JP2009158118A - Separator material for solid polymer fuel battery and manufacturing method for the separator material - Google Patents

Separator material for solid polymer fuel battery and manufacturing method for the separator material Download PDF

Info

Publication number
JP2009158118A
JP2009158118A JP2007331551A JP2007331551A JP2009158118A JP 2009158118 A JP2009158118 A JP 2009158118A JP 2007331551 A JP2007331551 A JP 2007331551A JP 2007331551 A JP2007331551 A JP 2007331551A JP 2009158118 A JP2009158118 A JP 2009158118A
Authority
JP
Japan
Prior art keywords
resin
separator
separator material
paranovolak
curing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007331551A
Other languages
Japanese (ja)
Inventor
Tomonori Tawara
智徳 田原
Mitsuo Enomoto
三男 榎本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP2007331551A priority Critical patent/JP2009158118A/en
Publication of JP2009158118A publication Critical patent/JP2009158118A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a separator material for a solid polymer fuel battery which has superior properties required as a separator material, such as gas impermeability, strength property, electrical physical property, and releasability in molding, and to provide a manufacturing method for the separator material. <P>SOLUTION: The separator material is made of a graphite/resin cured compact made by binding graphite powder using as binders a phenol resin curing agent containing an epoxy resin as a main agent and a high-paranovolac phenol resin at a content ratio of 50% or more and a mixture resin containing an imidazole curing accelerator as an essential element. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、固体高分子型燃料電池セパレータおよびその製造方法に関する。   The present invention relates to a polymer electrolyte fuel cell separator and a method for producing the same.

燃料電池は、燃料が有する化学エネルギーを直接電気エネルギーに変換するもので、電気エネルギーへの変換効率が高く、特に固体高分子形燃料電池はリン酸形燃料電池などの燃料電池に比較して低温でかつ高出力の発電が可能であるため、自動車の電源をはじめ小型の移動型電源として期待されている。   A fuel cell directly converts chemical energy contained in fuel into electrical energy, and has a high conversion efficiency into electrical energy. In particular, solid polymer fuel cells have a lower temperature than fuel cells such as phosphoric acid fuel cells. In addition, because it is capable of high-power generation, it is expected to be used as a small mobile power source including automobile power sources.

固体高分子形燃料電池は、通常、スルホン酸基を有するフッ素樹脂系イオン交換膜のような高分子イオン交換膜からなる電解質膜と、その両面に白金などの触媒を担持させた触媒電極と、それぞれの電極に水素などの燃料ガスあるいは酸素や空気などの酸化剤ガスを供給するためのガス流路となる溝を設けたセパレータなどからなる単セルを積層したスタック、及びその外側に設けた2つの集電体などから構成されている。   The polymer electrolyte fuel cell is usually an electrolyte membrane made of a polymer ion exchange membrane such as a fluororesin ion exchange membrane having a sulfonic acid group, and a catalyst electrode carrying a catalyst such as platinum on both sides thereof, A stack in which a single cell composed of a separator provided with a groove serving as a gas flow path for supplying a fuel gas such as hydrogen or an oxidant gas such as oxygen or air is stacked on each electrode, and 2 provided outside the stack. It consists of two current collectors.

単セルの構造は、例えばフッ素系樹脂のイオン交換膜からなる固体高分子の電解質膜を挟んで配置される一対の電極(カソード、アノード)と、これをさらに両側から挟持するセパレータと、セパレータの端部に設置されたシール材から構成されている。   The structure of the single cell is, for example, a pair of electrodes (cathode, anode) disposed with a solid polymer electrolyte membrane made of an ion exchange membrane of a fluororesin, a separator sandwiching this from both sides, a separator It is comprised from the sealing material installed in the edge part.

セパレータには直線状または格子状の複数の溝が形成され、溝とカソードとの間に形成される空間が酸化剤ガス流路となり、溝とアノードとの間に形成される空間が燃料ガス流路となる。
したがって、セパレータには燃料ガスと酸化剤ガスとを完全に分離した状態で電極に供給する必要があるために高度のガス不透過性が要求され、また、発電効率を高くするために高電気伝導性、長期に安定した発電を行うために高度の耐食性、低不純物溶出性などをそなえていなければならず、従来、このような材質特性を要求されるセパレータ材として、炭素質系の材料が用いられ、通常は、黒鉛などの炭素粉末を熱硬化性樹脂を結合材として結着、成形した炭素/樹脂硬化成形体からなるセパレータが使用されている(特許文献1参照)。
The separator is formed with a plurality of linear or grid-like grooves, and a space formed between the grooves and the cathode serves as an oxidant gas flow path, and a space formed between the grooves and the anode serves as a fuel gas flow. It becomes a road.
Therefore, the separator needs to be supplied to the electrode in a state where the fuel gas and the oxidant gas are completely separated from each other, so that a high degree of gas impermeability is required, and a high electric conductivity is required to increase the power generation efficiency. In order to perform stable power generation for a long time, it must have high corrosion resistance, low impurity elution, etc., and carbonaceous materials have been used as separator materials that require such material properties. In general, a separator made of a carbon / resin cured molded body obtained by binding and molding a carbon powder such as graphite with a thermosetting resin as a binder is used (see Patent Document 1).

結合材としては、フェノール樹脂を適用するもの(特許文献2参照)が提案されているが、フェノール樹脂を適用した場合には、耐熱性、耐食性などの観点から非常に優れた特性を有するセパレータ材が得られるが、フェノール樹脂を使用した成形材料を加熱成形、硬化した場合、フェノール樹脂の硬化反応時に縮合水を生成し、縮合水の一部が成形体内に残留して組織不良を起こしやすく(ボイドの発生)、また材質強度も低下するので、高いガス不透過性の確保、高い信頼性の強度材質を得るには、温度を低めに設定しボイドを残さないように時間をかけて、さらにガス抜き操作を何度も繰り返し行って成形するなどの難点がある。   As a binding material, a material to which a phenol resin is applied (see Patent Document 2) has been proposed. However, when a phenol resin is applied, a separator material having very excellent characteristics from the viewpoint of heat resistance, corrosion resistance, and the like. However, when a molding material using phenolic resin is heat-molded and cured, condensed water is generated during the curing reaction of the phenolic resin, and a part of the condensed water remains in the molded body and is liable to cause structural failure ( Generation of voids), and the material strength also decreases, so in order to secure high gas impermeability and to obtain a highly reliable strength material, set the temperature low and take time not to leave voids, There are drawbacks such as molding by repeatedly degassing.

一方、エポキシ樹脂は、硬化反応の際に、縮合水やアンモニアなどの発生がない熱硬化性樹脂であるため、短時間に熱圧成形したときにボイドなどの組織不良を起こし難いという利点があり、結合材となる熱硬化性樹脂としてエポキシ樹脂を使用したセパレータ材が提案されている(特許文献3参照)。   On the other hand, epoxy resin is a thermosetting resin that does not generate condensed water or ammonia during the curing reaction, and therefore has the advantage that it does not easily cause voids and other structural defects when hot-pressed in a short time. A separator material using an epoxy resin as a thermosetting resin to be a binding material has been proposed (see Patent Document 3).

結合材としてエポキシ樹脂を用いる場合には、硬化剤としては、アミン系硬化剤、酸無水物系硬化剤、フェノール系硬化剤が使用されるが、アミン系硬化剤を使用したセパレータにおいては、燃料電池の発電の際にアンモニウムイオンとして電池セル内に溶出し、溶出したアンモニウムイオンが電池性能の低下を招くという問題があり、酸無水物硬化剤を使用した場合には、酸無水物の反応性は非常に高温で硬化反応が進むため硬化速度が遅く、セパレータの成形時間が長くなるばかりでなく、モノマーとして成形体に残留したり、溶出有機物が多くなるという問題がある。   When an epoxy resin is used as the binder, an amine curing agent, an acid anhydride curing agent, or a phenol curing agent is used as the curing agent. In a separator using an amine curing agent, a fuel is used. During battery power generation, ammonium ions elute into the battery cell, and the eluted ammonium ions have a problem of deteriorating battery performance. When an acid anhydride curing agent is used, the acid anhydride reactivity Has a problem that since the curing reaction proceeds at a very high temperature, the curing rate is slow, the molding time of the separator is increased, and not only the monomer remains in the molded body but also the amount of dissolved organic substances increases.

このような点から、硬化剤としてはフェノール系硬化剤が有用されている(特許文献4参照)。しかしながら、通常使用されるフェノールノボラック樹脂は、オルソ位が結合したフェノール樹脂であり、これを使用した場合には成形硬化物が脆く、破断歪、靭性が低いという問題点がある。
特開2000−021421号公報 特開2004−127646号公報 特開2001−261935号公報 国際公開WO2006/049319A1
From such points, a phenolic curing agent is useful as the curing agent (see Patent Document 4). However, the phenol novolac resin that is usually used is a phenol resin in which ortho positions are bonded, and when this resin is used, there is a problem that a molded cured product is brittle, and fracture strain and toughness are low.
JP 2000-021421 A JP 2004-127646 A JP 2001-261935 A International Publication WO2006 / 049319A1

発明者は、黒鉛などの炭素粉末をエポキシ樹脂を結合材として結着、成形した炭素/樹脂硬化成形体からなるセパレータの材質特性向上、特に靭性向上について検討する過程において、硬化剤としてのフェノール系硬化剤のうちノボラック型フェノール樹脂に着目して、試験、検討を行った結果、ノボラック型フェノール樹脂硬化剤の性状がセパレータ材の機械的特性に大きく影響することを見出した。   The inventor is a phenolic as a curing agent in the process of studying improvement of material properties of a separator made of a carbon / resin cured molded body obtained by binding and molding carbon powder such as graphite with an epoxy resin as a binder. As a result of tests and examinations focusing on the novolak type phenol resin among the curing agents, it was found that the properties of the novolak type phenol resin curing agent greatly affect the mechanical properties of the separator material.

本発明は、上記の知見に基づいてなされたものであり、その目的は、セパレータ材として要求されるガス不透過性、強度特性、電気的物性、成形時の離型性などの特性に優れた固体高分子形燃料電池用セパレータ材およびその製造方法を提供することにある。   The present invention has been made on the basis of the above findings, and its purpose is excellent in properties such as gas impermeability, strength properties, electrical properties, and mold release properties required for a separator material. The object is to provide a separator for a polymer electrolyte fuel cell and a method for producing the same.

上記の目的を達成するための請求項1による固体高分子形燃料電池用のセパレータ材は、エポキシ樹脂を主剤とし、ハイパラノボラック型フェノール樹脂を50%以上含むフェノール樹脂硬化剤とイミダゾール系硬化促進剤を必須成分とする混合樹脂を結合材として黒鉛粉末を結着した黒鉛/樹脂硬化成形体からなることを特徴とする。   A separator for a polymer electrolyte fuel cell according to claim 1 for achieving the above object is a phenol resin curing agent and an imidazole curing accelerator containing an epoxy resin as a main component and 50% or more of a high paranovolak type phenol resin. It is characterized by comprising a graphite / resin-cured molded body in which graphite powder is bound with a mixed resin having an essential component as a binder.

請求項2による固体高分子形燃料電池用セパレータ材の製造方法は、エポキシ樹脂を主剤とし、ハイパラノボラック型フェノール樹脂を50%以上含むフェノール樹脂硬化剤とイミダゾール系硬化促進剤及び分散剤を有機溶剤に溶解した混合樹脂溶液に、黒鉛粉末を分散させてスラリーを調製し、該スラリーよりドクターブレード法によりグリーンシートを作製し、グリーンシートを積層、熱圧成形することを特徴とする。   The method for producing a separator for a polymer electrolyte fuel cell according to claim 2 comprises a phenol resin curing agent containing 50% or more of a high paranovolak type phenolic resin, an imidazole curing accelerator and a dispersant as an organic solvent. A slurry is prepared by dispersing graphite powder in a mixed resin solution dissolved in a slurry, and a green sheet is prepared from the slurry by a doctor blade method, and the green sheets are laminated and hot-pressed.

請求項3による固体高分子形燃料電池セパレータの製造方法は、エポキシ樹脂を主剤とし、ハイパラノボラック型フェノール樹脂を50%以上含むフェノール樹脂硬化剤とイミダゾール系硬化促進剤を有機溶剤に溶解し、調製された混合樹脂溶液と黒鉛粉末とを混練したのち有機溶剤を揮散除去し、次いで混練物を粉砕して得られた成形粉を予備成形型に充填し、加圧、予備成形してプリフォームを作製し、該プリフォームを成形型に挿入して熱圧成形することを特徴とする。   A method for producing a polymer electrolyte fuel cell separator according to claim 3 is prepared by dissolving a phenol resin curing agent containing 50% or more of a high paranovolak type phenolic resin and an imidazole curing accelerator in an organic solvent. After kneading the mixed resin solution and graphite powder, the organic solvent is volatilized and removed, and then the molding powder obtained by pulverizing the kneaded material is filled into a pre-molding die, and the preform is formed by pressing and pre-molding. It is produced, and the preform is inserted into a mold and hot pressed.

本発明によれば、セパレータ材として要求されるガス不透過性、強度特性、電気的物性、成形時の離型性などの特性に優れた固体高分子形燃料電池用セパレータ材およびその製造方法が提供される。すなわち、ハイパラノボラック型フェノール樹脂を硬化剤として用いることにより、セパレータ成型品の靭性向上、耐熱性向上、セパレータ成形時の離型性向上、成形硬化時間短縮による生産性向上、セパレータからの溶出不純物低減による燃料電池発電の長期安定性が得られる。   According to the present invention, there are provided a separator material for a polymer electrolyte fuel cell excellent in characteristics such as gas impermeability, strength characteristics, electrical properties, and mold release properties required for a separator material, and a method for producing the same. Provided. In other words, by using a high paranovolak type phenolic resin as a curing agent, improved separator toughness, improved heat resistance, improved mold release during separator molding, improved productivity by shortening molding hardening time, and reduced impurities eluted from the separator Long-term stability of fuel cell power generation can be obtained.

本発明による固体高分子形燃料電池用のセパレータ材は、エポキシ樹脂を主剤とし、ハイパラノボラック型フェノール樹脂を50%以上含むフェノール樹脂硬化剤とイミダゾール系硬化促進剤を必須成分とする混合樹脂を結合材として黒鉛粉末を結着した黒鉛/樹脂硬化成形体からなり、特に、ハイパラノボラック型フェノール樹脂を50%以上含むフェノール樹脂硬化剤を使用することを特徴とする。   The separator material for a polymer electrolyte fuel cell according to the present invention combines a mixed resin containing an epoxy resin as a main component and a phenol resin curing agent containing 50% or more of a high paranovolak type phenolic resin and an imidazole curing accelerator as essential components. It consists of a graphite / resin-cured molded body with graphite powder bound as a material, and is particularly characterized by using a phenol resin curing agent containing 50% or more of a high paranovolak type phenol resin.

通常のノボラック型フェノール樹脂は、次に示すようなハイオルソノボラック型フェノール樹脂であり、下記の化学式1で表され、フェノール水酸基からみてオルソ位にメチレン結合がある。   A normal novolac type phenol resin is a high ortho novolac type phenol resin as shown below, which is represented by the following chemical formula 1, and has a methylene bond at the ortho position as viewed from the phenol hydroxyl group.

Figure 2009158118
Figure 2009158118

通常使用されているハイオルソノボラック型フェノール樹脂に対しては、フェノール樹脂の水酸基が架橋するメチレン基と接近しているため立体的に混み合っており、エポキシ樹脂のエポキシ基に対する立体反発があるため、エポキシ樹脂との硬化反応速度はそれほど速くなく、また得られた成形体を構成する成分には未反応の水酸基が多く存在し、架橋密度が十分上がらない問題点が残っていた。特に、相手のエポキシ樹脂が2官能で、分子量の大きくエポキシ当量が大きな場合には、エポキシ樹脂の反応性が低いため、架橋密度が上がらず、耐熱強度の低下を招いていた。また、水酸基が残存しているため熱圧成形時に金型に貼り付くといった問題もみられた。   Because the hydroxyl group of the phenolic resin is close to the methylene group to be cross-linked to the commonly used high-ortho novolak type phenolic resin, it is sterically crowded and there is a steric repulsion against the epoxy group of the epoxy resin. The curing reaction rate with the epoxy resin is not so fast, and there are many unreacted hydroxyl groups in the components constituting the resulting molded article, and the crosslinking density does not sufficiently increase. In particular, when the partner epoxy resin is bifunctional and has a large molecular weight and a large epoxy equivalent, the reactivity of the epoxy resin is low, so that the crosslink density does not increase and the heat resistance is lowered. Moreover, since the hydroxyl group remained, the problem of sticking to a metal mold | die at the time of hot press molding was also seen.

これに対し、ハイパラノボラック型フェノール樹脂は、下記の化学式2で表せる。   On the other hand, a high paranovolak type phenol resin can be represented by the following chemical formula 2.

Figure 2009158118
Figure 2009158118

ハイパラノボラック型フェノール樹脂は、メチレン結合がフェノールの水酸基から見て全てパラ位で繋がったものである。この樹脂の場合、エポキシ基と反応する反応点である水酸基が分子全体から出るようになり、エポキシ基に対する立体反発も小さくなるので硬化スピードも速く、硬化物の架橋密度が上がって、靭性が高く(高強度/高破断歪)、高温強度の向上が図られる。さらに、オルソノボラック型フェノール樹脂に比較して硬化速度が速いことから、成形時間の短縮ができ、残存する水酸基量も少ないので金型に対する離型性に優れ生産性向上に寄与する。また、得られた成形硬化物からの全有機質炭素成分の溶出量も抑えられるという利点もある。   The high paranovolak type phenol resin is one in which methylene bonds are all connected in the para position as viewed from the hydroxyl group of phenol. In the case of this resin, the hydroxyl group, which is a reaction point that reacts with the epoxy group, comes out from the whole molecule, and the steric repulsion to the epoxy group is also reduced, so the curing speed is fast, the crosslink density of the cured product is increased, and the toughness is high. (High strength / high breaking strain) and high temperature strength can be improved. Furthermore, since the curing speed is higher than that of the orthonovolak type phenolic resin, the molding time can be shortened and the amount of remaining hydroxyl groups is small, so that the mold release property is excellent and the productivity is improved. There is also an advantage that the amount of elution of the total organic carbon component from the obtained molded cured product can be suppressed.

通常、ノボラック型フェノール樹脂は、オルソ結合のノボラックとパラ結合のノボラックが混在した状態で製造され、上記パラ結合ノボラック(ハイパラノボラック型フェノール樹脂)の割合が50%以上のものを使用すると、靭性の高いものが得られるが、ハイパラノボラック型フェノール樹脂の割合が50%未満では十分な靭性改善効果が得られない。   Normally, a novolak type phenolic resin is produced in a state where ortho-linked novolak and para-bonded novolak are mixed, and when the ratio of the para-bonded novolak (high paranovolak type phenolic resin) is 50% or more, A high product can be obtained, but if the proportion of the high paranovolak type phenol resin is less than 50%, a sufficient toughness improving effect cannot be obtained.

ハイパラノボラック型フェノール樹脂は、樹脂の原料であるフェノール及びホルムアルデヒドの比率を変えたり、触媒種、反応温度、時間を調整することにより製造することができる。また、ハイパラノボラック型フェノール樹脂の含有割合は、樹脂のフーリエ変換型赤外分光計(FT−IR)におけるオルソ位結合に起因する波数760cm−1の吸光度ピークとパラ位結合に起因する810cm−1の吸光度ピークの強度比でその割合を計算することができる。 The high paranovolak type phenolic resin can be produced by changing the ratio of phenol and formaldehyde which are the raw materials of the resin, or adjusting the catalyst type, reaction temperature and time. Further, the content of high para novolak type phenolic resin, 810 cm -1 due to the absorbance peak and para bond wavenumber 760 cm -1 due to the ortho-position binding in the Fourier transform infrared spectrometer of the resin (FT-IR) The ratio can be calculated by the intensity ratio of the absorbance peaks.

また、ハイパラノボラック型フェノール樹脂は、前記構造式(2)のものの他、芳香族環にメチル基の付いたクレゾールノボラック型でパラ位結合のフェノール樹脂も使用できる。クレゾールタイプのものの方が、セパレータにした場合、吸水し難くなる。   As the high paranovolak type phenol resin, a cresol novolac type para-bonded phenol resin having an aromatic ring with a methyl group can be used in addition to the structural formula (2). When the cresol type is used as a separator, it becomes difficult to absorb water.

主剤となるエポキシ樹脂は、強度、耐熱性の観点から、ビフェニル型、ビスフェノール型、ノボラック型、ナフタレン型、アントラセン型、フェナントレン型、ピレン型、トリフェニルメタン型、ベンジリックエーテル型、アリルベンゼン型、ビニルベンゼン型、ブロモベンゼン型、クロロベンゼン型、フタル酸エステル型などの芳香族系、もしくはシクロヘキサン型、ジシクロペンタジエン型、イソボルニル型、ノルボルネン型、アダマンタン型などの環状炭化水素系、イミド型、トリフェニルアミン型、イソシアヌレート型、アゾフェニル型、アジン型などの環状アミン系の分子骨格を有する、多官能エポキシ樹脂を使用することができる。   The main epoxy resin is biphenyl type, bisphenol type, novolac type, naphthalene type, anthracene type, phenanthrene type, pyrene type, triphenylmethane type, benzylic ether type, allylbenzene type, from the viewpoint of strength and heat resistance. Aromatics such as vinylbenzene, bromobenzene, chlorobenzene, and phthalate ester, or cyclic hydrocarbons such as cyclohexane, dicyclopentadiene, isobornyl, norbornene, and adamantane, imide, and triphenyl A polyfunctional epoxy resin having a cyclic amine-based molecular skeleton such as an amine type, an isocyanurate type, an azophenyl type, and an azine type can be used.

また、可撓性のある材質、破断歪の大きいセパレータ材とするには、アルコールエーテル型の2官能エポキシ樹脂と芳香族環を含む多官能エポキシ樹脂との混合エポキシ樹脂を使用することができる。このアルコールエーテル型エポキシ樹脂を配合した硬化物は、高温時の強度が低くなってしまうが、このハイパラノボラック型フェノール樹脂を使用した場合には、高温強度の向上が図られるとともに、成形時、金型からの離型性も良くなる。   In order to obtain a flexible material and a separator material having a large breaking strain, a mixed epoxy resin of an alcohol ether type bifunctional epoxy resin and a polyfunctional epoxy resin containing an aromatic ring can be used. The cured product containing this alcohol ether type epoxy resin has a low strength at high temperatures. However, when this high paranovolak type phenol resin is used, the strength at high temperatures is improved and the molding is performed at the time of molding. The releasability from the mold is also improved.

硬化促進剤としてはイミダゾール類が用いられる。アミン系硬化促進剤を使用すると、セパレータ材からのアンモニウムイオン溶出が起きて、発電性能に影響する。リン系硬化促進剤を使用すると、セパレータ材の吸水が多くなり、使用時にセパレータが膨潤しやすくなるとともに、溶出を起こして発電性能に影響したり、セパレータとシール材との接着性が劣るなどの難点がある。   Imidazoles are used as the curing accelerator. When an amine curing accelerator is used, ammonium ion elution occurs from the separator material, which affects power generation performance. When a phosphorus curing accelerator is used, water absorption of the separator material increases, and the separator easily swells during use, and elution occurs to affect the power generation performance, and the adhesion between the separator and the sealing material is poor. There are difficulties.

本発明による固体高分子形燃料電池用セパレータ材の第1の製造方法は、エポキシ樹脂を主剤とし、ハイパラノボラック型フェノール樹脂を50%以上含むフェノール樹脂硬化剤とイミダゾール系硬化促進剤及び分散剤を有機溶剤に溶解した混合樹脂溶液に、黒鉛粉末を分散させてスラリーを調製し、該スラリーよりドクターブレード法によりグリーンシートを作製し、グリーンシートを積層、熱圧成形することを特徴とする。   A first method for producing a separator for a polymer electrolyte fuel cell according to the present invention comprises a phenol resin curing agent containing 50% or more of a high paranovolak type phenolic resin, an imidazole curing accelerator and a dispersing agent as a main component. A slurry is prepared by dispersing graphite powder in a mixed resin solution dissolved in an organic solvent, a green sheet is prepared from the slurry by a doctor blade method, the green sheets are laminated, and hot pressing is performed.

以下、第1の製造方法について説明する。
樹脂溶液の調製:
主剤であるエポキシ樹脂と、硬化剤としてハイパラノボラック型フェノール樹脂を、エポキシ基に対するフェノール性水酸基の当量比が0.5〜1.5の重量比で、さらに所定量の硬化促進剤及び黒鉛粉を分散できる最小必要量の分散剤をMEKなどの有機溶剤に投入してよく撹拌して溶解し、樹脂溶液とする。なお、主剤、硬化剤、硬化促進剤の合計樹脂固形分量は、黒鉛粉末100重量部に対して、10〜35重量部とする。
Hereinafter, the first manufacturing method will be described.
Preparation of resin solution:
An epoxy resin as a main agent, a high paranovolak type phenol resin as a curing agent, an equivalent ratio of a phenolic hydroxyl group to an epoxy group in a weight ratio of 0.5 to 1.5, and further a predetermined amount of a curing accelerator and graphite powder The minimum amount of dispersant that can be dispersed is put into an organic solvent such as MEK and dissolved by stirring well to obtain a resin solution. In addition, the total resin solid content of the main agent, the curing agent, and the curing accelerator is 10 to 35 parts by weight with respect to 100 parts by weight of the graphite powder.

スラリー調製:
この樹脂溶液に黒鉛粉末100重量部を添加し、万能混合機などの撹拌/分散機を用いて樹脂溶液中に黒鉛粉末を分散させて、スラリーを調製する。黒鉛粉末としては、人造黒鉛、天然黒鉛などが使用できるが、セパレータ材の機械的特性(強度、破断歪)を考慮すると、人造黒鉛粉末単独、或いは人造黒鉛と天然黒鉛の混合粉末が好適に使用される。また、溶液量を少なくしても流動性がよく、安定なスラリーとなり、次工程のグリーンシート成形時の乾燥収縮によるひび割れのないものを得るため、1〜100μm程度の粒度分布がブロードな黒鉛粉末を使用することが好ましい。大きな粒子と小さな粒子を配合することにより、大きな粒子の間隙に小さな粒子が入り込む充填効果もあって、緻密なグリーンシートを得ることができる。小さな粒子の添加配合(存在)は、グリーンシート成形時の乾燥ひび割れ防止、緻密なグリーンシートを得るなどの他、機械的特性にも影響し、強度向上、破断歪向上効果が期待できる。
Slurry preparation:
100 parts by weight of graphite powder is added to the resin solution, and the graphite powder is dispersed in the resin solution using a stirring / dispersing machine such as a universal mixer to prepare a slurry. As graphite powder, artificial graphite, natural graphite, etc. can be used, but considering the mechanical properties (strength, fracture strain) of the separator material, artificial graphite powder alone or a mixed powder of artificial graphite and natural graphite is preferably used. Is done. Moreover, even if the amount of the solution is reduced, the graphite powder has a good fluidity and becomes a stable slurry, and does not have cracks due to drying shrinkage when forming the green sheet in the next process. Is preferably used. By blending the large particles and the small particles, there is a filling effect that the small particles enter the gaps between the large particles, and a dense green sheet can be obtained. The addition of small particles (presence) affects the mechanical properties in addition to preventing dry cracking at the time of forming the green sheet and obtaining a dense green sheet, and can be expected to improve strength and break strain.

このように調製されるスラリーは、その粘度が100〜2000mPa・sになるように有機溶媒を適量添加して調整する。なお、このスラリーは、適宜遠心脱気、真空脱気を行い、撹拌混合で巻き込んだ空気を脱気する。   The slurry prepared in this manner is adjusted by adding an appropriate amount of an organic solvent so that the viscosity becomes 100 to 2000 mPa · s. This slurry is appropriately subjected to centrifugal degassing and vacuum degassing to degas air entrained by stirring and mixing.

グリーンシートの作製:
上記のように調製したスラリーは、ドクターブレード法によりフィルム上に塗布される。スラリーの塗布は、ドクターブレードとフィルム間のギャップを調整したのち、ドクターブレードのスラリーホッパーにスラリーを流し込み、離型剤を塗布したフィルム上にスラリーを均等な厚みに塗布する。次いで、適当な長さにカットして、送風乾燥、事前乾燥し、表面が乾いた状態になったら、打ち抜き型等で所定形状に切り抜く。さらに乾燥或いは冷却してフィルムからグリーンシートを剥がす。
Green sheet production:
The slurry prepared as described above is applied onto the film by a doctor blade method. In the application of the slurry, after adjusting the gap between the doctor blade and the film, the slurry is poured into a slurry hopper of the doctor blade, and the slurry is applied on the film coated with the release agent to a uniform thickness. Next, it is cut into a suitable length, blown dry and pre-dried. When the surface is in a dry state, it is cut into a predetermined shape with a punching die or the like. Further, the green sheet is peeled off from the film by drying or cooling.

セパレータの成形:
上記のように作製したグリーンシートは、製造するセパレータ材の厚さに応じて適宜枚数を積層して金型内にセットし、150〜250℃の温度、10〜100MPaの圧力で熱圧成形することにより、燃料電池用セパレータが製造される。
Separator molding:
The green sheets produced as described above are appropriately stacked according to the thickness of the separator material to be manufactured, set in a mold, and hot-press molded at a temperature of 150 to 250 ° C. and a pressure of 10 to 100 MPa. Thus, a fuel cell separator is manufactured.

本発明による固体高分子形燃料電池セパレータの第2の製造方法は、エポキシ樹脂を主剤とし、ハイパラノボラック型フェノール樹脂を50%以上含むフェノール樹脂硬化剤とイミダゾール系硬化促進剤を有機溶剤に溶解し、調製された混合樹脂溶液と黒鉛粉末とを混練したのち有機溶剤を揮散除去し、次いで混練物を粉砕して得られた成形粉を予備成形型に充填し、加圧、予備成形してプリフォームを作製し、該プリフォームを成形型に挿入して熱圧成形することを特徴とする。   A second method for producing a polymer electrolyte fuel cell separator according to the present invention is to dissolve a phenol resin curing agent containing 50% or more of a high paranovolak type phenolic resin and an imidazole curing accelerator in an organic solvent. The prepared mixed resin solution and graphite powder are kneaded, the organic solvent is volatilized and removed, and then the molding powder obtained by pulverizing the kneaded material is filled into a pre-molding die, pressed and pre-molded. A reform is produced, and the preform is inserted into a mold and hot-press molded.

以下、第2の製造方法について説明する。
樹脂溶液の調製:
第2の製造方法においては、分散剤を含まない以外、第1の製造方法と同じである。
成形粉の調製:
作製した樹脂溶液と黒鉛粉末を混合して均一に混練する。混合、混練は、ニーダー、スクリュー式混練機、万能混合機など、適宜な混練機を用いて十分に混練し、均一な混練物を調製する。混練後、有機溶剤を真空乾燥或いは送風乾燥などにより混練物から揮散除去する。なお、用いる黒鉛粉末は平均粒子径50μm以下、最大粒子径100μm以下に粒度調整して使用することが好ましく、人造黒鉛、天然黒鉛、或いはこれら混合粉末が使用できる。混練物の表面は樹脂被膜で覆われているため、黒鉛部を露出させて成型品の導電性の低下を抑制させ、さらには予備成形型に均一に充填できるように、有機溶剤を揮散、乾燥した混練物を粉砕して、成形粉とする。粉砕は、自由粉砕機、カッター状の粉砕機など、0.1〜1mm程度に粉砕できる機械を使用する。
Hereinafter, the second manufacturing method will be described.
Preparation of resin solution:
The second manufacturing method is the same as the first manufacturing method except that the dispersant is not included.
Preparation of molding powder:
The produced resin solution and graphite powder are mixed and kneaded uniformly. Mixing and kneading are sufficiently kneaded using an appropriate kneader such as a kneader, screw-type kneader, or universal mixer to prepare a uniform kneaded product. After kneading, the organic solvent is volatilized and removed from the kneaded product by vacuum drying or blow drying. The graphite powder to be used is preferably used by adjusting the particle size to an average particle size of 50 μm or less and a maximum particle size of 100 μm or less, and artificial graphite, natural graphite, or a mixed powder thereof can be used. Since the surface of the kneaded material is covered with a resin film, the organic solvent is volatilized and dried so that the graphite part is exposed to suppress the decrease in conductivity of the molded product, and the preform can be uniformly filled. The kneaded product is pulverized to form a molding powder. For the pulverization, a machine capable of pulverizing to about 0.1 to 1 mm, such as a free pulverizer or a cutter pulverizer, is used.

予備成形:
得られた成形粉を予備成形型のキャビティに均一に充填し、樹脂の融点以上の温度、例えば(樹脂融点+10℃)程度の温度に加熱した上型を載せて1〜10MPaの圧力で予備成形し、板状のプリフォームを作製する。
Pre-form:
The obtained molding powder is uniformly filled into the cavity of the preforming mold, and the upper mold heated to a temperature equal to or higher than the melting point of the resin, for example, (resin melting point + 10 ° C.) is placed and preformed at a pressure of 1 to 10 MPa. Then, a plate-shaped preform is produced.

セパレータ成形:
板状プリフォームを、セパレータのガス流路となる溝部を形成する凹凸部が彫られた成形型に離型剤を塗布して挿入し、圧力10〜100MPa、温度150〜250℃で熱圧成形することにより、燃料電池セパレータが製造される。必要に応じ、150〜250℃の温度でアフターキュアを行う。
Separator molding:
A plate-like preform is inserted by applying a mold release agent into a mold having a concavo-convex portion that forms a groove serving as a gas flow path of the separator, and is hot-pressure molded at a pressure of 10 to 100 MPa and a temperature of 150 to 250 ° C. By doing so, a fuel cell separator is manufactured. If necessary, after-curing is performed at a temperature of 150 to 250 ° C.

以下、本発明の実施を比較例と対比して説明し、その効果を実証する。なお、これらの実施例は、本発明の一実施態様を示すものであり、本発明はこれに限定されない。   Hereinafter, the implementation of the present invention will be described in comparison with comparative examples, and the effects will be demonstrated. In addition, these Examples show one embodiment of this invention, and this invention is not limited to this.

実施例1〜3、比較例1〜2(第1の製造方法)
主剤としてノボラック型エポキシ樹脂(日本化薬株式会社製:EOCN−103S)、及びビフェニル型エポキシ樹脂(日本化薬株式会社製:NC−3000H)、硬化剤にはハイパラノボラック型フェノール樹脂(明和化成株式会社製:HF−1M、HF−3M)、またオルソノボラック型フェノール樹脂(明和化成株式会社製:H−1、H−4)を用い、エポキシ樹脂のエポキシ基とフェノール樹脂のフェノール水酸基の当量比が1.0になるように配合した。配合量を表1に示す。
Examples 1 to 3, Comparative Examples 1 and 2 (first manufacturing method)
Novolac type epoxy resin (manufactured by Nippon Kayaku Co., Ltd .: EOCN-103S) and biphenyl type epoxy resin (manufactured by Nippon Kayaku Co., Ltd .: NC-3000H) as the main agent, and high para novolak type phenolic resin (Maywa Kasei Co., Ltd.) as the curing agent Company: HF-1M, HF-3M) and orthonovolak-type phenol resin (Maywa Kasei Co., Ltd .: H-1, H-4), equivalent ratio of epoxy group of epoxy resin to phenolic hydroxyl group of phenol resin So as to be 1.0. The blending amount is shown in Table 1.

ハイパラノボラック型フェノール樹脂の含有割合(%)は、樹脂のフーリエ変換型赤外分光計(FT−IR)により樹脂サンプルについて700cm−1〜4000cm−1の赤外領域における吸光度(A)を測定し、得られたデータから、オルソ位に架橋したメチレン結合に起因する波数760cm−1の吸光度ピーク(A760)とパラ位に架橋したメチレン結合に起因する810cm−1の吸光度ピーク(A810)の強度比でその割合を計算することができる。このことからハイパラノボラック型フェノール樹脂含有割合は(A810/A760)×100、ハイオルソノボラックフェノール樹脂含有割合は(A760/A810)×100となる。 The content (%) of the hyparanovolak - type phenol resin was determined by measuring the absorbance (A) in the infrared region of 700 cm −1 to 4000 cm −1 of the resin sample with a Fourier transform infrared spectrometer (FT-IR) of the resin. From the obtained data, the absorbance peak at 760 cm −1 due to the methylene bond crosslinked at the ortho position (A 760 ) and the absorbance peak at 810 cm −1 due to the methylene bond crosslinked at the para position (A 810 ) The ratio can be calculated by the intensity ratio. Therefore, the high paranovolak type phenol resin content ratio is (A 810 / A 760 ) × 100, and the high ortho novolac phenol resin content ratio is (A 760 / A 810 ) × 100.

上記の混合樹脂を対黒鉛粉22重量部、2-エチル-4-メチルイミダゾール(硬化促進剤)を対樹脂1重量部、分散剤として陰イオン性界面活性剤(ポリカルボン酸型ポリマー)を対黒鉛粉0.5重量部混合し、さらに有機溶媒としてメチルエチルケトン(MEK)を加えた。この樹脂溶液に平均粒子径50μmが50重量部%、10μmが10重量部%、3μmが40重量部%の割合に粒度調整した人造黒鉛粉末100重量部を加えて、十分に攪拌混合しスラリーを調製した。   The above mixed resin is 22 parts by weight of graphite powder, 2-ethyl-4-methylimidazole (curing accelerator) is 1 part by weight of resin, and an anionic surfactant (polycarboxylic acid type polymer) is used as a dispersant. 0.5 parts by weight of graphite powder was mixed, and methyl ethyl ketone (MEK) was further added as an organic solvent. To this resin solution was added 100 parts by weight of artificial graphite powder whose particle size was adjusted to a ratio of 50 parts by weight of an average particle size of 50 μm, 10 parts by weight of 10 μm, and 40 parts by weight of 3 μm. Prepared.

ドクターブレードとフィルム間のギャップを調整した後、ドクターブレード成形機のホッパーにスラリーを注ぎ、離型剤を塗布したPETフィルム上にスラリーを塗布した。次いで送風乾燥して溶媒のMEKを揮発させて所定寸法にカットした後、フィルムから離型して厚さ0.3mm程度のグリーンシートを作製した。   After adjusting the gap between the doctor blade and the film, the slurry was poured into a hopper of a doctor blade molding machine, and the slurry was applied onto the PET film coated with a release agent. Next, it was blown and dried to volatilize MEK as a solvent and cut to a predetermined size, and then released from the film to produce a green sheet having a thickness of about 0.3 mm.

得られたグリーンシートを所定形状に打ち抜き加工し、200×200mmの範囲内に幅1mm、深さ0.6mmの溝形状部が彫設された、外形270×270mmの成形金型内に、部位に応じて所定の枚数のグリーンシートを積層し、40MPaの圧力、180℃の温度で熱圧成形して、200×200mm、厚さ0.8mm、最薄肉部厚さ0.30mmのセパレータ材を製造した。   The obtained green sheet is punched into a predetermined shape, and a site is placed in a molding die having an outer shape of 270 × 270 mm in which a groove-shaped portion having a width of 1 mm and a depth of 0.6 mm is engraved within a range of 200 × 200 mm. In accordance with the above, a predetermined number of green sheets are laminated and hot-press molded at a pressure of 40 MPa and a temperature of 180 ° C. to obtain a separator material having a thickness of 200 × 200 mm, a thickness of 0.8 mm, and a thinnest wall thickness of 0.30 mm. Manufactured.

製造されたセパレータ材からテストピース(試験材)を作製し、以下の方法により、室温および80℃の温度での曲げ強度、室温および80℃の温度での破断歪み、固有抵抗、接触抵抗、80℃の温水浸漬による336時間後の吸水量増加量、および成形時の離型性を評価した。評価結果を表2に示す。   A test piece (test material) was prepared from the manufactured separator material, and bending strength at room temperature and 80 ° C., fracture strain at room temperature and 80 ° C., specific resistance, contact resistance, 80 by the following methods. The amount of increase in water absorption after 336 hours by immersion in hot water at 0 ° C. and the releasability during molding were evaluated. The evaluation results are shown in Table 2.

曲げ強度(MPa)の測定:JIS R1601に準拠して測定(室温および80℃)した。
破断歪み(%)の測定:JIS R1601に準拠して測定(室温および80℃)した。
Measurement of bending strength (MPa): Measured according to JIS R1601 (room temperature and 80 ° C.).
Measurement of fracture strain (%): Measured according to JIS R1601 (room temperature and 80 ° C.).

固有抵抗(mΩ・cm)の測定:JIS C2525により測定した。
接触抵抗(mΩ・cm)の測定:テストピース同士を1MPaの圧力で接触させながら、通電量1Aで測定した。
Measurement of specific resistance (mΩ · cm): Measured according to JIS C2525.
Measurement of contact resistance (mΩ · cm 2 ): Measurement was performed at an energization amount of 1 A while contacting the test pieces with a pressure of 1 MPa.

吸水量増加量(%)の測定:50mm×30mm×0.8mm厚さのテストピースを蒸留水に浸漬し、これを80℃に設定した加温装置で336時間加熱した。この時、浸漬前と浸漬後のテストピースの重量を少数第4位まで読み取れる電子天秤で測定し、{(浸漬後重量−浸漬前重量)/浸漬前重量}×100で吸水量増加率を計算した。   Measurement of increase in water absorption (%): A test piece having a thickness of 50 mm × 30 mm × 0.8 mm was immersed in distilled water, and heated with a heating device set at 80 ° C. for 336 hours. At this time, the weight of the test piece before and after immersion is measured with an electronic balance that can read up to the fourth decimal place, and the water absorption increase rate is calculated by {(weight after immersion−weight before immersion) / weight before immersion} × 100. did.

成形時の離型性の評価:前記のように、グリーンシートを所定形状に打ち抜き加工し、200×200mmの範囲内に幅1mm、深さ0.6mmの溝形状部が彫設された外形270×270mmの成形金型内に、部位に応じて所定の枚数のグリーンシートを積層し、40MPaの圧力、180℃の温度で熱圧成形した場合において、成形金型からの直ぐに離型した場合は離型性良好と評価した。   Evaluation of releasability at the time of molding: As described above, an outer shape 270 in which a green sheet is punched into a predetermined shape, and a groove-shaped portion having a width of 1 mm and a depth of 0.6 mm is engraved within a range of 200 × 200 mm. In the case where a predetermined number of green sheets are laminated in a molding die of 270 mm in a mold and hot-pressure molded at a pressure of 40 MPa and a temperature of 180 ° C., when released immediately from the molding die The release property was evaluated as good.

Figure 2009158118
Figure 2009158118

Figure 2009158118
Figure 2009158118

表2に示すように、本発明に従う実施例1〜3(ハイパラノボラック型フェノール樹脂を用いた場合)はいずれも、高い曲げ強度と破断歪み、低い固有抵抗と接触抵抗をそなえ、温水浸漬後の吸水量増加量も少なく、成形時の離型性にも優れ、また、厚さ精度も良好であり、燃料電池用セパレータ材として満足すべき特性を有していた。   As shown in Table 2, all of Examples 1 to 3 (when using a high paranovolak type phenolic resin) according to the present invention have high bending strength and breaking strain, low specific resistance and contact resistance, and are immersed in hot water. The amount of increase in water absorption was small, the mold releasability at the time of molding was excellent, the thickness accuracy was also good, and the fuel cell separator material had satisfactory characteristics.

これに対して、比較例1〜2においては、硬化剤としてハイオルソノボラック型フェノール樹脂を用いたため、室温破断歪が低い。また、温水浸漬後の吸水による増加量も多く、燃料電池用セパレータとしての性能が劣っていた。さらに、比較例2では熱圧成形時にセパレータ表面の一部が金型に付着して、セパレータに窪みが生じ、量産時に問題を残した。   On the other hand, in Comparative Examples 1 and 2, since a high ortho novolak type phenol resin was used as the curing agent, the room temperature fracture strain was low. Moreover, the increase amount by the water absorption after warm water immersion was also large, and the performance as a separator for fuel cells was inferior. Furthermore, in Comparative Example 2, a part of the separator surface adhered to the mold during hot press molding, and the separator was depressed, leaving a problem during mass production.

実施例4〜5、比較例3〜4(第2の製造方法)
前記第1の製造方法と同じ樹脂溶液と平均粒径50μmの人造黒鉛粉末を、樹脂固形分と黒鉛粉末の重量比が20:80になるように混合し、ニーダーで十分に混練した。配合割合を表3に示す。
Examples 4 to 5 and Comparative Examples 3 to 4 (second manufacturing method)
The same resin solution as in the first production method and artificial graphite powder having an average particle size of 50 μm were mixed so that the weight ratio of the resin solid content to the graphite powder was 20:80, and sufficiently kneaded with a kneader. The blending ratio is shown in Table 3.

得られた混練物を通気乾燥および真空乾燥して有機溶剤を揮発除去した後、混練物を粉砕し、粒度調整して0.1〜0.5mmの成形粉を得た。次いで、成形粉を予備成形型に入れて、温度70℃、圧力3MPaで10秒間予備成形して板状のプリフォームを作製し、第1の製造方法と同じ成形金型を用いて、セパレータを製造した。   The obtained kneaded product was aerated and vacuum dried to volatilize and remove the organic solvent, and then the kneaded product was pulverized and the particle size was adjusted to obtain a molding powder of 0.1 to 0.5 mm. Next, the molding powder is put into a preforming die, preformed at a temperature of 70 ° C. and a pressure of 3 MPa for 10 seconds to produce a plate-like preform, and using the same molding die as the first manufacturing method, Manufactured.

製造されたセパレータ材からテストピース(試験材)を作製し、実施例1〜3と同じ方法により、室温および80℃の温度での曲げ強度、室温および80℃の温度での破断歪み、固有抵抗、接触抵抗、80℃の温水浸漬による336時間後の吸水量増加量、および成形時の離型性を評価した。評価結果を表4に示す。   A test piece (test material) was prepared from the manufactured separator material, and the bending strength at room temperature and 80 ° C., the breaking strain at room temperature and 80 ° C., and the specific resistance were performed in the same manner as in Examples 1-3. The contact resistance, the amount of increase in water absorption after 336 hours by hot water immersion at 80 ° C., and the releasability during molding were evaluated. The evaluation results are shown in Table 4.

Figure 2009158118
Figure 2009158118

Figure 2009158118
Figure 2009158118

表2に示すように、本発明に従う実施例4〜5(ハイパラノボラック型フェノール樹脂を用いた場合)はいずれも、高い曲げ強度と破断歪み、低い固有抵抗と接触抵抗をそなえ、温水浸漬後の吸水量増加量も少なく、成形時の離型性にも優れ、また、厚さ精度も良好であり、燃料電池用セパレータ材として満足すべき特性を有していた。   As shown in Table 2, each of Examples 4 to 5 (in the case of using a high paranovolak type phenolic resin) according to the present invention has high bending strength and breaking strain, low specific resistance and contact resistance. The amount of increase in water absorption was small, the mold releasability at the time of molding was excellent, the thickness accuracy was also good, and the fuel cell separator material had satisfactory characteristics.

これに対して、比較例3〜4においては、硬化剤としてハイオルソノボラック型フェノール樹脂を用いたため、室温破断歪が低く、燃料電池用セパレータとしての性能が劣っていた。また、比較例3では熱圧成形時にセパレータ外周部が一部貼り付き、セパレータ表面の材料が金型に付着して、セパレータに剥がれが生じ、量産時に問題を残した。   On the other hand, in Comparative Examples 3-4, since the high ortho novolak type phenol resin was used as a hardening | curing agent, the room temperature fracture | rupture distortion was low and the performance as a separator for fuel cells was inferior. Further, in Comparative Example 3, a part of the outer periphery of the separator was stuck at the time of hot-pressure molding, and the material on the separator surface adhered to the mold, causing the separator to peel off, leaving a problem during mass production.

Claims (3)

エポキシ樹脂を主剤とし、ハイパラノボラック型フェノール樹脂を50%以上含むフェノール樹脂硬化剤とイミダゾール系硬化促進剤を必須成分とする混合樹脂を結合材として黒鉛粉末を結着した黒鉛/樹脂硬化成形体からなることを特徴とする固体高分子形燃料電池用セパレータ材。 From a graphite / resin-cured molded body in which graphite powder is bound with a mixed resin containing epoxy resin as a main component and a phenol resin curing agent containing 50% or more of a high paranovolak type phenolic resin and an imidazole curing accelerator as essential components A separator material for a polymer electrolyte fuel cell, characterized by comprising: エポキシ樹脂を主剤とし、ハイパラノボラック型フェノール樹脂を50%以上含むフェノール樹脂硬化剤とイミダゾール系硬化促進剤及び分散剤を有機溶剤に溶解した混合樹脂溶液に、黒鉛粉末を分散させてスラリーを調製し、該スラリーよりドクターブレード法によりグリーンシートを作製し、グリーンシートを積層、熱圧成形することを特徴とする固体高分子形燃料電池セパレータの製造方法。 A slurry is prepared by dispersing graphite powder in a mixed resin solution in which an epoxy resin is a main component and a phenol resin curing agent containing 50% or more of a high paranovolak type phenolic resin, an imidazole curing accelerator and a dispersing agent are dissolved in an organic solvent. A method for producing a polymer electrolyte fuel cell separator, comprising producing a green sheet from the slurry by a doctor blade method, laminating the green sheets, and hot pressing. エポキシ樹脂を主剤とし、ハイパラノボラック型フェノール樹脂を50%以上含むフェノール樹脂硬化剤とイミダゾール系硬化促進剤を有機溶剤に溶解し、調製された混合樹脂溶液と黒鉛粉末とを混練したのち有機溶剤を揮散除去し、次いで混練物を粉砕して得られた成形粉を予備成形型に充填し、加圧、予備成形してプリフォームを作製し、該プリフォームを成形型に挿入して熱圧成形することを特徴とする固体高分子形燃料電池セパレータの製造方法。 An epoxy resin is the main ingredient, a phenol resin curing agent containing 50% or more of a high paranovolak type phenolic resin and an imidazole curing accelerator are dissolved in an organic solvent, and the prepared mixed resin solution and graphite powder are kneaded, and then the organic solvent is added. Volatilizing and removing, then crushing the kneaded product, filling the molding powder into a preforming mold, pressurizing and preforming to produce a preform, and then inserting the preform into the mold and hot pressing A method for producing a polymer electrolyte fuel cell separator.
JP2007331551A 2007-12-25 2007-12-25 Separator material for solid polymer fuel battery and manufacturing method for the separator material Pending JP2009158118A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007331551A JP2009158118A (en) 2007-12-25 2007-12-25 Separator material for solid polymer fuel battery and manufacturing method for the separator material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007331551A JP2009158118A (en) 2007-12-25 2007-12-25 Separator material for solid polymer fuel battery and manufacturing method for the separator material

Publications (1)

Publication Number Publication Date
JP2009158118A true JP2009158118A (en) 2009-07-16

Family

ID=40961931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007331551A Pending JP2009158118A (en) 2007-12-25 2007-12-25 Separator material for solid polymer fuel battery and manufacturing method for the separator material

Country Status (1)

Country Link
JP (1) JP2009158118A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011010689A1 (en) * 2009-07-24 2011-01-27 日清紡ケミカル株式会社 Fuel cell separator
JP2011204650A (en) * 2010-03-26 2011-10-13 Panasonic Electric Works Co Ltd Composition for separator of fuel cell, separator of fuel cell, and method of manufacturing fuel cell
EP3193400A4 (en) * 2014-09-08 2018-04-11 Nisshinbo Chemical Inc. Fuel cell separator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04222809A (en) * 1990-12-25 1992-08-12 Sumitomo Durez Co Ltd Production of high para-novolak resin
JP2007087864A (en) * 2005-09-26 2007-04-05 Tokai Carbon Co Ltd Separator material for fuel cell, and method for manufacturing same
JP2007172957A (en) * 2005-12-21 2007-07-05 Tokai Carbon Co Ltd Separator material for fuel cell, and manufacturing method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04222809A (en) * 1990-12-25 1992-08-12 Sumitomo Durez Co Ltd Production of high para-novolak resin
JP2007087864A (en) * 2005-09-26 2007-04-05 Tokai Carbon Co Ltd Separator material for fuel cell, and method for manufacturing same
JP2007172957A (en) * 2005-12-21 2007-07-05 Tokai Carbon Co Ltd Separator material for fuel cell, and manufacturing method therefor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011010689A1 (en) * 2009-07-24 2011-01-27 日清紡ケミカル株式会社 Fuel cell separator
JP2011028986A (en) * 2009-07-24 2011-02-10 Nisshinbo Chemical Inc Fuel cell separator
US8372192B2 (en) 2009-07-24 2013-02-12 Nisshinbo Chemical Inc. Fuel cell separator
KR101733461B1 (en) 2009-07-24 2017-05-10 닛신보 케미칼 가부시키가이샤 Fuel cell separator
JP2011204650A (en) * 2010-03-26 2011-10-13 Panasonic Electric Works Co Ltd Composition for separator of fuel cell, separator of fuel cell, and method of manufacturing fuel cell
EP3193400A4 (en) * 2014-09-08 2018-04-11 Nisshinbo Chemical Inc. Fuel cell separator
US10396367B2 (en) 2014-09-08 2019-08-27 Nisshinbo Chemicals Inc. Fuel cell separator

Similar Documents

Publication Publication Date Title
WO2011001766A1 (en) Method for producing a fuel cell separator
JP3463806B2 (en) Fuel cell separator and method of manufacturing the same
JP5019195B2 (en) Method for producing separator material for fuel cell
TWI361508B (en)
CN114976086B (en) Composite graphite bipolar plate for fuel cell and preparation method
JP2004259497A (en) Manufacturing method of separator for solid polymer type fuel cell, and separator for solid polymer type fuel cell
JP5041309B2 (en) Separator material for fuel cell and manufacturing method thereof
JP2009158118A (en) Separator material for solid polymer fuel battery and manufacturing method for the separator material
JPH11354138A (en) Ribbed fuel-cell separator, its manufacture, and fuel cell
JP5033269B2 (en) Composition for molding fuel cell separator, fuel cell separator, method for producing fuel cell separator, and fuel cell
JP2002083609A (en) Composition for fuel cell separator, and its manufacturing method
JP5502552B2 (en) Composition for fuel cell separator, fuel cell separator, and method for producing fuel cell
JP2011171111A (en) Manufacturing method of separator for fuel cell
JP5681565B2 (en) Molding material for fuel cell separator, method for producing fuel cell separator, and fuel cell separator
JP5520104B2 (en) Manufacturing method of fuel cell separator
JP5845458B2 (en) Manufacturing method of fuel cell separator
JP2006252905A (en) Separator material for fuel cell, and manufacturing method of the same
JP2009104887A (en) Manufacturing method of fuel cell separator material
JP2010129203A (en) Separator material for solid polymer fuel cell, manufacturing method thereof, and separator for solid polymer fuel cell
JP2005251501A (en) Separator material for solid high polymer fuel cell and its manufacturing method
JP2013020803A (en) Fuel cell separator and method for manufacturing the same
JP2004127646A (en) Method for manufacturing separator for solid polymer fuel cell
JP5193138B2 (en) Method for producing separator for polymer electrolyte fuel cell, and separator for polymer electrolyte fuel cell
JP2015038840A (en) Fuel cell separator, and method for manufacturing fuel cell separator
JP2014135145A (en) Method of manufacturing frame member for fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130423