に広く普及することが期待されている。燃料電池は電
解質層の上下に電極(正負極)を配し電極の上下に燃料
ガスと酸化剤ガス(空気又は酸素)を流し電極における
酸化、還元反応、電解質層での陽イオン、電子の移動反
応で化学エネルギーが電気エネルギーに変換され電位差
が得られる原理となっている。燃料電池は上記電極、電
解質層を交互に多段積層する構造で製造される為、積層
する正極と負極の間に燃料ガスと酸化剤ガスを分離する
分離板(セパレータ)が設けられる。また、ガスの供給
路を確保する為、セパレータにリブ(溝)を付ける構造
が一般的に使われている。さらに単電池で得られた電位
差は一般的には多段に積層した外側の集電板で集電する
構造となっている。
2. Description of the Related Art Fuel cells are expected to be widely used in small generators and power sources for EVs in the future because of their high energy efficiency and low environmental pollution. In a fuel cell, electrodes (positive and negative electrodes) are arranged above and below an electrolyte layer, and a fuel gas and an oxidizing gas (air or oxygen) are flowed above and below the electrodes. Oxidation and reduction reactions at the electrodes, transfer of cations and electrons at the electrolyte layer It is based on the principle that chemical energy is converted into electric energy by a reaction and a potential difference is obtained. Since the fuel cell is manufactured in a structure in which the above-mentioned electrodes and electrolyte layers are alternately stacked in multiple stages, a separator (separator) for separating the fuel gas and the oxidizing gas is provided between the stacked positive and negative electrodes. Further, in order to secure a gas supply path, a structure in which a rib (groove) is provided on a separator is generally used. Further, the potential difference obtained from the single battery is generally collected by an outer current collector plate stacked in multiple stages.

【0003】この為、セパレータは1)燃料ガスと酸化
剤ガスの分離(ガスの不浸透性)、2)電気の導電性、
3)負極で生成される水、電解液に膨潤しないこと等の
特性が要求される。このセパレータは、一般的には黒鉛
ブロック、ガラス状炭素に溝を機械加工しリブをたて燃
料ガスと、酸化剤ガスの供給路を確保する方法で製造す
る。
[0003] Therefore, the separator is 1) separation of fuel gas and oxidizing gas (gas impermeability), 2) electrical conductivity,
3) It is required to have properties such as not swelling in water and electrolyte generated at the negative electrode. This separator is generally manufactured by a method in which a groove is machined in a graphite block or glassy carbon and ribs are formed to secure supply paths for a fuel gas and an oxidizing gas.

【0004】また、鱗片状の天然黒鉛を酸処理後加熱処
理して得られる膨張黒鉛や膨張黒鉛シートを高圧で成形
する方法、もしくは、液に対する膨潤を対策する為、前
膨張黒鉛成形体に液状の熱硬化性樹脂を含浸硬化する方
法で作られていた(特開昭60−65781号公報、特
開昭60−12672号公報等)。
Further, a method of molding expanded graphite or an expanded graphite sheet obtained by subjecting scaly natural graphite to an acid treatment and then heat-treating the same, or a method of forming a pre-expanded graphite molded body into a liquid in order to prevent swelling due to liquid. (Japanese Patent Application Laid-Open Nos. 60-65781 and 60-12672).

【0005】また、国際公開番号WO97/02612
明細書では、特定の粒子径の膨張黒鉛粉末を熱可塑性樹
脂又は熱硬化性樹脂に分散させ、ブロック状の成形体を
得た後、溝を機械加工する方法が記載されている。しか
し、前記の各種の機械加工する製造方法では、コスト高
となり、さらに膨張黒鉛を用いる製造方法では、製造可
能なリブの寸法が限られ更に成形時に発生するガスが原
因で製品に膨れが発生しやすく、安定して製品を供給で
きない問題を有していた。
[0005] International Publication No. WO 97/02612.
The specification describes a method in which expanded graphite powder having a specific particle size is dispersed in a thermoplastic resin or a thermosetting resin to obtain a block-shaped molded body, and then machine the grooves. However, the above-mentioned various manufacturing methods for machining are costly.In addition, the manufacturing method using expanded graphite limits the size of ribs that can be manufactured, and further causes swelling of products due to gas generated during molding. There was a problem that products could not be supplied stably and easily.

【0006】[0006]

【発明が解決しようとする課題】請求項1〜7に記載さ
れる発明は、前記問題を解決するものであり、リブ付き
の燃料電池セパレータにおいて、ガスの不浸透性、電気
伝導性、液未膨潤性を確保し、更にリブの高さが高い形
状においても平板部の板厚を薄く形成でき、軽量化が可
能なリブ付きセパレータを提供するものである。
SUMMARY OF THE INVENTION The inventions described in claims 1 to 7 solve the above-mentioned problems. In a fuel cell separator with ribs, gas impermeability, electric conductivity, and liquid impermeability are considered. An object of the present invention is to provide a ribbed separator that can secure swelling properties and can be formed to have a small thickness of a flat plate portion even in a shape having a high rib height, and can be reduced in weight.

【0007】また、請求項8及び9に記載される発明
は、上記課題に加えて電池の熱圧成形作業が容易なリブ
付きセパレータを提供するものである。また、請求項1
0に記載される発明は、上記課題に加えて、セパレータ
を長期間使用しても安定した電池特性が確保できるリブ
付きセパレータを提供するものである。
[0007] In addition to the above-mentioned objects, the inventions according to claims 8 and 9 provide a separator with ribs, which facilitates hot-press molding of a battery. Claim 1
The invention described in No. 0 provides a ribbed separator capable of ensuring stable battery characteristics even when the separator is used for a long period of time, in addition to the above-mentioned problems.

【0008】また、請求項11に記載される発明は、リ
ブ付きの燃料電池セパレータの製造法において、ガスの
不浸透性、電気伝導性、液未膨潤性を確保し、更にリブ
の高さが高い形状においても平板部の板厚を薄く形成で
き、軽量化が可能なリブ付きセパレータの製造法を提供
するものである。また、請求項12に記載される発明
は、ガスの不浸透性、電気伝導性、液未膨潤性を確保
し、更にリブの高さが高い形状においても平板部の板厚
が薄く、軽量化されたリブ付きセパレータを有すること
により、高性能な燃料電池を提供するものである。さら
に、請求項13に記載される発明は、上記課題に加え
て、セパレータを長期間使用しても安定した電池特性が
確保できる燃料電池を提供するものである。
[0008] The invention described in claim 11 is a method of manufacturing a fuel cell separator with ribs, which ensures gas impermeability, electric conductivity, and liquid non-swelling property, and further increases the height of the ribs. It is an object of the present invention to provide a method for manufacturing a ribbed separator which can be formed to have a small thickness even in a high shape and can be reduced in weight. Further, the invention described in claim 12 ensures gas impermeability, electrical conductivity, and liquid non-swelling property, and furthermore, even in a shape in which the height of the rib is high, the thickness of the flat portion is thin, and the weight is reduced. By providing the ribbed separator, a high-performance fuel cell is provided. Further, the invention described in claim 13 provides, in addition to the above-mentioned problems, a fuel cell capable of securing stable cell characteristics even when the separator is used for a long period of time.

【0009】[0009]

【課題を解決するための手段】本発明は、樹脂中に膨張
黒鉛が分散されてなり、リブと平板が一体成形されてな
るリブ付き燃料電池セパレータに関する。また、本発明
は、0.5mm以上のリブの高さを有する前記の燃料電池
セパレータに関する。また、本発明は、1.0mm以上の
リブの高さを有する前記の燃料電池セパレータに関す
る。また、本発明は、前記のリブの高さ(A)と平板の
板厚(B)の比(A/B)が2以上である燃料電池セパ
レータに関する。また、本発明は、前記のリブが平板の
片面に配置される燃料電池セパレータに関する。
SUMMARY OF THE INVENTION The present invention relates to a ribbed fuel cell separator in which expanded graphite is dispersed in a resin and a rib and a flat plate are integrally formed. Further, the present invention relates to the fuel cell separator having a rib height of 0.5 mm or more. The present invention also relates to the fuel cell separator having a rib height of 1.0 mm or more. The present invention also relates to a fuel cell separator wherein the ratio (A / B) of the height (A) of the rib to the thickness (B) of the flat plate is 2 or more. Further, the present invention relates to a fuel cell separator in which the rib is disposed on one side of a flat plate.

【0010】また、本発明は、前記のリブが平板の両面
に配置される燃料電池セパレータに関する。また、本発
明は、前記の平板の板厚が0.25mm以上1.0mm以下
である燃料電池セパレータに関する。また、本発明は、
前記のリブが2度以上90度未満のテーパを有する燃料
電池セパレータに関する。また、本発明は、前記のリブ
が2度〜20度のテーパを有する燃料電池セパレータに
関する。また、本発明は、前記の燃料電池が固体高分子
型である燃料電池セパレータに関する。
[0010] The present invention also relates to a fuel cell separator wherein the ribs are arranged on both sides of a flat plate. The present invention also relates to a fuel cell separator wherein the thickness of the flat plate is 0.25 mm or more and 1.0 mm or less. Also, the present invention
The present invention relates to a fuel cell separator in which the rib has a taper of 2 degrees or more and less than 90 degrees. The present invention also relates to a fuel cell separator wherein the rib has a taper of 2 to 20 degrees. The present invention also relates to a fuel cell separator wherein the fuel cell is a polymer electrolyte fuel cell.

【0011】また、本発明は、膨張黒鉛造粒粉と熱硬化
性樹脂又は熱可塑性樹脂の混合物を原料とし、これを金
型を用いて一体熱圧成形することを特徴とするリブ付き
燃料電池セパレータの製造法に関する。また、本発明
は、前記の燃料電池セパレータを有してなる燃料電池に
関する。さらに、本発明は、前記の燃料電池が固体高分
子型である燃料電池に関する。
Further, the present invention provides a fuel cell with ribs, wherein a mixture of expanded graphite granulated powder and a thermosetting resin or a thermoplastic resin is used as a raw material, and the mixture is integrally hot-pressed using a mold. The present invention relates to a method for manufacturing a separator. The present invention also relates to a fuel cell having the above-described fuel cell separator. Furthermore, the present invention relates to a fuel cell in which the above-mentioned fuel cell is a solid polymer type.

【0012】[0012]

【発明の実施の形態】本発明におけるリブ付き燃料電池
セパレータを図を用いて説明する。図1は平板2の両面
にリブ1を配置する両リブのセパレータの断面図、図2
は平板2の片面にリブ1を配置する片リブのセパレータ
の断面図である。また、図3はセパレータ3と電解質層
8、電極(4及び6)を組み合わせた、燃料電池の部分
断面図で、セパレータ3は正極4を流れる燃料ガス5と
負極6を流れる酸化剤ガス(空気又は酸素)7を分離す
る箇所に組み付けられる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A ribbed fuel cell separator according to the present invention will be described with reference to the drawings. FIG. 1 is a sectional view of a two-rib separator in which ribs 1 are arranged on both surfaces of a flat plate 2;
FIG. 3 is a cross-sectional view of a one-rib separator in which a rib 1 is arranged on one surface of a flat plate 2. FIG. 3 is a partial cross-sectional view of a fuel cell in which the separator 3, the electrolyte layer 8, and the electrodes (4 and 6) are combined. The separator 3 is composed of a fuel gas 5 flowing through the positive electrode 4 and an oxidizing gas (air) flowing through the negative electrode 6. (Or oxygen) 7 is installed at the place where the separation is performed.

【0013】本発明におけるセパレータは、樹脂中に膨
張黒鉛が分散されたものからなり、その素材は一般に、
膨張黒鉛粉と熱硬化性樹脂又は熱可塑性樹脂を原料と
し、これを一体成形、好ましくは一体熱圧成形して得ら
れる。膨張黒鉛粉に用いる膨張黒鉛は、特開昭54−3
3799号公報等に示される公知の製法で作製したもの
などを使用することができる。例えば、天然黒鉛、キッ
シュ黒鉛、熱分解黒鉛等高度に結晶構造が発達した黒鉛
を、濃硫酸と硝酸との混液、濃硫酸と過酸化水素水との
混液等の強酸化性の溶液に浸漬処理して黒鉛層間化合物
を生成させ、水洗してから急速加熱して、黒鉛結晶のC
軸方向を膨張処理した虫状形で圧縮特性を有する膨張黒
鉛が用いられる。
The separator according to the present invention is made of a resin in which expanded graphite is dispersed in a resin.
It is obtained by using an expanded graphite powder and a thermosetting resin or a thermoplastic resin as raw materials and integrally molding, preferably, integrally, hot pressing. The expanded graphite used for the expanded graphite powder is disclosed in
Those manufactured by a known manufacturing method shown in 3799 and the like can be used. For example, graphite with a highly developed crystal structure, such as natural graphite, quiche graphite, and pyrolytic graphite, is immersed in a strongly oxidizing solution such as a mixture of concentrated sulfuric acid and nitric acid, or a mixture of concentrated sulfuric acid and hydrogen peroxide. To form a graphite intercalation compound, rinse with water and then rapidly heat to remove C
An expanded graphite having a compressive property in a worm-like shape subjected to expansion processing in the axial direction is used.

【0014】本発明のセパレータに使用する膨張黒鉛
は、膨張した状態の膨張黒鉛でも、これを一度粉砕し所
定形状に微細化した粉砕粉でも良い。樹脂が粉末の場合
は、一定圧力に予備成形したシートを粉砕した造粒粉の
方が、樹脂粉末と混合し成形する際膨張黒鉛に含まれる
ガス発生が少なく、更に膨張黒鉛の絡み合いが残り、樹
脂の補強効果が確保しやすくセパレータの強度を向上さ
せることができるので好ましい。
The expanded graphite used in the separator of the present invention may be expanded graphite in an expanded state, or may be pulverized powder obtained by pulverizing the expanded graphite once and pulverizing it into a predetermined shape. When the resin is a powder, the granulated powder obtained by pulverizing the sheet preformed at a constant pressure has less gas generation in the expanded graphite when mixed and molded with the resin powder, and the entanglement of the expanded graphite remains, This is preferable because the reinforcing effect of the resin can be easily secured and the strength of the separator can be improved.

【0015】膨張黒鉛の膨張倍率はセパレータの強度、
シール性を確保する為には、高い方が好ましく、150
倍以上であることがより好ましい。樹脂と混合する膨張
黒鉛粉の平均粒度は50μm以上であることが好まし
く、50〜500μmの範囲であることがより好まし
く、50〜300μmの範囲であることがさらに好まし
く、50〜200μmの範囲であることが最も好まし
い。50μm未満では、膨張黒鉛の絡み合いの効果が少
なくなり、セパレータの強度低下が起こる傾向がある。
なお、本発明において平均粒度は数平均値であり、(株)
島津製作所製、SALD−3000Jなどの粒度分布測
定装置により測定できる。
The expansion ratio of expanded graphite is determined by the strength of the separator,
In order to ensure the sealing property, a higher one is preferable.
More preferably, it is twice or more. The average particle size of the expanded graphite powder mixed with the resin is preferably 50 μm or more, more preferably 50 to 500 μm, further preferably 50 to 300 μm, and more preferably 50 to 200 μm. Is most preferred. If it is less than 50 μm, the effect of entanglement of the expanded graphite is reduced, and the strength of the separator tends to decrease.
In the present invention, the average particle size is a number average value, (shares)
It can be measured with a particle size distribution analyzer such as SALD-3000J manufactured by Shimadzu Corporation.

【0016】本発明に使用する樹脂は、粉状又は液状の
エポキシ樹脂、フェノール樹脂、メラミン樹脂等の熱硬
化性樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポ
リカーボネート樹脂、フェノキシ樹脂等の耐熱性のある
熱可塑性樹脂が使用される。
The resin used in the present invention is a thermosetting resin such as a powdery or liquid epoxy resin, a phenol resin, a melamine resin, or the like, or a heat-resistant resin such as a polyamide resin, a polyamideimide resin, a polycarbonate resin, or a phenoxy resin. A plastic resin is used.

【0017】使用する樹脂は、耐熱耐食性から、熱硬化
性樹脂が好ましく、特に作業性では熱圧成形時にガス発
生が少ない粉末のフェノール樹脂が好ましい。フェノー
ル樹脂としては、開環重合により重合する樹脂、例え
ば、ジヒドロベンゾオキサジン環を含むフェノール樹脂
がガス発生が特に少ないので好ましい。
The resin to be used is preferably a thermosetting resin from the viewpoint of heat resistance and corrosion resistance. In particular, in terms of workability, a powdery phenol resin which generates less gas during hot pressing is preferable. As the phenol resin, a resin polymerized by ring-opening polymerization, for example, a phenol resin containing a dihydrobenzoxazine ring is preferable because gas generation is particularly low.

【0018】粉末状の樹脂の場合、その粒度分布は特に
制限ないが、膨張黒鉛造粒粉との乾式で均一に混合する
為には、成形時の樹脂の流れを考慮し、1μm〜100
μmの平均粒度とすることが好ましく、5μm〜50μ
mの平均粒度とすることがより好ましい。
In the case of a powdery resin, the particle size distribution is not particularly limited. However, in order to uniformly and dryly mix with the expanded graphite granulated powder, the flow of the resin at the time of molding is taken into consideration.
The average particle size is preferably 5 μm to 50 μm.
More preferably, the average particle size is m.

【0019】本発明のセパレータのリブ形状はガス供給
量に影響する流路断面積と、垂直方向の導電に影響する
リブと電極の接触面積、電極とガスの接触面積等を考慮
し最適化した値で設定される。以上の検討より、リブの
高さは、0.5mm以上であることが好ましく、1.0mm
以上であることがより好ましく、1.0mm〜3.0mm
であることがさらに好ましい。0.50mm未満では、
電極とセパレータの寸法が狭く流路抵抗が大きくなる
為、ガスの供給量を安定化にすることが難しくなる傾向
にある。一方3.0mmを超える寸法では電池の寸法が大
型になり好ましくない。
The rib shape of the separator of the present invention has been optimized in consideration of the cross-sectional area of the flow path that affects the gas supply amount, the contact area between the rib and the electrode that affects the vertical conductivity, the contact area between the electrode and the gas, and the like. Set by value. From the above examination, the height of the rib is preferably 0.5 mm or more, and 1.0 mm
More preferably, it is 1.0 mm to 3.0 mm.
Is more preferable. If it is less than 0.50 mm,
Since the dimensions of the electrode and the separator are small and the flow path resistance is large, it tends to be difficult to stabilize the gas supply amount. On the other hand, a size exceeding 3.0 mm is not preferable because the size of the battery becomes large.

【0020】リブの高さ(A)と平板の板厚(B)の比
(A/B)は2以上であることが好ましく、2〜5であ
ることが電池サイズを小型化し、軽量化する上でより好
ましい。A/Bが2未満では、安定した流量を確保する
為には平板板厚が必要以上に厚くなりすぎ、厚さ方向の
導電性が悪化する傾向にある。一方5を超えると平板板
厚に対してセパレータのリブが高くなりすぎ、セパレー
タの剛性が不足し、電池組み付け時にセパレータが破損
する不具合を起こすことがある。なお、リブの高さ
(A)と平板の板厚(B)の定義は図1及び図2に示さ
れる。
The ratio (A / B) of the height (A) of the rib to the thickness (B) of the flat plate is preferably 2 or more, and preferably 2 to 5 to reduce the size and weight of the battery. More preferred above. If A / B is less than 2, the thickness of the flat plate becomes too large to secure a stable flow rate, and the conductivity in the thickness direction tends to deteriorate. On the other hand, if it exceeds 5, the ribs of the separator become too high with respect to the thickness of the flat plate, the rigidity of the separator becomes insufficient, and the separator may be damaged at the time of assembling the battery. The definition of the height (A) of the rib and the thickness (B) of the flat plate are shown in FIGS. 1 and 2.

【0021】本発明のリブは、図1に示す平板の両面に
リブを配置してなる両リブでもよく、図2に示す平板の
片面にリブを配置してなる片リブでもよい。両リブは平
板が一枚で済む為、片リブに比べて電池の小型軽量化が
図れる。
The rib of the present invention may be a double rib having ribs arranged on both sides of the flat plate shown in FIG. 1 or a single rib having ribs arranged on one surface of a flat plate shown in FIG. Since both ribs require only one flat plate, the size and weight of the battery can be reduced as compared with single ribs.

【0022】平板の板厚は0.25mm〜1.0mmである
ことが好ましい。0.25mm未満になると、セパレータ
のガスシールレベルが悪化する傾向にある。一方、1.
0mmを超えるとセパレータの軽量化が図れないと共に電
気比抵抗も増大する傾向にある。
The thickness of the flat plate is preferably 0.25 mm to 1.0 mm. If the thickness is less than 0.25 mm, the gas seal level of the separator tends to deteriorate. On the other hand, 1.
If it exceeds 0 mm, the weight of the separator cannot be reduced, and the electrical resistivity tends to increase.

【0023】また、リブには2度以上90度未満のテー
パ(C)を付けることが好ましく、2度〜20度のテー
パ(C)を付けることがより好ましい。Cの角度の定義
を図1に示す。テーパの角度が2度未満では、一体成形
した製品を金型より分離させることが困難となる傾向に
あり、一方、リブの角度が90度を超えると電極の接触
面積、流路の断面積が縮小する為小型軽量化の上で好ま
しくない。
Preferably, the rib has a taper (C) of 2 degrees or more and less than 90 degrees, and more preferably a taper (C) of 2 degrees to 20 degrees. FIG. 1 shows the definition of the angle C. If the angle of the taper is less than 2 degrees, it tends to be difficult to separate the integrally molded product from the mold. On the other hand, if the angle of the rib exceeds 90 degrees, the contact area of the electrodes and the cross-sectional area of the flow path will decrease. This is not preferable in terms of reducing the size and weight because of the reduction.

【0024】本発明のセパレータは、所望のセパレータ
の形状を形成できる金型を用いて、前記膨張黒鉛造粒粉
と樹脂の混合物を充填し、一体成形、好ましくは熱圧成
形する。膨張黒鉛造粒粉と樹脂の混合比率に特に制限は
ないが、成形性及び特性を考慮すると膨張黒鉛造粒粉/
樹脂=95/5〜20/80(重量比)の範囲が好まし
く、特に10/90〜30/70の範囲が好ましい。こ
こで、混合する膨張黒鉛造粒粉の量が、95/5を超え
ると成形性が低下する傾向にあり、マトリックス不足に
より機械的強度が急激に低下する傾向にある。一方、2
0/80未満では、導電性が低下する傾向にある。
The separator of the present invention is filled with the mixture of the expanded graphite granulated powder and the resin using a mold capable of forming a desired shape of the separator, and is integrally molded, preferably hot pressed. There is no particular limitation on the mixing ratio of the expanded graphite granulated powder and the resin, but considering the moldability and properties, the expanded graphite granulated powder /
The resin is preferably in the range of 95/5 to 20/80 (weight ratio), and particularly preferably in the range of 10/90 to 30/70. Here, when the amount of the expanded graphite granulated powder to be mixed exceeds 95/5, the moldability tends to decrease, and the mechanical strength tends to sharply decrease due to insufficient matrix. Meanwhile, 2
If it is less than 0/80, the conductivity tends to decrease.

【0025】膨張黒鉛造粒粉と熱硬化性樹脂又は熱可塑
性樹脂との混合方法に制限はない。液状樹脂及び固形樹
脂を溶剤に溶解したものを使用する場合、容器に所定量
の膨張黒鉛粉と樹脂溶液を配合し、撹拌機を用い均一に
撹拌することで得ることができる。ここで、溶剤を含ん
だ樹脂を使用して製造した混合は、通常、減圧乾燥器等
で脱溶剤し粉砕して使用される。また、膨張黒鉛粉と粉
末状の樹脂をドライブレンドする方法(シエイカー、ミ
キサー等で溶媒無しで混合する方法)を用いることもで
きる。コスト、作業性を考慮するとドライブレンドする
方法が好ましい。
The method of mixing the expanded graphite granulated powder with the thermosetting resin or thermoplastic resin is not limited. When a liquid resin and a solid resin dissolved in a solvent are used, a predetermined amount of expanded graphite powder and a resin solution are mixed in a container, and the mixture is uniformly stirred using a stirrer. Here, the mixture produced using a resin containing a solvent is usually used after removing the solvent with a reduced-pressure drier or the like and pulverizing. Further, a method of dry-blending the expanded graphite powder and the powdery resin (a method of mixing without using a solvent with a shaker or a mixer) can also be used. In view of cost and workability, a dry blending method is preferable.

【0026】燃料電池セパレータの成形条件は、樹脂の
種類に応じて選択することができ、特に制限はないが、
通常、成形温度は、常温〜400℃の温度を用いること
ができ、好ましい温度は、150〜200℃である。1
50℃未満の低温では成形物の硬化が不十分で実使用中
に未硬化分が溶出する恐れがある。また、200℃を超
えると急激に硬化する為、均一に硬化させることが難し
く、製品が変形する場合がある。また、好ましい成形圧
力は、20〜100kg/cm2である。20kg/cm2未満では
成形物が低密度となり、ガス通気性の低下、電気比抵抗
増大等電池性能が低下する傾向にある。また、100kg
/cm2を超えると、成形物が高密度となり熱圧成形時に製
品バリが発生しやすく作業性が悪化する傾向にある。
The molding conditions for the fuel cell separator can be selected according to the type of resin, and are not particularly limited.
Usually, the molding temperature can be a temperature from normal temperature to 400 ° C., and a preferable temperature is 150 to 200 ° C. 1
If the temperature is lower than 50 ° C., the cured product is insufficiently cured, and uncured components may be eluted during actual use. Further, when the temperature exceeds 200 ° C., the composition is rapidly cured, so that it is difficult to cure uniformly, and the product may be deformed. The preferred molding pressure is 20 to 100 kg / cm 2 . If it is less than 20 kg / cm 2 , the molded product will have a low density, and the battery performance tends to decrease, such as a decrease in gas permeability and an increase in electric resistivity. Also, 100kg
If it exceeds / cm 2 , the molded product will have a high density, and product burrs will be likely to occur during hot pressing, which tends to deteriorate workability.

【0027】また樹脂の種類に応じて、硬化の際に発生
する、縮合水等の不要物のガスを抜く工程を設けること
もできる。更に、得られる成形物の硬化を更に進めるた
めに、成形後に熱処理を行ってもよい。
In addition, a step of degassing unnecessary substances such as condensed water generated during curing may be provided according to the type of the resin. Further, a heat treatment may be performed after the molding in order to further promote the curing of the obtained molded article.

【0028】本発明のセパレータの用途としては、アル
カリ水溶液型、酸水溶液型、固体高分子型、固体酸化物
型、溶融炭酸塩型等の燃料電池が考えられる。燃料電池
の電解質としては、アルカリ水溶液型の場合は水酸化カ
リウム等が用いられ、酸水溶液型の場合はリン酸等が用
いられ、固体高分子型の場合はイオン交換膜等が用いら
れ、溶融炭酸塩型の場合は炭酸リチウム等が用いられ、
固体酸化物型の場合は安定化ジルコニア等が用いられ
る。電極の基材としては、カーボン繊維等のカーボン材
などが挙げられ、必要に応じて、白金、パラジウム、
銀、ニッケル等の触媒層を表面に設けたものが用いられ
る。燃料ガスである水素は、水の分解物や、天然ガス、
石油、石炭、メタノールなどの原料を必要に応じ水等と
反応させて水素リッチな改質ガスを取り出し、これを用
いることにより供給される。作動温度、電解質に対する
耐食性等の点を考慮すると本発明のセパレータは、固体
高分子型の燃料電池に適用することが最も好ましい。
As a use of the separator of the present invention, a fuel cell of an alkaline aqueous solution type, an acid aqueous solution type, a solid polymer type, a solid oxide type, a molten carbonate type and the like can be considered. As the electrolyte of the fuel cell, potassium hydroxide or the like is used in the case of an alkaline aqueous solution type, phosphoric acid or the like is used in the case of an acid aqueous solution type, and an ion exchange membrane or the like is used in the case of a solid polymer type. In the case of the carbonate type, lithium carbonate or the like is used,
In the case of a solid oxide type, stabilized zirconia or the like is used. Examples of the base material of the electrode include a carbon material such as carbon fiber, and, if necessary, platinum, palladium,
What provided the catalyst layer of silver, nickel, etc. on the surface is used. Hydrogen, the fuel gas, is composed of water decomposition products, natural gas,
A raw material such as petroleum, coal, methanol, or the like is reacted with water or the like as needed to extract a hydrogen-rich reformed gas, which is supplied by using the gas. The separator of the present invention is most preferably applied to a polymer electrolyte fuel cell in consideration of the operating temperature, corrosion resistance to the electrolyte, and the like.

【0029】[0029]

【実施例】次に本発明の実施例を説明する。 実施例1 板厚1.0mm、密度1.0g/cm3の膨張黒鉛シート(日
立化成工業(株)製、商品名 カーボフィットHGP−1
05)を粗粉砕機、微粉砕機で粉砕し平均粒径100μ
mの膨張黒鉛造粒粉700gを得た。次にレゾール型フ
ェノール樹脂粉末(大日本インキ(株)製、商品名 TD
2040C)300gを加え、小型V型ブレンダで乾式
混合し1000gの混合粉を得た。
Next, embodiments of the present invention will be described. Example 1 An expanded graphite sheet having a thickness of 1.0 mm and a density of 1.0 g / cm 3 (Carbofit HGP-1 manufactured by Hitachi Chemical Co., Ltd.)
05) with a coarse pulverizer and a fine pulverizer to obtain an average particle size of 100 μm.
m expanded graphite granulated powder (700 g) was obtained. Next, a resol type phenol resin powder (manufactured by Dainippon Ink Co., Ltd., trade name TD
2040C), and dry-mixed with a small V-type blender to obtain 1000 g of a mixed powder.

【0030】リブの高さが2.5mm、平板板厚0.5mm
でリブの凹部が2mm、凸部が2mmの等ピッチの形状で1
0度のリブテーパを有する100mm×100mmのセパレ
ータを成形する為、セパレータ形状を転写した形状の金
型を予め180度に加熱し前述の混合粉を坪量2000
g/m2、重量20g計量後金型に均一に投入した。180
度の熱プレスで面圧50kg/cm2、成形時間10分、ガス
抜き3回の条件で圧縮成形して規定のリブ形状を有する
密度1.4g/cm3のセパレータを得た。
The height of the rib is 2.5 mm and the thickness of the flat plate is 0.5 mm
The ribs are 2mm in pitch and 2mm in height with a pitch of 2mm.
In order to form a 100 mm x 100 mm separator having a rib taper of 0 degree, a mold having a shape obtained by transferring the shape of the separator is heated to 180 degrees in advance, and the above-mentioned mixed powder is weighed 2,000.
After weighing 20 g / m 2 and weighing 20 g, the mixture was uniformly charged into a mold. 180
The resultant was compression-molded by a hot press under the conditions of a surface pressure of 50 kg / cm 2 , a molding time of 10 minutes, and degassing three times to obtain a separator having a specified rib shape and a density of 1.4 g / cm 3 .

【0031】実施例2 (1)開環重合するフェノール樹脂(ジヒドロベンゾオ
キサジン環を含む樹脂)の製造 フェノール1.9kg、ホルマリン(37%水溶液)1.
0kg及びしゅう酸4gを5リットルのフラスコに仕込
み、環流温度で6時間反応させた。引き続き、内部を6
666.1Pa(50mmHg)以下に減圧して未反応のフェ
ノール及び水を除去し、フェノールノボラック樹脂を合
成した。得られた樹脂は、軟化点84℃(環球法)、3
核体〜多核体/2核体比92/18(ゲルパーミエーシ
ョンクロマトグラフィー法によるピーク面積比)であっ
た。
Example 2 (1) Production of a phenol resin (resin containing a dihydrobenzoxazine ring) that undergoes ring-opening polymerization 1.9 kg of phenol, 1.37% formalin (37% aqueous solution)
0 kg and 4 g of oxalic acid were charged into a 5-liter flask and reacted at reflux temperature for 6 hours. Continue with 6 inside
Unreacted phenol and water were removed by reducing the pressure to 666.1 Pa (50 mmHg) or less to synthesize a phenol novolak resin. The obtained resin has a softening point of 84 ° C (ring and ball method), 3
The ratio of nucleus to polynuclear / binucleate was 92/18 (peak area ratio by gel permeation chromatography).

【0032】次に合成したフェノールノボラック樹脂
1.7kg(ヒドロキシル基16モルに相当)をアニリン
0.93kg(10モルに相当)と混合し、80℃で5時
間攪拌し、均一な混合溶液を調製した。ついで5リット
ルフラスコ中に、ホルマリン1.62kgを仕込み90℃
に加熱し、さらに前記のノボラック/アニリン混合溶液
を30分かけて少しずつ添加した。添加終了後、30分
間、環流温度に保ち、しかる後に100℃で2時間66
66.1Pa(50mmHg)以下に減圧して縮合水を除去
し、反応し得るヒドロキシル基の71モル%がジヒドロ
ベンゾオキサジン化されたジヒドロベンゾオキサジン環
を含む樹脂を得た。
Next, 1.7 kg of the synthesized phenol novolak resin (corresponding to 16 mol of hydroxyl groups) is mixed with 0.93 kg (corresponding to 10 mol) of aniline and stirred at 80 ° C. for 5 hours to prepare a uniform mixed solution. did. Then, 1.62 kg of formalin was charged into a 5-liter flask, and 90 ° C.
And the above-mentioned novolak / aniline mixed solution was added little by little over 30 minutes. At the end of the addition, the temperature is maintained at the reflux temperature for 30 minutes and then at 100 ° C. for 2 hours 66
Condensed water was removed by reducing the pressure to 66.1 Pa (50 mmHg) or less to obtain a resin containing a dihydrobenzoxazine ring in which 71 mol% of a reactive hydroxyl group was dihydrobenzoxazinated.

【0033】(2)セパレータの製造 板厚1.0mm、密度1.0g/cm3の膨張黒鉛シート(日
立化成工業(株)製、商品名 カーボフィットHGP−1
05)を粗粉砕機、微粉砕機で粉砕し平均粒径100μ
mの造粒粉700gを得た。次に前記の方法で製造した
フェノール樹脂粉末300gを加え小型V型ブレンダで
乾式混合し1000gの混合粉を得た。
(2) Production of Separator An expanded graphite sheet having a thickness of 1.0 mm and a density of 1.0 g / cm 3 (Carbofit HGP-1 manufactured by Hitachi Chemical Co., Ltd.)
05) with a coarse pulverizer and a fine pulverizer to obtain an average particle size of 100 μm.
m of granulated powder was obtained. Next, 300 g of the phenol resin powder produced by the above method was added and dry-mixed with a small V-shaped blender to obtain 1000 g of a mixed powder.

【0034】リブの高さが2.5mm、平板板厚0.5mm
でリブの凹部が2mm、凸部が2mmの等ピッチの形状で1
0度のリブテーパを有する100mm×100mmのセパレ
ータを成形する為、セパレータ形状を転写した形状の金
型を予め180度に加熱し前述の混合粉を坪量2000
g/m2、重量20g計量後金型に均一に投入した。180
度の熱プレスで面圧50kg/cm2、成形時間10分、ガス
抜き1回の条件で圧縮成形して規定のリブ形状を有する
密度1.4g/cm3のセパレータを得た。
The height of the rib is 2.5 mm and the thickness of the flat plate is 0.5 mm
The ribs are 2mm in pitch and 2mm in height with a pitch of 2mm.
In order to form a 100 mm x 100 mm separator having a rib taper of 0 degree, a mold having a shape obtained by transferring the shape of the separator is heated to 180 degrees in advance, and the above-mentioned mixed powder is weighed 2,000.
After weighing 20 g / m 2 and weighing 20 g, the mixture was uniformly charged into a mold. 180
The resultant was compression-molded by a hot press under the conditions of a surface pressure of 50 kg / cm 2 , a molding time of 10 minutes and a single degassing to obtain a separator having a specified rib shape and a density of 1.4 g / cm 3 .

【0035】実施例3 実施例2(2)で得た混合粉を用いて、リブの高さが
0.5mm、平板板厚0.25mmでリブの凹部が0.4m
m、凸部が0.4mmの等ピッチの形状で89.9度のリ
ブテーパを有する100mm×100mmのセパレータを成
形する為、セパレータ形状を転写した形状の金型を予め
180度に加熱し前述の混合粉を坪量2000g/m2、重
量4.43g計量後金型に均一に投入した。180度の
熱プレスで面圧50kg/cm2、成形時間10分、ガス抜き
1回の条件で圧縮成形して規定のリブ形状を有する密度
1.4g/cm3のセパレータを得た。
Example 3 Using the powder mixture obtained in Example 2 (2), the height of the rib was 0.5 mm, the thickness of the flat plate was 0.25 mm, and the recess of the rib was 0.4 m.
m, in order to form a 100 mm × 100 mm separator having an 89.9-degree rib taper with an equal pitch of 0.4 mm and a convex portion of 0.4 mm, a mold in which the shape of the separator was transferred was previously heated to 180 ° and The mixed powder was weighed to 2000 g / m 2 , weighed 4.43 g, and then uniformly charged into a mold. The separator was compression-molded by a 180-degree hot press under the conditions of a surface pressure of 50 kg / cm 2 , a molding time of 10 minutes, and a single gas release to obtain a separator having a specified rib shape and a density of 1.4 g / cm 3 .

【0036】比較例1 嵩密度0.002g/cm3の膨張黒鉛粉(日立化成工業
(株)製、商品名 カーボフィットHGP−1)を14g
計量し実施例1で用いた成形金型に均一に投入し常温の
温度条件で面圧50kg/cm2、ガス抜き3回の成形条件で
加圧成形して、密度1.0g/cm3の膨張黒鉛単体のセパ
レータを得た。
Comparative Example 1 Expanded graphite powder having a bulk density of 0.002 g / cm 3 (Hitachi Chemical Industries, Ltd.)
14g of Carbofit HGP-1)
It was weighed, uniformly charged into the molding die used in Example 1, and pressed under normal temperature conditions under a surface pressure of 50 kg / cm 2 and degassing three times to obtain a density of 1.0 g / cm 3 . An expanded graphite separator alone was obtained.

【0037】比較例2 比較例1で得られたセパレータにメラミン変成フェノー
ル樹脂(日立化成工業(株)製、商品名 PR−406
0)中に12時間浸漬し、成形体の表面の樹脂をトルエ
ンで洗浄後、25〜160℃まで昇温し、加熱硬化し樹
脂含浸率30重量%、密度1.3g/cm3のセパレータを
得た。
Comparative Example 2 Melamine-modified phenolic resin (trade name: PR-406, manufactured by Hitachi Chemical Co., Ltd.) was used for the separator obtained in Comparative Example 1.
0) for 12 hours, and the resin on the surface of the molded body was washed with toluene, heated to 25 to 160 ° C., and cured by heating to form a separator having a resin impregnation rate of 30% by weight and a density of 1.3 g / cm 3 . Obtained.

【0038】次に、上記各実施例及び各比較例で得られ
たセパレータについて、電気比抵抗、ガス通気率、液膨
潤性、を確認した。なお、電気比抵抗は、実機のセパレ
ータとは別にセパレータと同一密度で50mm×50mm板
厚12mmのサンプルを圧縮成形し板厚方向の電気比抵抗
を電圧降下法で測定したものである。ガス通気率はセパ
レータの周囲をシリコン系のゴムでシールし、片側に1
kg/cm2の空気圧をかけ、水中置換法により空気の漏洩量
Qを測定、次式により算出したものである。
Next, the electrical resistivity, gas permeability, and liquid swellability of the separators obtained in each of the above Examples and Comparative Examples were confirmed. The electrical resistivity is obtained by compression-molding a 50 mm × 50 mm 12 mm thick sample having the same density as that of the separator in addition to the actual separator, and measuring the electrical resistivity in the thickness direction by a voltage drop method. The gas permeability is determined by sealing the periphery of the separator with silicone rubber, and
An air pressure of kg / cm 2 was applied, the air leakage amount Q was measured by the underwater displacement method, and calculated by the following equation.

【0039】[0039]

【数1】 上式においてTは加圧時間(秒)、Dは試験片の板厚
(mm)、Sは受圧面積(cm2)である。液膨潤性は、セ
パレータを90℃の温水に24時間浸漬し板厚変化率を
測定したものである。セパレータの外観、物性確認結果
を表1に示す。
(Equation 1) In the above equation, T is the pressing time (second), D is the thickness of the test piece (mm), and S is the pressure receiving area (cm 2 ). The liquid swellability is obtained by immersing the separator in hot water at 90 ° C. for 24 hours and measuring the rate of change in plate thickness. Table 1 shows the appearance and physical properties of the separator.

【0040】[0040]

【表1】 [Table 1]

【0041】以上の実施例及び比較例から明らかなよう
に、本発明のリブ付き燃料電池セパレータは小型軽量化
が必要な燃料電池において、リブの高さが0.5mm以
上、好ましくは1.0mm以上で平板の板厚を0.25〜
1.0mm、リブの高さ(A)平板の厚み(B)との比を
2〜5の範囲の理想的な形状が、膨張黒鉛造粒粉と熱硬
化性及び熱可塑性樹脂を混合し一体熱圧成形することで
確保できる。また、得られたセパレータは電気伝導性、
ガス通気性、液膨潤特性に優れ、長期間セパレータに使
用した場合も安定した特性が確保できる。
As is clear from the above Examples and Comparative Examples, the ribbed fuel cell separator of the present invention has a rib height of 0.5 mm or more, preferably 1.0 mm With the above, the thickness of the flat plate becomes 0.25
1.0mm, the height of the rib (A) and the ratio of the thickness of the flat plate (B) in the range of 2 to 5 are ideally formed by mixing expanded graphite granulated powder with thermosetting and thermoplastic resin. It can be secured by hot pressing. The obtained separator is electrically conductive,
It has excellent gas permeability and liquid swelling characteristics, and can secure stable characteristics even when used for a separator for a long time.

【0042】[0042]

【発明の効果】請求項1〜7に記載されるリブ付きセパ
レータは、ガスの不浸透性、電気伝導性、液未膨潤性に
優れ、更にリブの高さが高い形状においても平板部の板
厚を薄く形成でき、軽量化が可能なものである。請求項
8及び9に記載されるリブ付きセパレータは、上記効果
に加えて電池の熱圧成形作業が容易なものである。
The ribbed separator according to any one of claims 1 to 7 is excellent in gas impermeability, electric conductivity, and liquid non-swelling property, and has a flat plate portion even in a shape having a high rib height. The thickness can be reduced, and the weight can be reduced. The ribbed separator according to the eighth and ninth aspects facilitates the hot-press forming of the battery in addition to the above-mentioned effects.

【0043】請求項10に記載されるリブ付きセパレー
タは、上記効果に加えて、セパレータを長期間使用して
も安定した電池特性が確保できる。請求項11に記載さ
れるリブ付きセパレータの製造法によれば、ガスの不浸
透性、電気伝導性、液未膨潤性を確保し、更にリブの高
さが高い形状においても平板部の板厚を薄く形成でき、
軽量化が可能なセパレータを製造できる。請求項12に
記載される燃料電池は、ガスの不浸透性、電気伝導性、
液未膨潤性に優れ、更にリブの高さが高い形状において
も平板部の板厚が薄く、軽量化されたリブ付きセパレー
タを有するため、高性能である。請求項13に記載され
る燃料電池は、上記効果に加えて、セパレータを長期間
使用しても安定した電池特性が確保できる。
According to the ribbed separator of the tenth aspect, in addition to the above effects, stable battery characteristics can be ensured even when the separator is used for a long period of time. According to the method for manufacturing a ribbed separator according to claim 11, gas permeability, electrical conductivity, and liquid non-swelling property are ensured, and the plate thickness of the flat plate portion is increased even in a shape having a high rib height. Can be formed thinly,
A lightweight separator can be manufactured. The fuel cell according to claim 12, wherein the gas impermeability, electric conductivity,
Even in a shape having a high liquid non-swelling property and a high rib height, the flat plate portion has a small thickness and a lightweight separator with ribs, so that the performance is high. In the fuel cell according to the thirteenth aspect, in addition to the above effects, stable cell characteristics can be ensured even when the separator is used for a long time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の両リブセパレータの一例を示す断面図
である。
FIG. 1 is a sectional view showing an example of a double rib separator of the present invention.

【図2】本発明の片リブセパレータの一例を示す断面図
である。
FIG. 2 is a cross-sectional view showing one example of a single rib separator of the present invention.

【図3】両リブセパレータを使った燃料電池の一部断面
図である。
FIG. 3 is a partial cross-sectional view of a fuel cell using both rib separators.

【符号の説明】[Explanation of symbols]

1 リブ 2 平板 3 両リブ付きセパレータ 4 正極 5 燃料ガス通路 6 負極 7 酸化剤ガス通路 8 電解質層 DESCRIPTION OF SYMBOLS 1 Rib 2 Flat plate 3 Separator with both ribs 4 Positive electrode 5 Fuel gas passage 6 Negative electrode 7 Oxidant gas passage 8 Electrolyte layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 蓮田 春文 茨城県日立市鮎川町三丁目3番1号 日立 化成工業株式会社山崎工場内 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Harufumi Hasuda 3-3-1 Ayukawacho, Hitachi City, Ibaraki Pref. Hitachi Chemical Co., Ltd. Yamazaki Plant

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 樹脂中に膨張黒鉛が分散されてなり、リ
ブと平板が一体成形されてなるリブ付き燃料電池セパレ
ータ。
1. A ribbed fuel cell separator in which expanded graphite is dispersed in a resin, and a rib and a flat plate are integrally formed.
【請求項2】 0.5mm以上のリブの高さを有する請求
項1記載の燃料電池セパレータ。
2. The fuel cell separator according to claim 1, having a rib height of 0.5 mm or more.
【請求項3】 1.0mm以上のリブの高さを有する請求
項1記載の燃料電池セパレータ。
3. The fuel cell separator according to claim 1, having a rib height of 1.0 mm or more.
【請求項4】 リブの高さ(A)と平板の板厚(B)の
比(A/B)が2以上である請求項1、2又は3記載の
燃料電池セパレータ。
4. The fuel cell separator according to claim 1, wherein the ratio (A / B) of the height (A) of the rib to the thickness (B) of the flat plate is 2 or more.
【請求項5】 リブが平板の片面に配置される請求項
1、2、3又は4記載の燃料電池セパレータ。
5. The fuel cell separator according to claim 1, wherein the rib is disposed on one surface of the flat plate.
【請求項6】 リブが平板の両面に配置される請求項
1、2、3又は4記載の燃料電池セパレータ。
6. The fuel cell separator according to claim 1, wherein the ribs are arranged on both sides of the flat plate.
【請求項7】 平板の板厚が0.25mm以上1.0mm以
下である請求項1〜6のいずれかに記載の燃料電池セパ
レータ。
7. The fuel cell separator according to claim 1, wherein the thickness of the flat plate is 0.25 mm or more and 1.0 mm or less.
【請求項8】 リブが2度以上90度未満のテーパを有
する請求項1〜7のいずれかに記載の燃料電池セパレー
タ。
8. The fuel cell separator according to claim 1, wherein the rib has a taper of 2 degrees or more and less than 90 degrees.
【請求項9】 リブが2度〜20度のテーパを有する請
求項1〜7のいずれかに記載の燃料電池セパレータ。
9. The fuel cell separator according to claim 1, wherein the rib has a taper of 2 to 20 degrees.
【請求項10】 燃料電池が固体高分子型である請求項
1〜9のいずれかに記載の燃料電池セパレータ。
10. The fuel cell separator according to claim 1, wherein the fuel cell is a solid polymer type.
【請求項11】 膨張黒鉛造粒粉と熱硬化性樹脂又は熱
可塑性樹脂の混合物を原料とし、これを金型を用いて一
体熱圧成形することを特徴とするリブ付き燃料電池セパ
レータの製造法。
11. A process for producing a ribbed fuel cell separator, comprising using a mixture of expanded graphite granulated powder and a thermosetting resin or a thermoplastic resin as a raw material and integrally molding the mixture using a mold. .
【請求項12】 請求項1〜10のいずれかに記載され
るか又は請求項11記載の製造法により得られる燃料電
池セパレータを有してなる燃料電池。
12. A fuel cell comprising a fuel cell separator according to any one of claims 1 to 10 or obtained by the production method according to claim 11.
【請求項13】 燃料電池が固体高分子型である請求項
12記載の燃料電池。
13. The fuel cell according to claim 12, wherein the fuel cell is a polymer electrolyte fuel cell.
JP07879599A 1998-04-07 1999-03-24 Fuel cell separator with ribs, method for producing the same, and fuel cell Expired - Fee Related JP3437936B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07879599A JP3437936B2 (en) 1998-04-07 1999-03-24 Fuel cell separator with ribs, method for producing the same, and fuel cell

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-94443 1998-04-07
JP9444398 1998-04-07
JP07879599A JP3437936B2 (en) 1998-04-07 1999-03-24 Fuel cell separator with ribs, method for producing the same, and fuel cell

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2002033899A Division JP2002237313A (en) 1998-04-07 2002-02-12 Fuel cell separator with rib and fuel cell

Publications (2)

Publication Number Publication Date
JPH11354138A true JPH11354138A (en) 1999-12-24
JP3437936B2 JP3437936B2 (en) 2003-08-18

Family

ID=26419859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07879599A Expired - Fee Related JP3437936B2 (en) 1998-04-07 1999-03-24 Fuel cell separator with ribs, method for producing the same, and fuel cell

Country Status (1)

Country Link
JP (1) JP3437936B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000077081A (en) * 1998-06-18 2000-03-14 Hitachi Chem Co Ltd Fuel cell, separator for fuel cell, and its manufacture
JP2001325967A (en) * 2000-05-15 2001-11-22 Nisshinbo Ind Inc Manufacturing method of fuel cell separator, fuel cell separator and solid polymer fuel cell
JP2002056854A (en) * 2000-08-09 2002-02-22 Hitachi Chem Co Ltd Separator for fuel cell, and fuel cell using the same
JP2002208410A (en) * 2001-01-12 2002-07-26 Hitachi Chem Co Ltd Fuel cell separator and fuel cell using fuel cell separator
WO2002078108A1 (en) * 2001-03-26 2002-10-03 Matsushita Electric Industrial Co., Ltd. High-polymer electrolyte fuel cell
EP1265303A1 (en) * 2000-03-07 2002-12-11 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell and method of manufacturing the same
JP2002373666A (en) * 2001-06-14 2002-12-26 Honda Motor Co Ltd Manufacturing method of separator for fuel cell
JP2003022811A (en) * 2001-07-06 2003-01-24 Honda Motor Co Ltd Degassing method of separator for fuel cell
JP2003077487A (en) * 2001-09-05 2003-03-14 Hitachi Chem Co Ltd Fuel cell separator and fuel cell having the same
JP2007141479A (en) * 2005-11-15 2007-06-07 Nisshinbo Ind Inc Conductive resin composition for porous fuel cell separator and its manufacturing method
JP2008112738A (en) * 2001-03-26 2008-05-15 Matsushita Electric Ind Co Ltd Polymer electrolyte fuel cell
US7494738B2 (en) 2005-07-14 2009-02-24 Aisin Seiki Kabushiki Kaisha Fuel cell separator and method of manufacturing the same
JP2011129520A (en) * 2009-12-15 2011-06-30 Plansee Se Shaped part

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000077081A (en) * 1998-06-18 2000-03-14 Hitachi Chem Co Ltd Fuel cell, separator for fuel cell, and its manufacture
EP1265303A4 (en) * 2000-03-07 2007-01-24 Matsushita Electric Ind Co Ltd Polymer electrolyte fuel cell and method of manufacturing the same
EP1265303A1 (en) * 2000-03-07 2002-12-11 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell and method of manufacturing the same
JP2001325967A (en) * 2000-05-15 2001-11-22 Nisshinbo Ind Inc Manufacturing method of fuel cell separator, fuel cell separator and solid polymer fuel cell
JP2002056854A (en) * 2000-08-09 2002-02-22 Hitachi Chem Co Ltd Separator for fuel cell, and fuel cell using the same
JP2002208410A (en) * 2001-01-12 2002-07-26 Hitachi Chem Co Ltd Fuel cell separator and fuel cell using fuel cell separator
JPWO2002078108A1 (en) * 2001-03-26 2004-07-15 松下電器産業株式会社 Polymer electrolyte fuel cell
EP1357621A1 (en) * 2001-03-26 2003-10-29 Matsushita Electric Industrial Co., Ltd. High-polymer electrolyte fuel cell
US7014940B2 (en) 2001-03-26 2006-03-21 Matsushita Electric Industrial Co., Ltd. High-polymer electrolyte fuel cell
WO2002078108A1 (en) * 2001-03-26 2002-10-03 Matsushita Electric Industrial Co., Ltd. High-polymer electrolyte fuel cell
JP2008112738A (en) * 2001-03-26 2008-05-15 Matsushita Electric Ind Co Ltd Polymer electrolyte fuel cell
EP1357621A4 (en) * 2001-03-26 2008-12-31 Panasonic Corp High-polymer electrolyte fuel cell
JP4652614B2 (en) * 2001-06-14 2011-03-16 本田技研工業株式会社 Manufacturing method of fuel cell separator
JP2002373666A (en) * 2001-06-14 2002-12-26 Honda Motor Co Ltd Manufacturing method of separator for fuel cell
JP4652623B2 (en) * 2001-07-06 2011-03-16 本田技研工業株式会社 Degassing method for fuel cell separator
JP2003022811A (en) * 2001-07-06 2003-01-24 Honda Motor Co Ltd Degassing method of separator for fuel cell
JP2003077487A (en) * 2001-09-05 2003-03-14 Hitachi Chem Co Ltd Fuel cell separator and fuel cell having the same
US7494738B2 (en) 2005-07-14 2009-02-24 Aisin Seiki Kabushiki Kaisha Fuel cell separator and method of manufacturing the same
JP2007141479A (en) * 2005-11-15 2007-06-07 Nisshinbo Ind Inc Conductive resin composition for porous fuel cell separator and its manufacturing method
JP2011129520A (en) * 2009-12-15 2011-06-30 Plansee Se Shaped part

Also Published As

Publication number Publication date
JP3437936B2 (en) 2003-08-18

Similar Documents

Publication Publication Date Title
JP4000651B2 (en) Manufacturing method of fuel cell separator
JP3463806B2 (en) Fuel cell separator and method of manufacturing the same
US6746792B2 (en) Fuel cell separator composition, fuel cell separator and method of manufacture, and solid polymer fuel cell
WO1999005737A1 (en) Separator for fuel cells
JPH11354138A (en) Ribbed fuel-cell separator, its manufacture, and fuel cell
KR100649516B1 (en) Fuel Cell-Use Separator
JP2000173630A (en) Manufacture of separator member for solid polymer fuel cell
US7381493B2 (en) Separator for fuel cell and process for producing the same
JP5391005B2 (en) Manufacturing method of fuel cell separator and fuel cell separator
JP3455466B2 (en) Fuel cell and fuel cell separator
KR100761645B1 (en) Fuel cell separator plated with nickel and its manufacturing method
JP3470964B2 (en) Fuel cell separator and method of manufacturing the same
KR20100020050A (en) Mixture for manufacturing self-healing fuel cell bipolar plate and fuel cell bipolar plate
JP2002237313A (en) Fuel cell separator with rib and fuel cell
JP2005339953A (en) Prepreg for fuel cell, separator for fuel cell consisting of this prepreg and manufacturing method for it
JP2009158118A (en) Separator material for solid polymer fuel battery and manufacturing method for the separator material
JPH11354137A (en) Fuel cell, separator for fuel cell, and manufacture therefor
JP4678170B2 (en) Fuel cell separator
JP2005339954A (en) Prepreg for fuel cell, separator for fuel cell consisting of this prepreg, and manufacturing method for it
JP2001313044A (en) Separator for fuel cell and manufacturing method of the same
JP4702118B2 (en) Manufacturing method of fuel cell separator
JP5845458B2 (en) Manufacturing method of fuel cell separator
KR20170013611A (en) Thin bipolar plate for fuel cell containing non-woven glass fiber and manufacturing method thereof
JP4236248B2 (en) Method for producing separator material for polymer electrolyte fuel cell
JP2002367623A (en) Fuel cell separator and fuel cell using the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080606

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090606

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100606

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100606

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees