JP3437936B2 - Fuel cell separator with ribs, method for producing the same, and fuel cell - Google Patents

Fuel cell separator with ribs, method for producing the same, and fuel cell

Info

Publication number
JP3437936B2
JP3437936B2 JP07879599A JP7879599A JP3437936B2 JP 3437936 B2 JP3437936 B2 JP 3437936B2 JP 07879599 A JP07879599 A JP 07879599A JP 7879599 A JP7879599 A JP 7879599A JP 3437936 B2 JP3437936 B2 JP 3437936B2
Authority
JP
Japan
Prior art keywords
fuel cell
separator
rib
resin
flat plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07879599A
Other languages
Japanese (ja)
Other versions
JPH11354138A (en
Inventor
智憲 関
藤田  淳
了嗣 田代
春文 蓮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP07879599A priority Critical patent/JP3437936B2/en
Publication of JPH11354138A publication Critical patent/JPH11354138A/en
Application granted granted Critical
Publication of JP3437936B2 publication Critical patent/JP3437936B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、燃料電池の燃料ガ
スと酸化剤ガス(空気又は酸素)を分離するリブ付き燃
料電池セパレータ、その製造法及び燃料電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ribbed fuel cell separator for separating fuel gas and oxidant gas (air or oxygen) of a fuel cell, a method for producing the same, and a fuel cell.

【0002】[0002]

【従来の技術】燃料電池は、エネルギー効率が高く環境
汚染を低くできることより、将来小型発電機、EV用電
源に広く普及することが期待されている。燃料電池は電
解質層の上下に電極(正負極)を配し電極の上下に燃料
ガスと酸化剤ガス(空気又は酸素)を流し電極における
酸化、還元反応、電解質層での陽イオン、電子の移動反
応で化学エネルギーが電気エネルギーに変換され電位差
が得られる原理となっている。燃料電池は上記電極、電
解質層を交互に多段積層する構造で製造される為、積層
する正極と負極の間に燃料ガスと酸化剤ガスを分離する
分離板(セパレータ)が設けられる。また、ガスの供給
路を確保する為、セパレータにリブ(溝)を付ける構造
が一般的に使われている。さらに単電池で得られた電位
差は一般的には多段に積層した外側の集電板で集電する
構造となっている。
2. Description of the Related Art Fuel cells are expected to be widely used in the future for small power generators and EV power sources because of their high energy efficiency and low environmental pollution. In a fuel cell, electrodes (positive and negative electrodes) are arranged above and below the electrolyte layer, and a fuel gas and an oxidant gas (air or oxygen) are made to flow above and below the electrodes to carry out oxidation and reduction reactions at the electrodes, migration of cations and electrons in the electrolyte layer. The principle is that chemical energy is converted into electric energy in the reaction to obtain a potential difference. Since the fuel cell is manufactured with a structure in which the electrodes and the electrolyte layers are alternately stacked in multiple stages, a separator (separator) for separating the fuel gas and the oxidant gas is provided between the stacked positive and negative electrodes. Further, a structure in which ribs (grooves) are provided on the separator is generally used to secure a gas supply path. Further, the potential difference obtained by the unit cell is generally of a structure in which current is collected by an outer current collector plate laminated in multiple stages.

【0003】この為、セパレータは1)燃料ガスと酸化
剤ガスの分離(ガスの不浸透性)、2)電気の導電性、
3)負極で生成される水、電解液に膨潤しないこと等の
特性が要求される。このセパレータは、一般的には黒鉛
ブロック、ガラス状炭素に溝を機械加工しリブをたて燃
料ガスと、酸化剤ガスの供給路を確保する方法で製造す
る。
Therefore, the separator has 1) separation of fuel gas and oxidant gas (gas impermeability), 2) electrical conductivity,
3) It is required to have characteristics such as not being swollen by water generated in the negative electrode and the electrolytic solution. This separator is generally manufactured by a method in which a groove is machined in a graphite block or glassy carbon to form a rib to secure a supply path for fuel gas and an oxidant gas.

【0004】また、鱗片状の天然黒鉛を酸処理後加熱処
理して得られる膨張黒鉛や膨張黒鉛シートを高圧で成形
する方法、もしくは、液に対する膨潤を対策する為、前
膨張黒鉛成形体に液状の熱硬化性樹脂を含浸硬化する方
法で作られていた(特開昭60−65781号公報、特
開昭60−12672号公報等)。
Further, a method of molding expanded graphite or an expanded graphite sheet obtained by treating scaly natural graphite with acid and then heating it, or in order to prevent swelling with respect to a liquid, a pre-expanded graphite molded product is liquid. It was produced by the method of impregnating and curing the thermosetting resin of JP-A-60-65781 and JP-A-60-12672.

【0005】また、国際公開番号WO97/02612
明細書では、特定の粒子径の膨張黒鉛粉末を熱可塑性樹
脂又は熱硬化性樹脂に分散させ、ブロック状の成形体を
得た後、溝を機械加工する方法が記載されている。しか
し、前記の各種の機械加工する製造方法では、コスト高
となり、さらに膨張黒鉛を用いる製造方法では、製造可
能なリブの寸法が限られ更に成形時に発生するガスが原
因で製品に膨れが発生しやすく、安定して製品を供給で
きない問題を有していた。
International publication number WO97 / 02612
The specification describes a method in which expanded graphite powder having a specific particle diameter is dispersed in a thermoplastic resin or a thermosetting resin to obtain a block-shaped molded body, and then the groove is machined. However, the above-described various manufacturing methods for machining increase the cost, and in the manufacturing method using expanded graphite, the size of ribs that can be manufactured is limited, and swelling occurs in the product due to the gas generated during molding. There was a problem that the product could not be supplied easily and stably.

【0006】[0006]

【発明が解決しようとする課題】請求項1〜8に記載さ
れる発明は、前記問題を解決するものであり、リブ付き
の燃料電池セパレータにおいて、ガスの不浸透性、電気
伝導性、液膨潤性を確保し、更にリブの高さが高い形状
においても平板部の板厚を薄く形成でき、軽量化が可能
で、電池の熱圧成形作業が容易なリブ付きセパレータを
提供するものである。
The invention described in claims 1 to 8 is to solve the above-mentioned problems, and in a fuel cell separator with a rib, gas impermeability, electrical conductivity, and liquid expansion are provided. Wetness can be ensured, and the flat plate can be made thin to reduce the weight even in the shape of high ribs.
Thus, the present invention provides a ribbed separator that facilitates thermocompression molding of a battery .

【0007】た、請求項に記載される発明は、上記
課題に加えて、セパレータを長期間使用しても安定した
電池特性が確保できるリブ付きセパレータを提供するも
のである。
[0007] Also, the invention described in claim 9, in addition to the above problems, a stable battery characteristics even when used for a long time separator is to provide a ribbed separator can be ensured.

【0008】また、請求項10に記載される発明は、リ
ブ付きの燃料電池セパレータの製造法において、ガスの
不浸透性、電気伝導性、液膨潤性を確保し、更にリブの
高さが高い形状においても平板部の板厚を薄く形成で
き、軽量化が可能なリブ付きセパレータの製造法を提供
するものである。また、請求項11に記載される発明
は、ガスの不浸透性、電気伝導性、液膨潤性を確保し、
更にリブの高さが高い形状においても平板部の板厚が薄
く、軽量化されたリブ付きセパレータを有することによ
り、高性能な燃料電池を提供するものである。さらに、
請求項12に記載される発明は、上記課題に加えて、セ
パレータを長期間使用しても安定した電池特性が確保で
きる燃料電池を提供するものである。
According to a tenth aspect of the invention, in the method of manufacturing a fuel cell separator having a rib, gas impermeability, electrical conductivity, and liquid swelling are ensured, and the rib height is high. It is intended to provide a method for manufacturing a ribbed separator that can reduce the weight of the flat plate portion even in terms of shape and can reduce the weight. The invention described in claim 11 ensures gas impermeability, electrical conductivity, and liquid swellability,
Further, even when the rib height is high, the flat plate portion has a thin plate thickness and has a lightweight ribbed separator, thereby providing a high-performance fuel cell. further,
In addition to the above problems, the invention according to claim 12 provides a fuel cell capable of ensuring stable cell characteristics even when the separator is used for a long period of time.

【0009】[0009]

【課題を解決するための手段】本発明は、樹脂中に膨張
黒鉛を予備成形したシートを粉砕した造粒粉であって平
均粒度が50μm以上200μm以下のものが分散され
てなり、リブと平板が一体成形されてなり、リブが2度
〜20度のテーパを有するリブ付き燃料電池セパレータ
に関する。また、本発明は、樹脂中に平均粒度が50μ
m以上200μm以下の膨張黒鉛が分散されてなり、リ
ブと平板が一体成形され、かつリブの高さ(A)と平板
の板厚(B)の比(A/B)が2以上である燃料電池セ
パレータに関する。また、本発明は、0.5mm以上の
リブの高さを有する前記の燃料電池セパレータに関す
る。また、本発明は、1.0mm以上のリブの高さを有
する前記の燃料電池セパレータに関する。また、本発明
は、前記のリブが平板の片面に配置される燃料電池セパ
レータに関する。
DISCLOSURE OF THE INVENTION The present invention comprises a granulated powder obtained by crushing a sheet of expanded graphite preformed in a resin and having an average particle size of 50 μm or more and 200 μm or less. Ri but name are integrally molded, ribs twice
On the ribbed fuel cell separator that having a taper of 20 degrees. Further, in the present invention, the average particle size in the resin is 50 μm.
A fuel in which expansive graphite of m or more and 200 μm or less is dispersed, a rib and a flat plate are integrally formed, and a ratio (A / B) of the height (A) of the rib and the plate thickness (B) of the flat plate is 2 or more. It relates to a battery separator. The present invention also relates to the above fuel cell separator having a rib height of 0.5 mm or more. The present invention also relates to the above fuel cell separator having a rib height of 1.0 mm or more. The present invention also relates to a fuel cell separator in which the rib is arranged on one side of a flat plate.

【0010】また、本発明は、前記のリブが平板の両面
に配置される燃料電池セパレータに関する。また、本発
明は、前記の平板の板厚が0.25mm〜1.0mmで
ある燃料電池セパレータに関する。また、本発明は、平
板部の厚さを0.25mm〜1.0mm、かつ前記のリ
ブの高さ(A)と平板の板厚(B)の比(A/B)が2
以上である燃料電池セパレータに関する た、本発明
は、前記の燃料電池が固体高分子型である燃料電池セパ
レータに関する。
The present invention also relates to a fuel cell separator in which the ribs are arranged on both sides of a flat plate. The present invention also relates to a fuel cell separator in which the plate thickness of the flat plate is 0.25 mm to 1.0 mm. Further, in the present invention, the thickness of the flat plate portion is 0.25 mm to 1.0 mm, and the ratio (A / B) of the rib height (A) to the flat plate thickness (B) is 2
The above is related to the fuel cell separator . Also, the present invention is the fuel cell of a fuel cell separator is a solid polymer type.

【0011】また、本発明は、膨張黒鉛を予備成形した
シートを粉砕した造粒粉であって平均粒度が50μm以
200μm以下のものと熱硬化性樹脂又は熱可塑性樹
脂の混合物を原料とし、これを金型を用いて一体熱圧成
形することを特徴とするリブ付き燃料電池セパレータの
製造法に関する。また、本発明は、前記の燃料電池セパ
レータを有してなる燃料電池に関する。さらに、本発明
は、前記の燃料電池が固体高分子型である燃料電池に関
する。
The present invention also provides a mixture of a granulated powder obtained by pulverizing a sheet of expanded graphite preformed and having an average particle size of 50 μm or more and 200 μm or less and a thermosetting resin or a thermoplastic resin. The present invention relates to a method for manufacturing a fuel cell separator with ribs, which is characterized in that the above is used as a raw material and is integrally thermocompressed using a mold. The present invention also relates to a fuel cell including the above fuel cell separator. Furthermore, the present invention relates to a fuel cell in which the fuel cell is a polymer electrolyte type.

【0012】[0012]

【発明の実施の形態】本発明におけるリブ付き燃料電池
セパレータを図を用いて説明する。図1は平板2の両面
にリブ1を配置する両リブのセパレータの断面図、図2
は平板2の片面にリブ1を配置する片リブのセパレータ
の断面図である。また、図3はセパレータ3と電解質層
8、電極(4及び6)を組み合わせた、燃料電池の部分
断面図で、セパレータ3は正極4を流れる燃料ガス5と
負極6を流れる酸化剤ガス(空気又は酸素)7を分離す
る箇所に組み付けられる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A ribbed fuel cell separator according to the present invention will be described with reference to the drawings. 1 is a cross-sectional view of a separator of both ribs in which the ribs 1 are arranged on both sides of a flat plate 2, FIG.
FIG. 3 is a cross-sectional view of a single rib separator in which the rib 1 is arranged on one surface of the flat plate 2. FIG. 3 is a partial cross-sectional view of a fuel cell in which the separator 3, the electrolyte layer 8 and the electrodes (4 and 6) are combined. The separator 3 includes a fuel gas 5 flowing in the positive electrode 4 and an oxidant gas (air flowing in the negative electrode 6). Or oxygen) 7 is separated.

【0013】本発明におけるセパレータは、樹脂中に膨
張黒鉛を予備成形したシートを粉砕した造粒粉であって
平均粒度が50μm以上200μm以下のもの(以下
「膨張黒鉛粉」という)が分散されたものからなり、そ
の素材は一般に、膨張黒鉛粉と熱硬化性樹脂又は熱可塑
性樹脂を原料とし、これを一体成形、好ましくは一体熱
圧成形して得られる。膨張黒鉛粉を製造するために用い
る膨張黒鉛は、特開昭54−33799号公報等に示さ
れる公知の製法で作製したものなどを使用することがで
きる。例えば、天然黒鉛、キッシュ黒鉛、熱分解黒鉛等
高度に結晶構造が発達した黒鉛を、濃硫酸と硝酸との混
液、濃硫酸と過酸化水素水との混液等の強酸化性の溶液
に浸漬処理して黒鉛層間化合物を生成させ、水洗してか
ら急速加熱して、黒鉛結晶のC軸方向を膨張処理した虫
状形で圧縮特性を有する膨張黒鉛が用いられる。
The separator of the present invention is a granulated powder obtained by crushing a sheet of expanded graphite preformed in a resin and having an average particle size of 50 μm to 200 μm (hereinafter referred to as “expanded graphite powder”). In general, the raw material is obtained by using expanded graphite powder and a thermosetting resin or a thermoplastic resin as raw materials and integrally molding them, preferably by thermocompression molding. The expansive graphite used for producing the expansive graphite powder may be one produced by a known production method disclosed in JP-A-54-33799 or the like. For example, graphite with a highly developed crystal structure such as natural graphite, quiche graphite, and pyrolytic graphite is immersed in a strongly oxidizing solution such as a mixed solution of concentrated sulfuric acid and nitric acid or a mixed solution of concentrated sulfuric acid and hydrogen peroxide solution. Then, expanded graphite having a compressive property is used in which a graphite intercalation compound is generated, washed with water, and then rapidly heated to expand the C axis direction of the graphite crystal, and which has a compression characteristic.

【0014】本発明のセパレータにおいては、膨張した
状態の膨張黒鉛を一定圧力に予備成形したシートを粉砕
した造粒粉が用いられこのような造粒粉を用いること
により樹脂粉末と混合し成形する際膨張黒鉛に含まれる
ガス発生が少なく、更に膨張黒鉛の絡み合いが残り、樹
脂の補強効果が確保しやすくセパレータの強度を向上さ
せることができる。上記造粒粉を、以下、「膨張黒鉛造
粒粉」という。
In the separator of the present invention , the expanded
Granulated powder state expanded graphite was ground preformed sheet a constant pressure is used, the use of such a granulated powder
The gas generating less contained in the expanded graphite when mixed with resin powder molding, further remains entanglement of the expanded graphite, reinforcing effect of the resin is Ru can improve the strength of the separator easy to secure. The above granulated powder is referred to below as "expanded graphite
Granular powder ".

【0015】膨張黒鉛の膨張倍率はセパレータの強度、
シール性を確保する為には、高い方が好ましく、150
倍以上であることがより好ましい。樹脂と混合する膨張
黒鉛造粒粉の平均粒度は50μm〜200μmの範囲と
され、50μm未満では、膨張黒鉛の絡み合いの効果が
少なくなり、セパレータの強度低下が起こる。なお、本
発明において平均粒度は数平均値であり、(株)島津製
作所製、SALD−3000Jなどの粒度分布測定装置
により測定できる。
The expansion ratio of expanded graphite is the strength of the separator,
In order to secure the sealing property, the higher the better, 150
It is more preferable that the number is twice or more. The average particle size of the expanded graphite granulated powder mixed with the resin is in the range of 50 μm to 200 μm. If the average particle size is less than 50 μm, the effect of entanglement of the expanded graphite is reduced and the strength of the separator is reduced. In the present invention, the average particle size is a number average value and can be measured by a particle size distribution measuring device such as SALD-3000J manufactured by Shimadzu Corporation.

【0016】本発明に使用する樹脂は、粉状又は液状の
エポキシ樹脂、フェノール樹脂、メラミン樹脂等の熱硬
化性樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポ
リカーボネート樹脂、フェノキシ樹脂等の耐熱性のある
熱可塑性樹脂が使用される。
The resin used in the present invention is a thermosetting resin such as powdery or liquid epoxy resin, phenol resin, melamine resin, polyamide resin, polyamideimide resin, polycarbonate resin, phenoxy resin or the like having heat resistance. A plastic resin is used.

【0017】使用する樹脂は、耐熱耐食性から、熱硬化
性樹脂が好ましく、特に作業性では熱圧成形時にガス発
生が少ない粉末のフェノール樹脂が好ましい。フェノー
ル樹脂としては、開環重合により重合する樹脂、例え
ば、ジヒドロベンゾオキサジン環を含むフェノール樹脂
がガス発生が特に少ないので好ましい。
The resin to be used is preferably a thermosetting resin in view of heat resistance and corrosion resistance, and particularly in workability, a powdered phenol resin which generates less gas during hot press molding is preferable. As the phenol resin, a resin polymerized by ring-opening polymerization, for example, a phenol resin containing a dihydrobenzoxazine ring is preferable because gas generation is particularly small.

【0018】粉末状の樹脂の場合、その粒度分布は特に
制限ないが、膨張黒鉛造粒粉との乾式で均一に混合する
為には、成形時の樹脂の流れを考慮し、1μm〜100
μmの平均粒度とすることが好ましく、5μm〜50μ
mの平均粒度とすることがより好ましい。
In the case of a powdery resin, its particle size distribution is not particularly limited, but in order to uniformly mix it with the expanded graphite granulated powder in a dry manner, the resin flow at the time of molding is taken into consideration, and 1 μm to 100 μm.
The average particle size is preferably 5 μm to 50 μm
More preferably, the average particle size is m.

【0019】本発明のセパレータのリブ形状はガス供給
量に影響する流路断面積と、垂直方向の導電に影響する
リブと電極の接触面積、電極とガスの接触面積等を考慮
し最適化した値で設定される。以上の検討より、リブの
高さは、0.5mm以上であることが好ましく、1.0
mm以上であることがより好ましく、1.0mm〜3.
0mmであることがさらに好ましい。0.5mm未満で
は、電極とセパレータの寸法が狭く流路抵抗が大きくな
る為、ガスの供給量を安定化にすることが難しくなる傾
向にある。一方3.0mmを超える寸法では電池の寸法
が大型になり好ましくない。
The rib shape of the separator of the present invention is optimized in consideration of the flow passage cross-sectional area that affects the gas supply amount, the contact area between the rib and the electrode that affects the vertical conductivity, and the contact area between the electrode and the gas. Set by value. From the above examination, the height of the rib is preferably 0.5 mm or more and 1.0
More preferably, it is 1.0 mm to 3. mm.
More preferably, it is 0 mm. 0. If it is less than 5 mm, the dimensions of the electrode and the separator are small and the flow path resistance is large, so that it tends to be difficult to stabilize the gas supply amount. On the other hand, if the size exceeds 3.0 mm, the size of the battery becomes large, which is not preferable.

【0020】リブの高さ(A)と平板の板厚(B)の比
(A/B)は2以上であることが好ましく、2〜5であ
ることが電池サイズを小型化し、軽量化する上でより好
ましい。A/Bが2未満では、安定した流量を確保する
為には平板板厚が必要以上に厚くなりすぎ、厚さ方向の
導電性が悪化する傾向にある。一方5を超えると平板板
厚に対してセパレータのリブが高くなりすぎ、セパレー
タの剛性が不足し、電池組み付け時にセパレータが破損
する不具合を起こすことがある。なお、リブの高さ
(A)と平板の板厚(B)の定義は図1及び図2に示さ
れる。
The ratio (A / B) of the rib height (A) to the plate thickness (B) of the flat plate is preferably 2 or more, and when it is 2 to 5, the battery size is reduced and the weight is reduced. More preferable above. If A / B is less than 2, the flat plate thickness becomes excessively thick in order to secure a stable flow rate, and the conductivity in the thickness direction tends to deteriorate. On the other hand, when it exceeds 5, the rib of the separator becomes too high with respect to the thickness of the flat plate, the rigidity of the separator is insufficient, and the separator may be damaged during the battery assembly. The definitions of the rib height (A) and the flat plate thickness (B) are shown in FIGS. 1 and 2.

【0021】本発明のリブは、図1に示す平板の両面に
リブを配置してなる両リブでもよく、図2に示す平板の
片面にリブを配置してなる片リブでもよい。両リブは平
板が一枚で済む為、片リブに比べて電池の小型軽量化が
図れる。
The rib of the present invention may be both ribs having ribs arranged on both sides of the flat plate shown in FIG. 1 or may be one rib having ribs arranged on one side of the flat plate shown in FIG. Since both ribs need only one flat plate, the battery can be made smaller and lighter than a single rib.

【0022】平板の板厚は0.25mm〜1.0mmで
あることが好ましい。0.25mm未満になると、セパ
レータのガスシールレベルが悪化する傾向にある。一
方、1.0mmを超えるとセパレータの軽量化が図れな
いと共に電気比抵抗も増大する傾向にある。
The plate thickness of the flat plate is preferably 0.25 mm to 1.0 mm. If it is less than 0.25 mm, the gas seal level of the separator tends to deteriorate. On the other hand, if it exceeds 1.0 mm, the weight of the separator cannot be reduced and the electrical resistivity tends to increase.

【0023】また、リブには2度〜20度のテーパ
(C)を付けることが必要とされる。Cの角度の定義を
図1に示す。テーパの角度が2度未満では、一体成形し
た製品を金型より分離させることが困難となり、一方、
リブの角度が20度を超えると電極の接触面積、流路の
断面積が縮小する為小型軽量化の上で好ましくない。
Further, the ribs are required you to assign 2 20 degrees of taper (C). The definition of the angle of C is shown in FIG. The angle of the taper is less than 2 degrees, it is difficult to separate from the mold the product which is integrally molded, on the other hand,
When the rib angle exceeds 20 degrees, the contact area of the electrode and the cross-sectional area of the flow channel are reduced, which is not preferable in terms of size and weight reduction.

【0024】本発明のセパレータは、所望のセパレータ
の形状を形成できる金型を用いて、前記膨張黒鉛造粒粉
と樹脂の混合物を充填し、一体成形、好ましくは熱圧成
形する。膨張黒鉛造粒粉と樹脂の混合比率に特に制限は
ないが、成形性及び特性を考慮すると膨張黒鉛造粒粉/
樹脂=95/5〜20/80(重量比)の範囲が好まし
く、特に10/90〜30/70の範囲が好ましい。こ
こで、混合する膨張黒鉛造粒粉の量が、95/5を超え
ると成形性が低下する傾向にあり、マトリックス不足に
より機械的強度が急激に低下する傾向にある。一方、2
0/80未満では、導電性が低下する傾向にある。
The separator of the present invention is filled with the mixture of the expanded graphite granulated powder and the resin using a mold capable of forming a desired separator shape, and is integrally molded, preferably thermocompression molded. There is no particular limitation on the mixing ratio of the expanded graphite granulated powder and the resin, but considering the moldability and characteristics, the expanded graphite granulated powder /
Resin = 95/5 to 20/80 (weight ratio) is preferable, and 10/90 to 30/70 is particularly preferable. Here, if the amount of the expanded graphite granulated powder to be mixed exceeds 95/5, the formability tends to decrease, and the mechanical strength tends to decrease sharply due to insufficient matrix. On the other hand, 2
If it is less than 0/80, the conductivity tends to decrease.

【0025】膨張黒鉛造粒粉と熱硬化性樹脂又は熱可塑
性樹脂との混合方法に制限はない。液状樹脂及び固形樹
脂を溶剤に溶解したものを使用する場合、容器に所定量
の膨張黒鉛粉と樹脂溶液を配合し、撹拌機を用い均一に
撹拌することで得ることができる。ここで、溶剤を含ん
だ樹脂を使用して製造した混合は、通常、減圧乾燥器等
で脱溶剤し粉砕して使用される。また、膨張黒鉛造粒粉
と粉末状の樹脂をドライブレンドする方法(シエイカ
ー,ミキサー等で溶媒無しで混合する方法)を用いるこ
ともできる。コスト,作業性を考慮するとドライブレン
ドする方法が好ましい。
There is no limitation on the mixing method of the expanded graphite granulated powder and the thermosetting resin or the thermoplastic resin. When a liquid resin or a solid resin dissolved in a solvent is used, it can be obtained by mixing a predetermined amount of expanded graphite powder and a resin solution in a container and stirring the mixture uniformly with a stirrer. Here, the mixture produced by using the resin containing the solvent is usually used after being desolvated with a vacuum dryer or the like and pulverized. Also, a method of dry blending the expanded graphite granulated powder and a powdery resin (method of mixing without solvent with a shaker, mixer or the like) can be used. The dry blending method is preferable in consideration of cost and workability.

【0026】燃料電池セパレータの成形条件は、樹脂の
種類に応じて選択することができ、特に制限はないが、
通常、成形温度は、常温〜400℃の温度を用いること
ができ、好ましい温度は、150〜200℃である。
150℃未満の低温では成形物の硬化が不十分で実使用
中に未硬化分が溶出する恐れがある。また、200℃を
超えると急激に硬化する為、均一に硬化させることが難
しく、製品が変形する場合がある。また、好ましい成形
圧力は、20kg/cm 2 〜100kg/cm2である。2
0kg/cm2未満では成形物が低密度となり、ガス通気
性の低下、電気比抵抗増大等電池性能が低下する傾向に
ある。また、100kg/cm2を超えると、成形物が高
密度となり熱圧成形時に製品バリが発生しやすく作業性
が悪化する傾向にある。
The molding conditions of the fuel cell separator can be selected according to the type of resin and are not particularly limited,
Usually, the molding temperature may be from room temperature to 400 ° C, and the preferable temperature is from 150 ° C to 200 ° C.
If the temperature is lower than 150 ° C, the molded product is insufficiently cured, and the uncured component may be eluted during actual use. Further, when the temperature exceeds 200 ° C., it is hardened rapidly, so that it is difficult to harden it uniformly, and the product may be deformed. Also preferred molding pressure is 20 kg / cm 2 ~100kg / cm 2. Two
If it is less than 0 kg / cm 2 , the molded product will have a low density, and the gas performance will tend to deteriorate, such as a decrease in gas permeability and an increase in electrical specific resistance. On the other hand, if it exceeds 100 kg / cm 2 , the molded product has a high density, and product burrs are apt to occur during hot-pressing, which tends to deteriorate workability.

【0027】また樹脂の種類に応じて、硬化の際に発生
する、縮合水等の不要物のガスを抜く工程を設けること
もできる。更に、得られる成形物の硬化を更に進めるた
めに、成形後に熱処理を行ってもよい。
Further, depending on the type of resin, it is also possible to provide a step of removing a gas of an unnecessary substance such as condensed water generated during curing. Further, in order to further cure the obtained molded product, a heat treatment may be performed after the molding.

【0028】本発明のセパレータの用途としては、アル
カリ水溶液型、酸水溶液型、固体高分子型等の燃料電池
が考えられる。燃料電池の電解質としては、アルカリ水
溶液型の場合は水酸化カリウム等が用いられ、酸水溶液
型の場合はリン酸等が用いられ、固体高分子型の場合は
イオン交換膜等が用いられる。電極の基材としては、カ
ーボン繊維等のカーボン材などが挙げられ、必要に応じ
て、白金、パラジウム、銀、ニッケル等の触媒層を表面
に設けたものが用いられる。燃料ガスである水素は、水
の分解物や、天然ガス、石油、石炭、メタノールなどの
原料を必要に応じ水等と反応させて水素リッチな改質ガ
スを取り出し、これを用いることにより供給される。作
動温度、電解質に対する耐食性等の点を考慮すると本発
明のセパレータは、固体高分子型の燃料電池に適用する
ことが最も好ましい。
Possible uses of the separator of the present invention are alkaline aqueous solution type, acid aqueous solution type, solid polymer type fuel cells and the like . As an electrolyte of the fuel cell, in the case of an alkali aqueous solution-type or potassium hydroxide is used, such as phosphoric acid is used in the case of acid solution type, in the case of a solid polymer ion exchange membrane or the like is found using. Examples of the base material of the electrode include a carbon material such as carbon fiber, and if necessary, a material provided with a catalyst layer of platinum, palladium, silver, nickel or the like on the surface is used. Hydrogen, which is a fuel gas, is supplied by reacting raw materials such as water decomposition products and natural gas, petroleum, coal, methanol, etc. with water, etc. as necessary to extract hydrogen-rich reformed gas and using it. It The separator of the present invention is most preferably applied to a solid polymer type fuel cell in consideration of operating temperature, corrosion resistance to an electrolyte and the like.

【0029】[0029]

【実施例】次に本発明の実施例を説明する。 実施例1 板厚1.0mm、密度1.0g/cm3の膨張黒鉛シー
ト(日立化成工業(株)製、商品名 カーボフィットH
GP−105)を粗粉砕機、微粉砕機で粉砕し平均粒径
100μmの膨張黒鉛造粒粉700gを得た。次にレゾ
ール型フェノール樹脂粉末(大日本インキ(株)製、商
品名 TD2040C)300gを加え、小型V型ブレ
ンダで乾式混合し1000gの混合粉を得た。
EXAMPLES Examples of the present invention will be described below. Example 1 Expanded graphite sheet having a plate thickness of 1.0 mm and a density of 1.0 g / cm 3 (manufactured by Hitachi Chemical Co., Ltd., trade name Carbofit H)
GP-105) was crushed with a coarse crusher and a fine crusher to obtain 700 g of expanded graphite granulated powder having an average particle size of 100 μm. Next, 300 g of resol-type phenol resin powder (trade name: TD2040C, manufactured by Dainippon Ink and Chemicals, Inc.) was added, and dry mixed with a small V-type blender to obtain 1000 g of mixed powder.

【0030】リブの高さが2.5mm、平板板厚0.5
mmでリブの凹部が2mm、凸部が2mmの等ピッチの
形状で10度のリブテーパを有する100mm×100
mmセパレータを成形する為、セパレータ形状を転写
した形状の金型を予め180度に加熱し前述の混合粉を
坪量2000g/m2、重量20g計量後金型に均一に
投入した。180度の熱プレスで面圧50kg/c
2、成形時間10分、ガス抜き3回の条件で圧縮成形
して規定のリブ形状を有する密度1.4g/cm3のセ
パレータを得た。
The rib height is 2.5 mm and the flat plate thickness is 0.5.
100 mm x 100 having a rib taper of 10 degrees with a uniform pitch of 2 mm in the concave portion of the rib and 2 mm in the convex portion.
In order to form a separator having a size of mm, a mold having a transferred shape of the separator was heated in advance to 180 degrees, and the above-described mixed powder was weighed at 2000 g / m 2 and weighed 20 g, and then uniformly charged into the mold. Surface pressure 50kg / c with 180 degree hot press
The separator was compressed and molded under the conditions of m 2 , molding time of 10 minutes, and degassing 3 times to obtain a separator having a prescribed rib shape and a density of 1.4 g / cm 3 .

【0031】実施例2 (1)開環重合するフェノール樹脂(ジヒドロベンゾオ
キサジン環を含む樹脂)の製造 フェノール1.9kg、ホルマリン(37%水溶液)
1.0kg及びしゅう酸4gを5リットルのフラスコに
仕込み、環流温度で6時間反応させた。引き続き、内部
を6666.1Pa(50mmHg)以下に減圧して未
反応のフェノール及び水を除去し、フェノールノボラッ
ク樹脂を合成した。得られた樹脂は、軟化点84℃(環
球法)、3核体〜多核体/2核体比92/18(ゲルパ
ーミエーションクロマトグラフィー法によるピーク面積
比)であった。
Example 2 (1) Production of phenol resin (resin containing dihydrobenzoxazine ring) for ring-opening polymerization 1.9 kg of phenol, formalin (37% aqueous solution)
1.0 kg and 4 g of oxalic acid were charged in a 5 liter flask and reacted at reflux temperature for 6 hours. Subsequently, the interior was depressurized to 6666.1 Pa (50 mmHg) or less to remove unreacted phenol and water, and a phenol novolac resin was synthesized. The obtained resin had a softening point of 84 ° C. (ring and ball method) and a trinuclear to polynuclear / dinuclear ratio of 92/18 (peak area ratio by gel permeation chromatography).

【0032】次に合成したフェノールノボラック樹脂
1.7kg(ヒドロキシル基16モルに相当)をアニリ
ン0.93kg(10モルに相当)と混合し、80℃で
5時間攪拌し、均一な混合溶液を調製した。ついで5リ
ットルフラスコ中に、ホルマリン1.62kgを仕込み
90℃に加熱し、さらに前記のノボラック/アニリン混
合溶液を30分かけて少しずつ添加した。添加終了後、
30分間、環流温度に保ち、しかる後に100℃で2時
間6666.1Pa(50mmHg)以下に減圧して縮
合水を除去し、反応し得るヒドロキシル基の71モル%
がジヒドロベンゾオキサジン化されたジヒドロベンゾオ
キサジン環を含む樹脂を得た。
Next, 1.7 kg (corresponding to 16 mol of hydroxyl groups) of the synthesized phenol novolac resin was mixed with 0.93 kg (corresponding to 10 mol) of aniline and stirred at 80 ° C. for 5 hours to prepare a uniform mixed solution. did. Then, 1.62 kg of formalin was charged into a 5 liter flask and heated to 90 ° C., and the above novolak / aniline mixed solution was added little by little over 30 minutes. After the addition is complete
After maintaining the reflux temperature for 30 minutes, and then reducing the pressure to 6666.1 Pa (50 mmHg) or less at 100 ° C. for 2 hours to remove condensed water, 71 mol% of a hydroxyl group capable of reacting
A resin containing a dihydrobenzoxazine-modified dihydrobenzoxazine ring was obtained.

【0033】(2)セパレータの製造 板厚1.0mm、密度1.0g/cm3の膨張黒鉛シー
ト(日立化成工業(株)製、商品名 カーボフィットH
GP−105)を粗粉砕機、微粉砕機で粉砕し平均粒径
100μmの造粒粉700gを得た。次に前記の方法で
製造したフェノール樹脂粉末300gを加え小型V型ブ
レンダで乾式混合し1000gの混合粉を得た。
(2) Production of separator Expanded graphite sheet having a plate thickness of 1.0 mm and a density of 1.0 g / cm 3 (trade name: Carbofit H, manufactured by Hitachi Chemical Co., Ltd.)
GP-105) was crushed with a coarse crusher and a fine crusher to obtain 700 g of granulated powder having an average particle size of 100 μm. Next, 300 g of the phenol resin powder produced by the above method was added and dry mixed with a small V-type blender to obtain 1000 g of mixed powder.

【0034】リブの高さが2.5mm、平板板厚0.5
mmでリブの凹部が2mm、凸部が2mmの等ピッチの
形状で10度のリブテーパを有する100mm×100
mmセパレータを成形する為、セパレータ形状を転写し
た形状の金型を予め180度に加熱し前述の混合粉を坪
量2000g/m2、重量20g計量後金型に均一に投
入した。180度の熱プレスで面圧50kg/cm2
成形時間10分、ガス抜き1回の条件で圧縮成形して規
定のリブ形状を有する密度1.4g/cm3のセパレー
タを得た。
The rib height is 2.5 mm and the flat plate thickness is 0.5.
100 mm x 100 having a rib taper of 10 degrees with a uniform pitch of 2 mm in the concave portion of the rib and 2 mm in the convex portion.
In order to form a mm separator, a mold having a transferred separator shape was heated to 180 degrees in advance, and the above-mentioned mixed powder was weighed at 2000 g / m 2 and weighed 20 g, and then uniformly charged into the mold. Surface pressure 50kg / cm 2 with 180 degree hot press,
A separator having a prescribed rib shape and a density of 1.4 g / cm 3 was obtained by compression molding under the conditions of molding time of 10 minutes and degassing once.

【0035】実施例3 実施例2(2)で得た混合粉を用いて、リブの高さが
0.5mm、平板板厚0.25mmでリブの凹部が0.
4mm、凸部が0.4mmの等ピッチの形状で89.9
度のリブテーパを有する100mm×100mmのセパ
レータを成形する為、セパレータ形状を転写した形状の
金型を予め180度に加熱し前述の混合粉を坪量200
0g/m2、重量4.43g計量後金型に均一に投入し
た。180度の熱プレスで面圧50kg/cm2、成形
時間10分、ガス抜き1回の条件で圧縮成形して規定の
リブ形状を有する密度1.4g/cm3のセパレータを
得た。
Example 3 Using the mixed powder obtained in Example 2 (2), the rib height was 0.5 mm, the flat plate thickness was 0.25 mm, and the rib depressions were 0.
8 mm with a uniform pitch of 4 mm and protrusions of 0.4 mm
In order to form a 100 mm × 100 mm separator having a rib taper of 100 degrees, a mold having a transferred shape of the separator is heated to 180 degrees in advance, and the mixed powder described above has a basis weight of 200.
After weighing 0 g / m 2 and weighing 4.43 g, the mixture was uniformly charged into the mold. A 180 ° hot press was used to perform compression molding under the conditions of a surface pressure of 50 kg / cm 2 , molding time of 10 minutes and degassing once to obtain a separator having a prescribed rib shape and a density of 1.4 g / cm 3 .

【0036】比較例1 嵩密度0.002g/cm3の膨張黒鉛粉(日立化成工
業(株)製、商品名カーボフィットHGP−1)を14
g計量し実施例1で用いた成形金型に均一に投入し常温
の温度条件で面圧50kg/cm2、ガス抜き3回の成
形条件で加圧成形して、密度1.0g/cm3の膨張黒
鉛単体のセパレータを得た。
Comparative Example 1 14 expanded graphite powder having a bulk density of 0.002 g / cm 3 (trade name: Carbofit HGP-1 manufactured by Hitachi Chemical Co., Ltd.) was used.
g, uniformly charged into the molding die used in Example 1, surface pressure of 50 kg / cm 2 under normal temperature conditions, pressure molding under three degassing conditions, and density of 1.0 g / cm 3. A separator of expanded graphite alone was obtained.

【0037】比較例2 比較例1で得られたセパレータにメラミン変成フェノー
ル樹脂(日立化成工業(株)製、商品名 PR−406
0)中に12時間浸漬し、成形体の表面の樹脂をトルエ
ンで洗浄後、25〜160℃まで昇温し、加熱硬化し樹
脂含浸率30重量%、密度1.3g/cm3のセパレー
タを得た。
Comparative Example 2 Melamine-modified phenolic resin (trade name: PR-406, manufactured by Hitachi Chemical Co., Ltd.) was added to the separator obtained in Comparative Example 1.
0) for 12 hours to wash the resin on the surface of the molded body with toluene, then raise the temperature to 25 to 160 ° C. and heat cure to obtain a separator having a resin impregnation rate of 30% by weight and a density of 1.3 g / cm 3 . Obtained.

【0038】次に、上記各実施例及び各比較例で得られ
たセパレータについて、電気比抵抗、ガス通気率、液膨
性を確認した。なお、電気比抵抗は、実機のセパレー
タとは別にセパレータと同一密度で50mm×50mm
板厚12mmのサンプルを圧縮成形し板厚方向の電気比
抵抗を電圧降下法で測定したものである。ガス通気率は
セパレータの周囲をシリコン系のゴムでシールし、片側
に1kg/cm2の空気圧をかけ、水中置換法により空
気の漏洩量Qを測定、次式により算出したものである。
Next, the electrical resistivity, gas permeability and liquid swelling property of the separators obtained in each of the above Examples and Comparative Examples were confirmed. The electrical resistivity is 50 mm x 50 mm at the same density as the separator, apart from the actual separator.
A sample having a plate thickness of 12 mm was compression-molded and the electrical resistivity in the plate thickness direction was measured by the voltage drop method. The gas aeration rate is calculated by the following formula by sealing the periphery of the separator with silicone rubber, applying an air pressure of 1 kg / cm 2 on one side, measuring the amount of air leakage Q by the submersion method.

【0039】[0039]

【数1】通気率=Q/T×D/S 上式においてTは加圧時間(秒)、Dは試験片の板厚
(mm)、Sは受圧面積(cm2)である。液膨潤性
は、セパレータを90℃の温水に24時間浸漬し板厚変
化率を測定したものである。セパレータの外観、物性確
認結果を表1に示す。
## EQU1 ## Air permeability = Q / T × D / S In the above formula, T is the pressing time (seconds), D is the plate thickness (mm) of the test piece, and S is the pressure receiving area (cm 2 ). The liquid swelling property is obtained by immersing the separator in warm water at 90 ° C. for 24 hours and measuring the plate thickness change rate. Table 1 shows the appearance and results of the physical property confirmation of the separator.

【0040】[0040]

【表1】 [Table 1]

【0041】以上の実施例及び比較例から明らかなよう
に、本発明のリブ付き燃料電池セパレータは小型軽量化
が必要な燃料電池において、リブの高さが0.5mm以
上、好ましくは1.0mm以上で平板の板厚を0.25
〜1.0mm、リブの高さ(A)平板の厚み(B)との
比を2〜5の範囲の理想的な形状が、膨張黒鉛造粒粉と
熱硬化性及び熱可塑性樹脂を混合し一体熱圧成形するこ
とで確保できる。また、得られたセパレータは電気伝導
性、ガス通気性、液膨潤特性に優れ、長期間セパレータ
に使用した場合も安定した特性が確保できる。
As is clear from the above Examples and Comparative Examples, the ribbed fuel cell separator of the present invention has a rib height of 0.5 mm or more, preferably 1.0 mm, in a fuel cell that needs to be compact and lightweight. With the above, the plate thickness of the flat plate is 0.25
An ideal shape in which the ratio of the rib height (A) to the thickness (B) of the flat plate is from 2 to 5 is mixed with expanded graphite granulated powder and thermosetting and thermoplastic resins. It can be secured by integral thermocompression molding. Further, the obtained separator is excellent in electrical conductivity, gas permeability and liquid swelling property, and stable properties can be secured even when used as a separator for a long period of time.

【0042】[0042]

【発明の効果】請求項1〜8に記載されるリブ付きセパ
レータは、ガスの不浸透性、電気伝導性、液膨潤性に優
れ、更にリブの高さが高い形状においても平板部の板厚
を薄く形成することができ、この場合軽量化が可能で、
電池の熱圧成形作業が容易なものである
The ribbed separator described in claims 1 to 8 is excellent in gas impermeability, electrical conductivity, and liquid swelling property, and the plate thickness of the flat plate portion is high even when the rib height is high. Can be made thin, in this case it is possible to reduce the weight ,
It is easy to perform thermocompression molding of batteries .

【0043】請求項に記載されるリブ付きセパレータ
は、上記効果に加えて、セパレータを長期間使用しても
安定した電池特性が確保できる。請求項10に記載され
るリブ付きセパレータの製造法によれば、ガスの不浸透
性、電気伝導性、液膨潤性を確保し、更にリブの高さが
高い形状においても平板部の板厚を薄く形成でき、軽量
化が可能なセパレータを製造できる。請求項11に記載
される燃料電池は、ガスの不浸透性、電気伝導性、液膨
潤性に優れ、更にリブの高さが高い形状においても平板
部の板厚が薄く、軽量化されたリブ付きセパレータを有
するため、高性能である。請求項12に記載される燃料
電池は、上記効果に加えて、セパレータを長期間使用し
ても安定した電池特性が確保できる。
In addition to the above effects, the ribbed separator according to the ninth aspect can secure stable battery characteristics even when the separator is used for a long period of time. According to the preparation of ribbed separators described in claim 10, impermeable gas, electrical conductivity, to ensure Eki膨 Junsei, plate thickness of the flat portion even in yet higher height of the rib-shaped It is possible to manufacture a separator that can be formed thin and can be made lightweight. The fuel cell according to claim 11 is excellent in gas impermeability, electrical conductivity, and liquid swelling property, and further, even in a shape in which the rib height is high, the flat plate portion is thin, Since it has a ribbed separator that is light in weight, it has high performance. In addition to the above effects, the fuel cell according to the twelfth aspect can ensure stable cell characteristics even when the separator is used for a long period of time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の両リブセパレータの一例を示す断面図
である。
FIG. 1 is a cross-sectional view showing an example of both rib separators of the present invention.

【図2】本発明の片リブセパレータの一例を示す断面図
である。
FIG. 2 is a cross-sectional view showing an example of the single-rib separator of the present invention.

【図3】両リブセパレータを使った燃料電池の一部断面
図である。
FIG. 3 is a partial cross-sectional view of a fuel cell using both rib separators.

【符号の説明】[Explanation of symbols]

1 リブ 2 平板 3 両リブ付きセパレータ 4 正極 5 燃料ガス通路 6 負極 7 酸化剤ガス通路 8 電解質層 1 rib 2 flat plates 3 Double rib separator 4 positive electrode 5 Fuel gas passage 6 Negative electrode 7 Oxidant gas passage 8 Electrolyte layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 蓮田 春文 茨城県日立市鮎川町三丁目3番1号 日 立化成工業株式会社 山崎工場内 (56)参考文献 特開 平6−84526(JP,A) 特開 平10−40937(JP,A) 特開 平8−96798(JP,A) 特開2000−223133(JP,A) 特開 平11−354136(JP,A) 特開 平11−354135(JP,A) 国際公開97/002612(WO,A1) (58)調査した分野(Int.Cl.7,DB名) H01M 8/02,8/10 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Harufumi Hasuda 3-3-1, Ayukawa-cho, Hitachi-shi, Ibaraki Yamashita factory, Hitachi Ritsuka Kogyo Co., Ltd. (56) Reference JP-A-6-84526 (JP, 6-84526) A) JP 10-40937 (JP, A) JP 8-96798 (JP, A) JP 2000-223133 (JP, A) JP 11-354136 (JP, A) JP 11- 354135 (JP, A) International Publication 97/002612 (WO, A1) (58) Fields investigated (Int.Cl. 7 , DB name) H01M 8 / 02,8 / 10

Claims (12)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 樹脂中に膨張黒鉛を予備成形したシート
を粉砕した造粒粉であって平均粒度が50μm以上20
μm以下のものが分散されてなり、リブと平板が一体
成形されてなり、リブが2度〜20度のテーパを有す
リブ付き燃料電池セパレータ。
1. A granulated powder obtained by crushing a sheet obtained by pre-expanding expanded graphite in a resin, having an average particle size of 50 μm or more 20.
0 [mu] m will be distributed following ones, the ribs and the flat plate Ri is Na are integrally molded, ribbed fuel cell separator that ribs have a taper of 2 degrees to 20 degrees.
【請求項2】 樹脂中に平均粒度が50μm以上200
μm以下の膨張黒鉛が分散されてなり、リブと平板が一
体成形され、かつリブの高さ(A)と平板の板厚(B)
の比(A/B)が2以上である請求項1記載の燃料電池
セパレータ。
2. The resin has an average particle size of 50 μm or more and 200 or more.
Expanded graphite of less than μm is dispersed, rib and flat plate are integrally formed, and rib height (A) and flat plate thickness (B)
The fuel cell separator according to claim 1, wherein the ratio (A / B) is 2 or more.
【請求項3】 0.5mm以上のリブの高さを有する請
求項1又は2記載の燃料電池セパレータ。
3. The fuel cell separator according to claim 1, which has a rib height of 0.5 mm or more.
【請求項4】 1.0mm以上のリブの高さを有する請
求項1、又は2記載の燃料電池セパレータ。
4. The fuel cell separator according to claim 1, which has a rib height of 1.0 mm or more.
【請求項5】 リブが平板の片面に配置される請求項
1、2、3又は4記載の燃料電池セパレータ。
5. The fuel cell separator according to claim 1, wherein the rib is arranged on one side of the flat plate.
【請求項6】 リブが平板の両面に配置される請求項
1、2、3又は4記載の燃料電池セパレータ。
6. The fuel cell separator according to claim 1, wherein the ribs are arranged on both sides of the flat plate.
【請求項7】 平板の板厚が0.25mm〜1.0mm
である請求項1〜6のいずれかに記載の燃料電池セパレ
ータ。
7. The plate thickness of the flat plate is 0.25 mm to 1.0 mm.
The fuel cell separator according to any one of claims 1 to 6.
【請求項8】 平板部の厚さを0.25mm〜1.0m
m、かつリブの高さ(A)と平板の板厚(B)の比(A
/B)が2以上である請求項1〜7記載の燃料電池セパ
レータ。
8. The thickness of the flat plate portion is 0.25 mm to 1.0 m
m, and the ratio of rib height (A) to plate thickness (B) (A
/ B) is 2 or more, The fuel cell separator according to claim 1.
【請求項9】 燃料電池が固体高分子型である請求項1
のいずれかに記載の燃料電池セパレータ。
9. The fuel cell is a polymer electrolyte type.
The fuel cell separator according to any one of claims 8 to 10 .
【請求項10】 膨張黒鉛を予備成形したシートを粉砕
した造粒粉であって平均粒度が50μm以上200μm
以下のものと熱硬化性樹脂又は熱可塑性樹脂の混合物を
原料とし、これを金型を用いて一体熱圧成形し、リブが
2度〜20度のテーパを有するものとすることを特徴と
するリブ付き燃料電池セパレータの製造法。
10. A granulated powder obtained by crushing a sheet of expanded graphite preformed, having an average particle size of 50 μm to 200 μm.
A mixture of the following and a thermosetting resin or a thermoplastic resin is used as a raw material, and this is integrally thermocompressed using a mold, and the rib is
A method for producing a ribbed fuel cell separator, characterized in that it has a taper of 2 to 20 degrees .
【請求項11】 請求項1〜のいずれかに記載される
か又は請求項10の製造法により得られる燃料電池セパ
レータを有してなる燃料電池。
11. A fuel cell comprising the fuel cell separator according to any one of claims 1 to 9 or obtained by the manufacturing method according to claim 10 .
【請求項12】 燃料電池が固体高分子型である請求項
11記載の燃料電池。
12. The fuel cell is a polymer electrolyte type.
11. The fuel cell according to item 11 .
JP07879599A 1998-04-07 1999-03-24 Fuel cell separator with ribs, method for producing the same, and fuel cell Expired - Fee Related JP3437936B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07879599A JP3437936B2 (en) 1998-04-07 1999-03-24 Fuel cell separator with ribs, method for producing the same, and fuel cell

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-94443 1998-04-07
JP9444398 1998-04-07
JP07879599A JP3437936B2 (en) 1998-04-07 1999-03-24 Fuel cell separator with ribs, method for producing the same, and fuel cell

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2002033899A Division JP2002237313A (en) 1998-04-07 2002-02-12 Fuel cell separator with rib and fuel cell

Publications (2)

Publication Number Publication Date
JPH11354138A JPH11354138A (en) 1999-12-24
JP3437936B2 true JP3437936B2 (en) 2003-08-18

Family

ID=26419859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07879599A Expired - Fee Related JP3437936B2 (en) 1998-04-07 1999-03-24 Fuel cell separator with ribs, method for producing the same, and fuel cell

Country Status (1)

Country Link
JP (1) JP3437936B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3413368B2 (en) * 1998-06-18 2003-06-03 日立化成工業株式会社 Fuel cell, fuel cell separator and method of manufacturing the same
DE60139114D1 (en) * 2000-03-07 2009-08-13 Panasonic Corp POLYMER ELECTROLY FUEL CELL AND METHOD OF MANUFACTURING THEREOF
JP4743356B2 (en) * 2000-05-15 2011-08-10 日清紡ホールディングス株式会社 Manufacturing method of fuel cell separator, fuel cell separator, and polymer electrolyte fuel cell
JP2002056854A (en) * 2000-08-09 2002-02-22 Hitachi Chem Co Ltd Separator for fuel cell, and fuel cell using the same
JP2002208410A (en) * 2001-01-12 2002-07-26 Hitachi Chem Co Ltd Fuel cell separator and fuel cell using fuel cell separator
JP4995063B2 (en) * 2001-03-26 2012-08-08 パナソニック株式会社 Polymer electrolyte fuel cell
US7014940B2 (en) 2001-03-26 2006-03-21 Matsushita Electric Industrial Co., Ltd. High-polymer electrolyte fuel cell
JP4652614B2 (en) * 2001-06-14 2011-03-16 本田技研工業株式会社 Manufacturing method of fuel cell separator
JP4652623B2 (en) * 2001-07-06 2011-03-16 本田技研工業株式会社 Degassing method for fuel cell separator
JP2003077487A (en) * 2001-09-05 2003-03-14 Hitachi Chem Co Ltd Fuel cell separator and fuel cell having the same
JP2007026828A (en) 2005-07-14 2007-02-01 Aisin Seiki Co Ltd Fuel cell separator and its manufacturing method
JP4918984B2 (en) * 2005-11-15 2012-04-18 日清紡ホールディングス株式会社 Conductive resin composition for porous fuel cell separator and method for producing the same
AT11799U1 (en) * 2009-12-15 2011-05-15 Plansee Se MOLDING

Also Published As

Publication number Publication date
JPH11354138A (en) 1999-12-24

Similar Documents

Publication Publication Date Title
JP4000651B2 (en) Manufacturing method of fuel cell separator
JP3463806B2 (en) Fuel cell separator and method of manufacturing the same
JP3437936B2 (en) Fuel cell separator with ribs, method for producing the same, and fuel cell
US20040062974A1 (en) Separator plate for PEM fuel cell
WO1999005737A1 (en) Separator for fuel cells
KR20120039553A (en) Method for producing a fuel cell separator
JP3437937B2 (en) Fuel cell, fuel cell separator and method of manufacturing the same
KR100649516B1 (en) Fuel Cell-Use Separator
JP3455466B2 (en) Fuel cell and fuel cell separator
WO2007034628A1 (en) Separator material for fuel battery and process for producing the same
JP3413368B2 (en) Fuel cell, fuel cell separator and method of manufacturing the same
WO2012043319A1 (en) Composition for forming fuel cell separator, fuel cell separator, method for producing fuel cell separator, and fuel cell
JP3470964B2 (en) Fuel cell separator and method of manufacturing the same
JP2003197215A (en) Separator for fuel cell and fuel cell using separator for fuel cell
JP3372220B2 (en) Fuel cell, fuel cell separator and method of manufacturing the same
JP3437935B2 (en) Manufacturing method of fuel cell separator
JP2000243410A (en) Separator for fuel cell and its manufacture and fuel cell using the separator
JP3808478B2 (en) Molding material for fuel cell separator
JP2002237313A (en) Fuel cell separator with rib and fuel cell
JP2009158118A (en) Separator material for solid polymer fuel battery and manufacturing method for the separator material
JP3448771B2 (en) Fuel cell separator and method of manufacturing the same
JP5845458B2 (en) Manufacturing method of fuel cell separator
JP5520104B2 (en) Manufacturing method of fuel cell separator
JP4702118B2 (en) Manufacturing method of fuel cell separator
JP2002367623A (en) Fuel cell separator and fuel cell using the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080606

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090606

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100606

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100606

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees