JP3808478B2 - Molding material for fuel cell separator - Google Patents

Molding material for fuel cell separator Download PDF

Info

Publication number
JP3808478B2
JP3808478B2 JP2004134013A JP2004134013A JP3808478B2 JP 3808478 B2 JP3808478 B2 JP 3808478B2 JP 2004134013 A JP2004134013 A JP 2004134013A JP 2004134013 A JP2004134013 A JP 2004134013A JP 3808478 B2 JP3808478 B2 JP 3808478B2
Authority
JP
Japan
Prior art keywords
weight
parts
molding material
fuel cell
epoxy resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004134013A
Other languages
Japanese (ja)
Other versions
JP2004352986A (en
Inventor
ドゥー ホァン ジュン
ドン ヒュン ペック
ドン リュル シン
スー ダック ホァン
ジョン スー パーク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Korea Institute of Energy Research KIER
Original Assignee
Korea Institute of Energy Research KIER
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Korea Institute of Energy Research KIER filed Critical Korea Institute of Energy Research KIER
Publication of JP2004352986A publication Critical patent/JP2004352986A/en
Application granted granted Critical
Publication of JP3808478B2 publication Critical patent/JP3808478B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、燃料電池のセパレータ用成形材料に関する。より具体的には、例えば、高分子電解質型燃料電池やダイレクトメタノール型燃料電池などに用いることができ、かつ、伝導性炭素材料、エポキシ樹脂及び硬化剤などを含むセパレータ(separator)に関する。   The present invention relates to a molding material for a separator of a fuel cell. More specifically, the present invention relates to a separator that can be used in, for example, a polymer electrolyte fuel cell, a direct methanol fuel cell, and the like and includes a conductive carbon material, an epoxy resin, a curing agent, and the like.

燃料電池は、アノードには水素含有燃料ガスを、カソードには酸素含有酸化性ガスをそれぞれ供給して水素と酸素との電気化学反応によって電気エネルギーを得る装置である。燃料電池は、NOxガスや煤煙などを排出せず、騒音や振動なども少ない親環境的な装置であるため、次世代エネルギー源として多くの研究が行われている。特に、排気ガスを放出しない特性から、自動車などの移動体の駆動エネルギー源として使用するための開発が行われており、その実用化を目前に控えている。   A fuel cell is a device that obtains electrical energy by an electrochemical reaction between hydrogen and oxygen by supplying a hydrogen-containing fuel gas to an anode and an oxygen-containing oxidizing gas to a cathode. A fuel cell is an environmentally friendly device that does not emit NOx gas, smoke, etc., and has little noise and vibration. Therefore, much research has been conducted as a next-generation energy source. In particular, since it does not emit exhaust gas, it has been developed for use as a driving energy source for a moving body such as an automobile, and its practical use is about to be put forward.

このような燃料電池は、使用される電解質の種類によってアルカリ型、燐酸型、溶融炭酸塩型、固体酸化物型及び高分子電解質型燃料電池に分類することができる。特に、移動体の駆動エネルギー源としては、高分子電解質型燃料電池(PEMFC:Polymer Electrolyte Membrane Fuel Cell、単にPEFCともいう)やダイレクトメタノール型燃料電池(DMFC:Direct Methanol Fuel Cell)が最適であると考えられている。   Such fuel cells can be classified into alkaline type, phosphoric acid type, molten carbonate type, solid oxide type and polymer electrolyte type fuel cells according to the type of electrolyte used. In particular, a polymer electrolyte fuel cell (PEMFC) or direct methanol fuel cell (DMFC) is optimal as a driving energy source for a moving body. It is considered.

高分子電解質型燃料電池は高分子を電解質として用いているため、電解質による腐食や電解質の蒸発のおそれがない。また、単位面積当たりの電流密度を大きくすることができるため、他の燃料電池に比べて出力特性に優れている。その他、作動温度が相対的に低いなどの利点を有している。   Since the polymer electrolyte fuel cell uses a polymer as an electrolyte, there is no risk of corrosion due to the electrolyte or evaporation of the electrolyte. In addition, since the current density per unit area can be increased, the output characteristics are superior to those of other fuel cells. In addition, there are advantages such as a relatively low operating temperature.

高分子電解質型燃料電池について具体例を説明する。高分子電解質型燃料電池の単位電池は、例えば、高分子電解質(例えば、デュポン社製ナフィオン(R))溶液の乾燥層を中心として、その両面にナフィオンシートと、電極として白金/炭素触媒層と、テフロン(R)(ポリテトラフルオロエチレン)処理したカーボンクロスと、セパレータと、金属からなるエンドプレートとが一連の順序で積層された構造を有している。   A specific example of the polymer electrolyte fuel cell will be described. A unit cell of a polymer electrolyte fuel cell includes, for example, a dry layer of a polymer electrolyte (for example, Nafion (R) solution manufactured by DuPont), a Nafion sheet on both sides, and a platinum / carbon catalyst layer as an electrode. , A carbon cloth treated with Teflon (R) (polytetrafluoroethylene), a separator, and an end plate made of metal are laminated in a series of order.

ここで、一方のセパレータのガス流路チャネルを介して供給される燃料ガスとしての水素ガスは、アノードの白金/炭素触媒と反応しながら電子を奪われて水素イオンになる。発生した水素イオンは高分子電解質膜であるナフィオンシートおよびナフィオン溶液乾燥層を通過して反対側のカソードに移動する。一方で、他方のセパレータのガス流路チャネルを介して供給される酸素ガスは、外部回路を介してカソードに移動してきた電子によって還元され、酸素イオンとなる。ここで、高分子電解質膜を透過してカソードに移動してきた前記水素イオンと反応してカソードの表面に水が生成される。生成した水は、未反応の酸素ガスと共にガス流路チャネルの出口に排出される。   Here, the hydrogen gas as the fuel gas supplied through the gas flow channel of one separator is deprived of electrons while reacting with the platinum / carbon catalyst of the anode and becomes hydrogen ions. The generated hydrogen ions pass through the Nafion sheet and the Nafion solution dry layer, which are polymer electrolyte membranes, and move to the cathode on the opposite side. On the other hand, the oxygen gas supplied via the gas flow channel of the other separator is reduced by the electrons that have moved to the cathode via the external circuit and become oxygen ions. Here, water reacts with the hydrogen ions that have passed through the polymer electrolyte membrane and moved to the cathode, and water is generated on the surface of the cathode. The generated water is discharged together with unreacted oxygen gas to the outlet of the gas flow channel.

このとき、アノードにおける触媒反応で発生した電子が外部回路に沿って流れることによって、電力を得ることができる。   At this time, electric power can be obtained by the electrons generated by the catalytic reaction at the anode flowing along the external circuit.

従って、高分子電解質型燃料電池のセパレータは、水素ガスおよび酸素ガスを完全に分離した状態で電極に供給するために、非常に高いガス不透過性が要求される。また、電極反応で生じた熱を効率よく除去するために熱伝導性が高くなければならない。さらに、電極反応によって生じた電気エネルギーを集電体であるエンドプレートへ損失を最小限にして伝達するために、電気伝導性が高いことも必要である。また、移動体用の燃料電池として用いられる場合、移動中に必然的に発生する各種振動に耐えられる程度の耐久性(例えば、剛性)を有していなければならない。   Therefore, the separator of the polymer electrolyte fuel cell is required to have a very high gas impermeability in order to supply hydrogen gas and oxygen gas to the electrode in a completely separated state. Moreover, in order to efficiently remove the heat generated by the electrode reaction, the thermal conductivity must be high. Furthermore, in order to transmit the electric energy generated by the electrode reaction to the end plate, which is a current collector, with a minimum loss, it is also necessary to have high electrical conductivity. Further, when used as a fuel cell for a moving body, it must have durability (for example, rigidity) enough to withstand various vibrations that inevitably occur during movement.

このようなセパレータを製作するための材料と方法として、黒鉛粉末70wt%〜85wt%に、熱硬化性樹脂10wt%〜25wt%と、平均粒径が前記黒鉛粉末の1/20以下の球状シリカ1wt%〜3wt%などとを均一に混合し、厚さ0.5mm〜5.0mmに成形する技術が特許文献1に開示されている。しかしながら実際には、黒鉛、球状シリカ、微粉砕した熱硬化性樹脂、離型剤などの各粉末材料が有する帯電分布度が互いに異なり、かつ、ばらつきを有しているために、上記各材料を均一に混合することが困難である。このため、成形されたセパレータの特性は、全体にわたって一定ではなく、部分によって変化する可能性がある。   As a material and method for manufacturing such a separator, 1 wt% of spherical silica having an average particle size of 1/20 or less of the graphite powder and 70 wt% to 85 wt% of the graphite powder, 10 wt% to 25 wt% of the thermosetting resin. Patent Document 1 discloses a technique for uniformly mixing with 3% to 3% by weight or the like and forming the film to a thickness of 0.5 mm to 5.0 mm. In practice, however, the charge distributions of the powder materials such as graphite, spherical silica, finely pulverized thermosetting resin, and release agent are different from each other and have variations. It is difficult to mix uniformly. For this reason, the characteristics of the molded separator are not constant throughout and may vary from part to part.

即ち、高分子電解質型燃料電池やダイレクトメタノール型燃料電池に用いるセパレータの成形材料として、導電性炭素材料に、熱硬化性樹脂あるいは熱可塑性樹脂、硬化剤、各種フィラーあるいは繊維状物質を混合した材料が幅広く提案されているが、各粉末材料の帯電分布度が互いに異なるという課題を解決することが求められている。   That is, as a molding material for a separator used in a polymer electrolyte fuel cell or a direct methanol fuel cell, a material obtained by mixing a conductive carbon material with a thermosetting resin or thermoplastic resin, a curing agent, various fillers, or a fibrous substance. However, it is required to solve the problem that the charge distributions of the powder materials are different from each other.

また、特許文献2には、熱硬化性樹脂として、浸透処理を施した黒鉛材料が開示されているが、黒鉛化及び樹脂含浸処理によって成形加工比が増加するという問題点がある。
特開2001−335695号公報 特開平8−222241号公報
Further, Patent Document 2 discloses a graphite material that has been subjected to a permeation treatment as a thermosetting resin. However, there is a problem in that the molding ratio increases due to graphitization and resin impregnation treatment.
JP 2001-335695 A JP-A-8-222241

本発明は、上述したような、従来のセパレータ用成形材料の諸般問題点を解決するために創案されたものである。本発明は、導電性炭素材料、エポキシ樹脂、硬化剤などを適切な粒径に粉砕して帯電制御剤と混合することによって、各粉末の均一な混合を可能にし、混合粉末の成形性を向上させ、最終成形後に適切な導電性と機械的強度が実現可能である燃料電池セパレータ用成形材料を提供することを目的とする。   The present invention has been devised to solve the various problems of the conventional molding materials for separators as described above. The present invention makes it possible to uniformly mix each powder by crushing a conductive carbon material, epoxy resin, curing agent, etc. to an appropriate particle size and mixing with a charge control agent, thereby improving the moldability of the mixed powder. It is an object of the present invention to provide a molding material for a fuel cell separator capable of realizing appropriate electrical conductivity and mechanical strength after final molding.

本発明のセパレータ用成形材料は、導電性炭素材料65重量部〜100重量部と、エポキシ樹脂5重量部〜35重量部と、前記エポキシ樹脂100重量部に対する硬化剤5重量部〜70重量部と、前記炭素材料、前記エポキシ樹脂及び前記硬化剤の混合量100重量部に対する帯電制御剤0.1重量部〜5重量部とを含んでいる。   The separator molding material of the present invention includes conductive carbon material 65 parts by weight to 100 parts by weight, epoxy resin 5 parts by weight to 35 parts by weight, and curing agent 5 parts by weight to 70 parts by weight with respect to 100 parts by weight of the epoxy resin. , 0.1 to 5 parts by weight of a charge control agent with respect to 100 parts by weight of the mixture of the carbon material, the epoxy resin and the curing agent.

本発明によれば、帯電制御剤を含有することによって、導電性炭素材料、エポキシ樹脂、硬化剤などの各粉末が非常に均一に分散・混合できるため、安息角が小さく、成形性に優れ、最終成形後に適切な導電性と機械的強度が実現可能である燃料電池セパレータ用成形材料を提供することができる。   According to the present invention, by containing a charge control agent, each powder of conductive carbon material, epoxy resin, curing agent and the like can be dispersed and mixed very uniformly, so the angle of repose is small, and the moldability is excellent. It is possible to provide a molding material for a fuel cell separator that can achieve appropriate electrical conductivity and mechanical strength after final molding.

本発明の燃料電池セパレータ用成形材料(以下、単に「成形材料」ともいう)は、導電性炭素材料65重量部〜100重量部と、エポキシ樹脂5重量部〜35重量部と、エポキシ樹脂100重量部に対して硬化剤5重量部〜70重量部と、前記炭素材料、エポキシ樹脂及び硬化剤の混合量100重量部に対する帯電制御剤0.1重量部〜5重量部とを含んでいる。ここで、上述の各材料は粉末状態で混合されている。なお、導電性炭素材料とエポキシ樹脂との混合比率は、重量(質量)比にして、導電性炭素材料:エポキシ樹脂=65:35〜100:5の範囲にあるともいえる。   The molding material for a fuel cell separator of the present invention (hereinafter also simply referred to as “molding material”) includes 65 to 100 parts by weight of conductive carbon material, 5 to 35 parts by weight of epoxy resin, and 100 parts by weight of epoxy resin. 5 parts by weight to 70 parts by weight of the curing agent and 0.1 part by weight to 5 parts by weight of the charge control agent for 100 parts by weight of the carbon material, the epoxy resin, and the curing agent. Here, the above-mentioned materials are mixed in a powder state. In addition, it can be said that the mixing ratio of the conductive carbon material and the epoxy resin is in the range of conductive carbon material: epoxy resin = 65: 35 to 100: 5 in terms of weight (mass) ratio.

このような成形材料では、帯電制御剤によって、成形材料を構成する各粉末を均一に分散させることができる。このため、安息角が小さく、成形性に優れる燃料電池用セパレータ用成形材料とすることができる。また、最終的に成形された燃料電池用セパレータ(以下、単に「セパレータ」ともいう)に適切な導電性と機械的強度とを賦与できる燃料電池セパレータ用成形材料とすることができる。   In such a molding material, each powder constituting the molding material can be uniformly dispersed by the charge control agent. For this reason, it can be set as the molding material for fuel cell separators with a small angle of repose and excellent moldability. Moreover, it can be set as the molding material for fuel cell separators which can give appropriate electroconductivity and mechanical strength to the fuel cell separator (hereinafter also simply referred to as “separator”).

本発明の成形材料では、上記粉末の他に、加圧成形時に成形温度付近における硬化を促進させるための補助硬化剤としての役割を担う硬化促進剤が含まれていてもよい。硬化促進剤は、例えば、硬化剤100重量部に対して0.1重量部〜10重量部の範囲で含まれていればよい。   In the molding material of the present invention, in addition to the above powder, a curing accelerator that serves as an auxiliary curing agent for accelerating curing near the molding temperature during pressure molding may be included. A hardening accelerator should just be contained in the range of 0.1 weight part-10 weight part with respect to 100 weight part of hardening | curing agents, for example.

本発明の成形材料では、上記粉末の他に、成形材料全体の充填率を高める役割を担う充填剤が含まれていてもよい。充填剤は、例えば、総重量部に対して1〜10重量部の範囲で含まれていればよい。   In the molding material of this invention, the filler which plays the role which raises the filling rate of the whole molding material other than the said powder may be contained. The filler should just be contained in the range of 1-10 weight part with respect to total weight part, for example.

次に、本発明の成形材料を構成する各粉末の種類と、含有量の範囲の根拠について説明する。   Next, the type of each powder constituting the molding material of the present invention and the basis of the content range will be described.

導電性炭素材料の種類は特に限定されない。例えば、鱗状黒鉛や塊状黒鉛などの天然黒鉛、人造黒鉛、アセチレンブラック及びカーボンブラックから選ばれる少なくとも1種を用いればよい。本発明の成形材料中における導電性炭素材料の含有量が65重量部未満の場合、最終的に成形されたセパレータの導電性が低下する可能性がある。また、導電性炭素材料の含有量が100重量部を超過する場合、最終的に成形されたセパレータの導電性は向上するが、機械的強度が低下して振動などに対して脆弱になる可能性がある。   The kind of conductive carbon material is not particularly limited. For example, at least one selected from natural graphite such as scaly graphite and massive graphite, artificial graphite, acetylene black, and carbon black may be used. When the content of the conductive carbon material in the molding material of the present invention is less than 65 parts by weight, the conductivity of the finally molded separator may be lowered. In addition, when the content of the conductive carbon material exceeds 100 parts by weight, the conductivity of the finally formed separator is improved, but the mechanical strength may be lowered and become vulnerable to vibration. There is.

エポキシ樹脂は、上記炭素材料を結び付けるバインダーの役割を担う材料である。エポキシ樹脂の種類は特に限定されず、例えば、ビスフェノールA型やビスフェノールF型などのビスフェノール型樹脂、ノボラック−ビフェニル型樹脂およびビフェニルエステル型樹脂から選ばれる少なくとも1種を用いればよい。ただし、粉末状のエポキシ樹脂であることが好ましい。本発明の成形材料中におけるエポキシ樹脂の含有量が5重量部未満の場合、成形後に上記炭素材料を結び付ける結合力が低下して、最終的に成形されたセパレータの機械的強度が低下する可能性がある。また、エポキシ樹脂の含有量が35重量部を超過する場合、上記炭素材料の相対的な含有量比が低下することによって、最終的に成形されたセパレータの導電性が低下する可能性がある。   The epoxy resin is a material that plays the role of a binder that binds the carbon material. The type of the epoxy resin is not particularly limited, and for example, at least one selected from bisphenol type resins such as bisphenol A type and bisphenol F type, novolak-biphenyl type resins, and biphenyl ester type resins may be used. However, it is preferably a powdery epoxy resin. When the content of the epoxy resin in the molding material of the present invention is less than 5 parts by weight, the bonding strength for binding the carbon material after molding may decrease, and the mechanical strength of the finally molded separator may decrease. There is. Moreover, when content of an epoxy resin exceeds 35 weight part, the electroconductivity of the finally shape | molded separator may fall by the relative content ratio of the said carbon material falling.

硬化剤は、本発明の成形材料を成形する際に、成形材料に含まれるエポキシ樹脂の硬化を促進させる役割を担っている。硬化剤の種類は、エポキシ樹脂を硬化できる種類であれば特に限定されない。例えば、酸無水物系樹脂、アミン系樹脂及びフェノール系樹脂から選ばれる少なくとも1種を用いればよい。成形されたセパレータの耐熱性の観点からは、ノボラック型フェノール系樹脂が好ましい。本発明の成形材料中における硬化剤の含有量が、上記エポキシ樹脂100重量部に対して5重量部未満の場合、エポキシ樹脂の硬化速度と硬化程度とが不充分になる可能性がある。また、硬化剤の含有量が70重量部を超過する場合、エポキシ樹脂の硬化は起こり易いものの、硬化速度が速すぎて成形性が悪くなる可能性がある。   The curing agent plays a role of promoting the curing of the epoxy resin contained in the molding material when the molding material of the present invention is molded. The kind of hardening agent will not be specifically limited if it is a kind which can harden | cure an epoxy resin. For example, at least one selected from acid anhydride resins, amine resins, and phenol resins may be used. From the viewpoint of the heat resistance of the molded separator, a novolac type phenol resin is preferable. When content of the hardening | curing agent in the molding material of this invention is less than 5 weight part with respect to 100 weight part of said epoxy resins, there exists a possibility that the hardening rate and hardening degree of an epoxy resin may become inadequate. Moreover, when content of a hardening | curing agent exceeds 70 weight part, although hardening of an epoxy resin will occur easily, a cure rate may be too quick and a moldability may worsen.

本発明の成形材料中において、帯電制御材は、上述した他の材料(導電性炭素材料、エポキシ樹脂、硬化剤など)の粉末粒子の表面が同じ極性を帯び、かつ、粉末粒子の帯電分布度を均一にさせる役割を担っている。各粉末粒子が同じ極性を帯びることによって、粒子間に相互反発力が働き、導電性炭素材料、エポキシ樹脂、硬化剤などの各種材料粉末を互いに均一に混合あるいは分散さることができる。このため、最終的に成形されたセパレータの導電性や機械的強度などを向上させることができる。   In the molding material of the present invention, the charge control material is such that the surface of the powder particles of the other materials (conductive carbon material, epoxy resin, curing agent, etc.) have the same polarity and the charge distribution degree of the powder particles. It plays a role to make uniform. When each powder particle has the same polarity, a mutual repulsive force acts between the particles, and various material powders such as a conductive carbon material, an epoxy resin, and a curing agent can be uniformly mixed or dispersed with each other. For this reason, the electroconductivity, mechanical strength, etc. of the separator shape | molded finally can be improved.

帯電制御剤には、例えば、電子複写機のトナー原料に用いられている材料を用いればよく、その種類は特に限定されない。具体的には、例えば、ニグロシン系染料、第4級アンモニウム塩、アゾ系含金染料、粉末状の金属酸化物が反応付着したモノアゾ染料の金属錯体系材料、サリチル酸系金属錯体及び粉末状の金属酸化物が反応付着したサリチル酸系金属錯体から選ばれる少なくとも1種を含む材料を用いればよい。このうち、ニグロシン系染料及び第4級アンモニウム塩などは、正帯電制御剤(粒子の表面を正に帯電させる)として作用し、アゾ系含金染料、粉末状の金属酸化物が反応付着したモノアゾ染料の金属錯体系材料、サリチル酸系金属錯体及び粉末状の金属酸化物が反応付着したサリチル酸系金属錯体などは、負帯電制御材(粒子の表面を負に帯電させる)として作用する。なかでも、適切な平均粒径を有する粉末状の金属酸化物を添加した金属錯体系の帯電制御剤が好ましい。なお、金属酸化物にはケイ素の酸化物(例えば、シリカなど)が含まれる。   As the charge control agent, for example, a material used for a toner raw material of an electronic copying machine may be used, and the kind thereof is not particularly limited. Specifically, for example, a nigrosine dye, a quaternary ammonium salt, an azo metal-containing dye, a metal complex material of a monoazo dye to which a powdered metal oxide is attached by reaction, a salicylic acid metal complex, and a powdered metal What is necessary is just to use the material containing at least 1 sort (s) chosen from the salicylic acid type metal complex to which the oxide adhered by reaction. Of these, nigrosine dyes and quaternary ammonium salts act as positive charge control agents (positively charge the surface of the particles), and monoazo azo dyes and powdered metal oxides react and adhere. A metal complex material of a dye, a salicylic acid metal complex, and a salicylic acid metal complex to which a powdered metal oxide is attached by reaction acts as a negative charge control material (charges the surface of the particles negatively). Among these, a metal complex type charge control agent to which a powdery metal oxide having an appropriate average particle diameter is added is preferable. The metal oxide includes a silicon oxide (for example, silica).

本発明の成形材料における帯電制御剤の含有量は、導電性炭素材料、エポキシ樹脂及び硬化剤の混合量100重量部に対して0.1重量部〜5重量部の範囲であるが、帯電制御材の含有量が0.1重量部未満である場合、他の材料の粉末粒子を分散させる効果が十分に得られない可能性がある。また、帯電制御材の含有量が5.0重量部を超過しても構わないが、含有量が5.0重量部を超過した場合においても、粉末粒子の分散効果はそれ以上向上せずに一定であると考えられる。このため、帯電制御材は、必要以上添加する必要はないと考えられる。   The content of the charge control agent in the molding material of the present invention is in the range of 0.1 to 5 parts by weight with respect to 100 parts by weight of the mixed amount of the conductive carbon material, epoxy resin and curing agent. When the content of the material is less than 0.1 part by weight, the effect of dispersing the powder particles of the other material may not be sufficiently obtained. In addition, the content of the charge control material may exceed 5.0 parts by weight, but even when the content exceeds 5.0 parts by weight, the dispersion effect of the powder particles does not further improve. It is considered constant. For this reason, it is considered that the charge control material does not need to be added more than necessary.

硬化促進剤は必要に応じて添加すればよい。硬化促進剤は、本発明の成形材料を加圧成形する際に、金型温度付近でエポキシ樹脂の硬化を促進させる役割を担っている。硬化促進剤の種類は、金型温度に応じて選択すればよい。例えば、150℃近傍の温度で加圧成形する場合、150℃近傍でエポキシ樹脂の硬化反応を促進させる硬化促進剤であればよい。具体的には、例えば、イミダゾール系樹脂、ポリアミド系樹脂及び有機系樹脂から選ばれる少なくとも1種を用いればよい。本発明の成形材料における硬化促進剤の含有量が、硬化剤100重量部に対して0.1重量部未満である場合、エポキシ樹脂の硬化を促進する効果が十分に得られない可能性がある。また、硬化促進剤の含有量が、10重量部を超過する場合、金型に含まれる金属と硬化反応を起こすことによって反応ガスが発生したり、発生した反応ガスの排出が円滑に行われない可能性がある。このため、最終的に成形されたセパレータの機械的強度及び導電性が低下する可能性がある。   What is necessary is just to add a hardening accelerator as needed. The curing accelerator plays a role of accelerating the curing of the epoxy resin near the mold temperature when the molding material of the present invention is pressure-molded. What is necessary is just to select the kind of hardening accelerator according to metal mold temperature. For example, when pressure molding is performed at a temperature in the vicinity of 150 ° C., a curing accelerator that accelerates the curing reaction of the epoxy resin near 150 ° C. may be used. Specifically, for example, at least one selected from imidazole resins, polyamide resins, and organic resins may be used. When the content of the curing accelerator in the molding material of the present invention is less than 0.1 part by weight with respect to 100 parts by weight of the curing agent, the effect of promoting the curing of the epoxy resin may not be sufficiently obtained. . In addition, when the content of the curing accelerator exceeds 10 parts by weight, a reactive gas is generated by causing a curing reaction with the metal contained in the mold, and the generated reactive gas is not smoothly discharged. there is a possibility. For this reason, the mechanical strength and conductivity of the finally molded separator may be lowered.

充填剤は、導電性炭素材料粉末間の隙間を充填して、成形材料全体の充填率を高める役割を担っている。充填剤に用いる材料は、特に限定されず、例えば、シリカ、硫酸バリウム、アルミナ、酸化マグネシウム、炭酸カルシウム、雲母、カオリン、ベントナイトおよび水酸化アルミニウムから選ばれる少なくとも1種の材料を用いればよい。本発明の成形材料における充填剤の含有量が、成形材料100重量部に対して1重量部未満である場合、充填率を高める効果が十分に得られない可能性がある。また、充填剤の含有量が、10重量部を超過する場合、導電性炭素材料の重量に対する硬化剤の重量比が相対的に減少するため、最終的に成形されたセパレータの機械的強度及び導電性が低下する可能性がある。   The filler plays a role of filling the gaps between the conductive carbon material powders and increasing the filling rate of the entire molding material. The material used for the filler is not particularly limited, and for example, at least one material selected from silica, barium sulfate, alumina, magnesium oxide, calcium carbonate, mica, kaolin, bentonite, and aluminum hydroxide may be used. When the content of the filler in the molding material of the present invention is less than 1 part by weight with respect to 100 parts by weight of the molding material, the effect of increasing the filling rate may not be sufficiently obtained. In addition, when the filler content exceeds 10 parts by weight, the weight ratio of the curing agent to the weight of the conductive carbon material is relatively reduced, so that the mechanical strength and conductivity of the finally formed separator are reduced. May be reduced.

導電性炭素材料、エポキシ樹脂、硬化剤、帯電制御剤などの各材料粉末の大きさは特に限定されない。例えば、導電性炭素材料、エポキシ樹脂、硬化剤および帯電制御剤から選ばれる少なくとも1種の材料の平均粒径が、0.2μm〜20μmの範囲であればよい。なかでも、上記すべての材料の平均粒径が、0.2μm〜20μmの範囲にあることが好ましい。より良好な成形性を得ることができる。また、最終的に成形されたセパレータの機械的強度及び導電性をより向上できる。各材料の平均粒径が0.2μ未満である場合、各材料粉末の均一な分散を達成することが難しくなる可能性がある。また、各材料の平均粒径が20μmを超過する場合、成形後にセパレータの機械的強度が低下する可能性がある。   The size of each material powder such as a conductive carbon material, an epoxy resin, a curing agent, and a charge control agent is not particularly limited. For example, the average particle diameter of at least one material selected from a conductive carbon material, an epoxy resin, a curing agent, and a charge control agent may be in the range of 0.2 μm to 20 μm. Especially, it is preferable that the average particle diameter of all the said materials exists in the range of 0.2 micrometer-20 micrometers. Better moldability can be obtained. Further, the mechanical strength and conductivity of the finally formed separator can be further improved. When the average particle size of each material is less than 0.2 μm, it may be difficult to achieve uniform dispersion of each material powder. Moreover, when the average particle diameter of each material exceeds 20 micrometers, the mechanical strength of a separator may fall after shaping | molding.

上述した組成で混合される本発明の燃料電池セパレータ用成形材料では、15°〜30°程度の範囲の安息角を実現することができる。このため、本発明の成形材料は、加熱加圧成形モールド工程に安定的に投入することができる。   In the molding material for a fuel cell separator of the present invention mixed with the composition described above, an angle of repose in the range of about 15 ° to 30 ° can be realized. For this reason, the molding material of this invention can be stably injected | thrown-in to a heat-press molding mold process.

次に、本発明の成形材料を製造する方法と、本発明の成形材料を用いてセパレータを成形する工程について説明する。   Next, a method for producing the molding material of the present invention and a process for molding a separator using the molding material of the present invention will be described.

本発明の燃料電池セパレータ用成形材料は、例えば、以下に示す方法によって製造することができる。最初に、導電性炭素材料、エポキシ樹脂及び硬化剤のそれぞれをハンマークラッシャー(hammer crusher)などを用いて平均粒径50μm〜300μm程度の範囲になるまで粉砕する。次に、ジェットミル(jet mill)などを用いて上記材料のそれぞれを、さらに粉砕し、平均粒径が0.2μm〜20μm程度の範囲の各材料粉末を形成する。次に、形成した上記各粉末と帯電制御剤とをミキサに入れて乾式で混合することによって、本発明の燃料電池セパレータ用成形材料の粉末を製造することができる。   The molding material for a fuel cell separator of the present invention can be produced, for example, by the following method. First, each of the conductive carbon material, the epoxy resin, and the curing agent is pulverized using a hammer crusher or the like until the average particle size is in the range of about 50 μm to 300 μm. Next, each of the above materials is further pulverized using a jet mill or the like to form each material powder having an average particle size in the range of about 0.2 μm to 20 μm. Next, the powder of the molding material for a fuel cell separator of the present invention can be produced by mixing the formed powder and the charge control agent in a mixer and mixing them in a dry manner.

一方、最終的に成形されたセパレータの導電性および/または機械的強度などをさらに向上させるために、乾式で混合された前記成形材料粉末を2軸混練機などによって加熱混練して冷却した後、ジェットミルなどで粉砕して平均粒径0.2μm〜20μmの範囲に微粉砕して本発明の成形材料粉末を製造することもできる。   On the other hand, in order to further improve the conductivity and / or mechanical strength of the finally molded separator, the molding material powder mixed in a dry process is heated and kneaded with a biaxial kneader or the like, and then cooled. The molding material powder of the present invention can also be produced by pulverizing with a jet mill or the like and finely pulverizing to an average particle size of 0.2 μm to 20 μm.

本発明の成形材料を用いてセパレータを成形するためには、例えば、以下のように行えばよい。本発明の成形材料を加圧成形モールドに入れて500kg/cm2〜1000kg/cm2程度の圧力を与えた状態で、130℃〜200℃程度の温度で1分〜5分間程度加熱すればよい。モールドの金型は、得たいセパレータの形状に合わせて、任意に設定すればよい。 In order to mold the separator using the molding material of the present invention, for example, the following may be performed. In a state where the molding material gave a pressure of about 2 pressing placed in the mold 500kg / cm 2 ~1000kg / cm of the present invention may be heated for about 1 minute to 5 minutes at a temperature of about 130 ° C. to 200 DEG ° C. . What is necessary is just to set the metal mold | die of a mold arbitrarily according to the shape of the separator to obtain.

本発明の成形材料で作られたセパレータの特性は、以下に示す実施例と比較例とによってより明確に理解されるであろう。   The characteristics of the separator made of the molding material of the present invention will be more clearly understood from the following examples and comparative examples.

(実施例1)
導電性炭素材料として塊状黒鉛70重量部、エポキシ樹脂としてビスフェノールA型エポキシ樹脂20重量部、硬化剤としてノボラック型フェノール樹脂5重量部(エポキシ樹脂100重量部に対して25重量部)のそれぞれを、ハンマークラッシャーを用いて平均粒径250μmに粉砕した後、各粉末をジェットミルで平均粒径5μmに微粉砕して全体95重量部の粉末を得た。
Example 1
70 parts by weight of massive graphite as the conductive carbon material, 20 parts by weight of bisphenol A type epoxy resin as the epoxy resin, and 5 parts by weight of novolac type phenol resin as the curing agent (25 parts by weight with respect to 100 parts by weight of the epoxy resin) After pulverizing to an average particle size of 250 μm using a hammer crusher, each powder was finely pulverized to an average particle size of 5 μm using a jet mill to obtain a total of 95 parts by weight of powder.

その後、前記各粉末と、負帯電制御剤としてシリカが反応付着したモノアゾ染料の鉄錯体系材料(平均粒径1μm)0.5重量部(黒鉛、エポキシ樹脂及び硬化剤100重量部に対して0.526重量部)とを、ヘンシェルミキサ(Hensel mixer)に入れ、撹拌翼の速度を32m/sとして回転させながら乾式混合し、平均粒径5μm、安息角21°の燃料電池セパレータ用成形材料95.5重量部を製造した。乾式混合の方法は、以降の実施例、比較例においても同様である。   Thereafter, 0.5 parts by weight of the iron complex material of monoazo dye (average particle diameter 1 μm) to which silica is reactively attached as a negative charge control agent (0 to 100 parts by weight of graphite, epoxy resin and curing agent) 526 parts by weight) was placed in a Hensel mixer, and dry-mixed while rotating at a stirring blade speed of 32 m / s. The molding material 95 for fuel cell separators having an average particle size of 5 μm and an angle of repose of 21 ° 95 0.5 parts by weight were produced. The dry mixing method is the same in the following examples and comparative examples.

次に、上記のようにして作製した成形材料粉末を加圧成形モールドに入れ、600kg/cm2の圧力下において150℃で2分間加熱して燃料電池用セパレータを成形した。このようにして得られたセパレータは、導電性を示す体積固有抵抗値(JIS K 7194に基づく値、以降の実施例、比較例においても同様)が12mΩ・cm、機械的曲げ強度(JIS K 7203に基づく値、以降の実施例、比較例においても同様)が65MPaであった。 Next, the molding material powder produced as described above was placed in a pressure molding mold and heated at 150 ° C. for 2 minutes under a pressure of 600 kg / cm 2 to form a fuel cell separator. The separator thus obtained has a volume specific resistance value indicating conductivity (value based on JIS K 7194, the same applies to the following examples and comparative examples) of 12 mΩ · cm, mechanical bending strength (JIS K 7203). And the same applies to the following examples and comparative examples) was 65 MPa.

(比較例1)
導電性炭素材料として塊状黒鉛70重量部、エポキシ樹脂としてビスフェノールA型エポキシ樹脂20重量部、硬化剤としてノボラック型フェノール樹脂5重量部のそれぞれを、ハンマークラッシャーを用いて平均粒径250μmに粉砕した後、各粉末をジェットミルで平均粒径5μmに微粉砕して全体95重量部の粉末を得た。
(Comparative Example 1)
After pulverizing 70 parts by weight of massive graphite as a conductive carbon material, 20 parts by weight of bisphenol A type epoxy resin as an epoxy resin, and 5 parts by weight of novolac type phenol resin as a curing agent, each using a hammer crusher to an average particle size of 250 μm Each powder was finely pulverized with a jet mill to an average particle size of 5 μm to obtain a total of 95 parts by weight of powder.

その後、前記各粉末を、帯電制御剤を添加することなく乾式混合してセパレータ用成形材料95重量部を得た。この際、成形材料の平均粒径は5μm、安息角は31°であった。   Thereafter, the powders were dry mixed without adding a charge control agent to obtain 95 parts by weight of a molding material for a separator. At this time, the average particle diameter of the molding material was 5 μm, and the angle of repose was 31 °.

次に、上記のようにして作製した成形材料を用いて、実施例1と同一の条件でセパレータを成形した。このようにして得られたセパレータの体積固有抵抗は15mΩ・cm、機械的曲げ強度は61MPaであった。   Next, a separator was molded under the same conditions as in Example 1 using the molding material produced as described above. The separator thus obtained had a volume resistivity of 15 mΩ · cm and a mechanical bending strength of 61 MPa.

(実施例2)
導電性炭素材料として鱗状黒鉛84重量部及びアセチレンブラック(acetylene black)1重量部、エポキシ樹脂としてビスフェノールA型エポキシ樹脂10重量部、硬化促進剤として2−イミダゾール0.2重量部が添加された硬化剤であるノボラック型フェノール樹脂6.2重量部のそれぞれを、平均粒径60μmに1次粉砕した後、ジェットミルを用いて各粉末の平均粒径が16μmとなるように微粉砕し、全体101.2重量部の粉末を得た。
(Example 2)
Curing in which 84 parts by weight of scaly graphite as conductive carbon material and 1 part by weight of acetylene black, 10 parts by weight of bisphenol A type epoxy resin as epoxy resin, and 0.2 part by weight of 2-imidazole as curing accelerator are added. Each of 6.2 parts by weight of the novolak type phenol resin as the agent was first ground to an average particle size of 60 μm, and then finely pulverized using a jet mill so that the average particle size of each powder was 16 μm. 0.2 part by weight of powder was obtained.

その後、前記各粉末と、負帯電制御材としてサリチル酸クロム錯体(平均粒径0.8μm)2重量部とを乾式混合した。このようにして作製した成形材料103.2重量部の平均粒径は16μm、安息角は24°であった。   Thereafter, each of the powders and 2 parts by weight of a chromium salicylate complex (average particle size: 0.8 μm) as a negative charge control material were dry mixed. The average particle diameter of 103.2 parts by weight of the molding material thus prepared was 16 μm and the angle of repose was 24 °.

次に、上記のようにして作製した成形材料を加圧成形モールドに入れ、1000kg/cm2の圧力を与えた状態において200℃で1分間加熱してセパレータを成形した。このようにして得られたセパレータの体積固有抵抗は13mΩ・cm、機械的曲げ強度は65MPaであった。 Next, the molding material produced as described above was put into a pressure molding mold, and heated at 200 ° C. for 1 minute in a state where a pressure of 1000 kg / cm 2 was applied, thereby molding a separator. The separator thus obtained had a volume resistivity of 13 mΩ · cm and a mechanical bending strength of 65 MPa.

(比較例2)
実施例2と同様の導電性炭素材料、エポキシ樹脂及び硬化促進剤を含む硬化剤を用い、帯電制御剤が添加されていない成形材料101.2重量部を実施例2と同様の方法で製造した。作製した成形材料は、その平均粒径が16μm、安息角が34°であった。次に、実施例2と同様の方法を用いてセパレータを製造した。得られたセパレータの体積固有抵抗は18mΩ・cm、機械的曲げ強度は59MPaであった。
(Comparative Example 2)
Using the same conductive carbon material as in Example 2, a curing agent containing an epoxy resin and a curing accelerator, 101.2 parts by weight of a molding material to which no charge control agent was added was produced in the same manner as in Example 2. . The produced molding material had an average particle size of 16 μm and an angle of repose of 34 °. Next, a separator was manufactured using the same method as in Example 2. The obtained separator had a volume resistivity of 18 mΩ · cm and a mechanical bending strength of 59 MPa.

(実施例3)
導電性炭素材料として塊状黒鉛93重量部、エポキシ樹脂としてビスフェノールF型エポキシ樹脂25重量部、硬化剤としてノボラック型フェノール樹脂2重量部、充填剤として炭酸カルシウム2重量部のそれぞれを、実施例1と同様にして平均粒径100μmに粉砕した後、各粉末を平均粒径9μmに微粉砕して全体122重量部の粉末を得た。
Example 3
Example 1 includes 93 parts by weight of massive graphite as the conductive carbon material, 25 parts by weight of bisphenol F type epoxy resin as the epoxy resin, 2 parts by weight of novolac type phenol resin as the curing agent, and 2 parts by weight of calcium carbonate as the filler. Similarly, after pulverizing to an average particle size of 100 μm, each powder was finely pulverized to an average particle size of 9 μm to obtain a total of 122 parts by weight of powder.

その後、前記各粉末と、正帯電制御剤として第4級アンモニウム塩5重量部(平均粒径3μm)とを乾式混合した。次に、形成した混合物を、2軸混練機を用いて120℃で混練して冷却した後、ジェットミルを用いて微粉砕し、平均粒径を10μmの成形材料粉末を得た。作製した成形材料127重量部の安息角は17°であった。   Thereafter, the powders were mixed with 5 parts by weight of a quaternary ammonium salt (average particle size: 3 μm) as a positive charge control agent. Next, the formed mixture was kneaded at 120 ° C. using a twin-screw kneader, cooled, and then finely pulverized using a jet mill to obtain a molding material powder having an average particle diameter of 10 μm. The repose angle of 127 parts by weight of the produced molding material was 17 °.

次に、上記のようにして作製した成形材料を800kg/cm2の圧力下において180℃で4分間加熱してセパレータを成形した。このようにして得られたセパレータの体積固有抵抗は11mΩ・cm、機械的曲げ強度は67MPaであった。 Next, the molding material produced as described above was heated at 180 ° C. for 4 minutes under a pressure of 800 kg / cm 2 to mold a separator. The separator thus obtained had a volume resistivity of 11 mΩ · cm and a mechanical bending strength of 67 MPa.

(比較例3)
実施例3と同様の導電性炭素材料、エポキシ樹脂、硬化剤及び充填剤を用い、帯電制御剤が添加されていない成形材料122重量部を、実施例3と同様の方法で製造した。作製した成形材料は、その平均粒径が10μm、安息角が32°であった。次に、実施例3と同様の方法を用いてセパレータを製造した。得られたセパレータの体積固有抵抗は17mΩ・cm、機械的曲げ強度は60MPaであった。
(Comparative Example 3)
Using the same conductive carbon material, epoxy resin, curing agent and filler as in Example 3, 122 parts by weight of a molding material to which no charge control agent was added was produced in the same manner as in Example 3. The produced molding material had an average particle size of 10 μm and an angle of repose of 32 °. Next, a separator was manufactured using the same method as in Example 3. The obtained separator had a volume resistivity of 17 mΩ · cm and a mechanical bending strength of 60 MPa.

上述した各実施例と比較例とにおける、成形材料粉末の物理的特性と、各成形材料で作られたセパレータの体積固有抵抗及び機械的曲げ強度を表1にまとめた。   Table 1 summarizes the physical characteristics of the molding material powder and the volume resistivity and mechanical bending strength of the separator made of each molding material in each of the above-described Examples and Comparative Examples.

(表1)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
サンプル 平均粒径 安息角 体積固有抵抗値 機械的曲げ強度
(μm) (°) (mΩ・cm) (MPa)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
実施例1 5 21 12 65
比較例1 5 31 15 61
実施例2 16 24 13 65
比較例2 16 34 18 59
実施例3 10 17 11 67
比較例3 10 32 17 60
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(Table 1)
--------------------------------
Sample Average particle diameter Repose angle Volume resistivity Mechanical bending strength
(μm) (°) (mΩ ・ cm) (MPa)
--------------------------------
Example 1 5 21 12 65
Comparative Example 1 5 31 15 61
Example 2 16 24 13 65
Comparative Example 2 16 34 18 59
Example 3 10 17 11 67
Comparative Example 3 10 32 17 60
--------------------------------

表1に示すように、実施例として作製した成形材料と、比較例として作製した成形材料とでは、同一の平均粒径を有しているにも関わらず、帯電制御剤の有無によって、成形材料の成形性に影響を及ぼすと考えられる安息角が相異することがわかる。また、帯電制御剤の存在が、最終的に成形されるセパレータの導電性及び機械的曲げ強度にも影響を及ぼしていることが分かる。   As shown in Table 1, the molding material produced as an example and the molding material produced as a comparative example have the same average particle diameter, but the molding material depends on the presence or absence of a charge control agent. It can be seen that the angle of repose, which is considered to affect the moldability of the resin, is different. It can also be seen that the presence of the charge control agent affects the conductivity and mechanical bending strength of the separator finally formed.

即ち、帯電制御剤を含む本発明の成形材料とすることによって、成形材料に含まれる各粉末の分散均一性を向上することができ、安息角を低下させることができる。このため、成形材料の成形性を向上することができ、結果、最終成形体である燃料電池用セパレータの導電性および機械的特性を向上することができる。   That is, by using the molding material of the present invention containing a charge control agent, the dispersion uniformity of each powder contained in the molding material can be improved, and the angle of repose can be lowered. For this reason, the moldability of the molding material can be improved, and as a result, the conductivity and mechanical properties of the fuel cell separator that is the final molded body can be improved.

以上、説明したように、本発明によれば、帯電制御剤を含有することによって、導電性炭素材料、エポキシ樹脂、硬化剤などの各粉末が非常に均一に分散・混合できるため、安息角が小さく、成形性に優れ、最終成形後に適切な導電性と機械的強度が実現可能である燃料電池セパレータ用成形材料を提供することができる。   As described above, according to the present invention, by including a charge control agent, each powder of conductive carbon material, epoxy resin, curing agent and the like can be dispersed and mixed very uniformly, so the angle of repose is It is possible to provide a molding material for a fuel cell separator that is small, excellent in moldability, and capable of realizing appropriate electrical conductivity and mechanical strength after final molding.

本発明の燃料電池セパレータ用成形材料によって成形されたセパレータは、高分子電解質型燃料電池(PEMFC)、ダイレクトメタノール型燃料電池(DMFC)などの用途に用いることができる。   The separator formed by the molding material for a fuel cell separator of the present invention can be used for applications such as a polymer electrolyte fuel cell (PEMFC) and a direct methanol fuel cell (DMFC).

Claims (9)

導電性炭素材料65重量部〜100重量部と、
エポキシ樹脂5重量部〜35重量部と、
前記エポキシ樹脂100重量部に対する硬化剤5重量部〜70重量部と、
前記炭素材料、前記エポキシ樹脂及び前記硬化剤の混合量100重量部に対する帯電制御剤0.1重量部〜5重量部とを含み、
前記帯電制御剤が、粉末状の金属酸化物が反応付着したモノアゾ染料の金属錯体系材料を含むことを特徴とする燃料電池セパレータ用成形材料。
65 to 100 parts by weight of conductive carbon material,
5 to 35 parts by weight of epoxy resin,
5 parts by weight to 70 parts by weight of a curing agent with respect to 100 parts by weight of the epoxy resin;
The carbon material, viewed including the said epoxy resin and a charge control agent 0.1 to 5 parts by weight with respect to mixing amount 100 parts by weight of the curing agent,
A molding material for a fuel cell separator , wherein the charge control agent includes a metal complex material of a monoazo dye to which a powdered metal oxide is reactively attached .
前記導電性炭素材料が、天然黒鉛、人造黒鉛、アセチレンブラック及びカーボンブラックから選ばれる少なくとも1種を含む請求項1に記載の燃料電池セパレータ用成形材料。   The molding material for a fuel cell separator according to claim 1, wherein the conductive carbon material contains at least one selected from natural graphite, artificial graphite, acetylene black, and carbon black. 前記エポキシ樹脂が、ビスフェノール型樹脂、ノボラック−ビフェニル型樹脂及びビフェニルエステル型樹脂から選ばれる少なくとも1種を含む請求項1に記載の燃料電池セパレータ用成形材料。   2. The molding material for a fuel cell separator according to claim 1, wherein the epoxy resin contains at least one selected from a bisphenol type resin, a novolac-biphenyl type resin, and a biphenyl ester type resin. 前記硬化剤が、酸無水物系樹脂、アミン系樹脂及びフェノール系樹脂から選ばれる少なくとも1種を含む請求項1に記載の燃料電池セパレータ用成形材料。   The molding material for a fuel cell separator according to claim 1, wherein the curing agent contains at least one selected from an acid anhydride resin, an amine resin, and a phenol resin. 前記導電性炭素材料、前記エポキシ樹脂、前記硬化剤及び前記帯電制御剤から選ばれる少なくとも1種が、0.2μm〜20μmの平均粒径を有する粉末状である請求項1に記載の燃料電池セパレータ用成形材料。   2. The fuel cell separator according to claim 1, wherein at least one selected from the conductive carbon material, the epoxy resin, the curing agent, and the charge control agent is in a powder form having an average particle diameter of 0.2 μm to 20 μm. Molding material. 前記硬化剤100重量部に対する硬化促進剤0.1重量部〜10重量部をさらに含む請求項1に記載の燃料電池セパレータ用成形材料。   The molding material for a fuel cell separator according to claim 1, further comprising 0.1 to 10 parts by weight of a curing accelerator with respect to 100 parts by weight of the curing agent. 前記炭素材料、前記エポキシ樹脂及び前記硬化剤の混合量100重量部に対する充填剤1重量部〜10重量部をさらに含む請求項1に記載の燃料電池セパレータ用成形材料。   The molding material for a fuel cell separator according to claim 1, further comprising 1 part by weight to 10 parts by weight of a filler with respect to 100 parts by weight of the mixed amount of the carbon material, the epoxy resin, and the curing agent. 前記硬化促進剤が、イミダゾール系樹脂、ポリアミド系樹脂及び有機系樹脂から選ばれる少なくとも1種である請求項に記載の燃料電池セパレータ用成形材料。 The molding material for a fuel cell separator according to claim 6 , wherein the curing accelerator is at least one selected from an imidazole resin, a polyamide resin, and an organic resin. 前記充填剤が、シリカ、硫酸バリウム、アルミナ、酸化マグネシウム、炭酸カルシウム、雲母、カオリン、ベントナイト及び水酸化アルミニウムから選ばれる少なくとも1種である請求項に記載の燃料電池セパレータ用成形材料。 The molding material for a fuel cell separator according to claim 7 , wherein the filler is at least one selected from silica, barium sulfate, alumina, magnesium oxide, calcium carbonate, mica, kaolin, bentonite, and aluminum hydroxide.
JP2004134013A 2003-05-26 2004-04-28 Molding material for fuel cell separator Expired - Fee Related JP3808478B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2003-0033410A KR100533104B1 (en) 2003-05-26 2003-05-26 Mixed powder material for separators of fuel cell

Publications (2)

Publication Number Publication Date
JP2004352986A JP2004352986A (en) 2004-12-16
JP3808478B2 true JP3808478B2 (en) 2006-08-09

Family

ID=34056771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004134013A Expired - Fee Related JP3808478B2 (en) 2003-05-26 2004-04-28 Molding material for fuel cell separator

Country Status (2)

Country Link
JP (1) JP3808478B2 (en)
KR (1) KR100533104B1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100577608B1 (en) * 2004-11-18 2006-05-10 한국에너지기술연구원 Mixed powder material for separators of fuel cell
JP2006249338A (en) * 2005-03-11 2006-09-21 Nichias Corp Electroconductive epoxy resin composition and separator for fuel cell
KR100812269B1 (en) * 2006-11-22 2008-03-13 한국타이어 주식회사 Method for producing composite material for fuel cell separator
KR100761645B1 (en) * 2006-12-01 2007-10-04 서준택 Fuel cell separator plated with nickel and its manufacturing method
WO2008120830A1 (en) * 2007-03-30 2008-10-09 Gs Caltex Corporation Composition for source particle of high-temperature typed bipolar plate for fuel cell and high-temperature typed bipolar plate for fuel cell manufactured by using the same
FR2941557B1 (en) * 2009-01-29 2011-03-25 Commissariat Energie Atomique PROCESS FOR PREPARING AN ELECTRICITY CONDUCTING ARTICLE

Also Published As

Publication number Publication date
KR20040101706A (en) 2004-12-03
JP2004352986A (en) 2004-12-16
KR100533104B1 (en) 2005-12-02

Similar Documents

Publication Publication Date Title
JP5019195B2 (en) Method for producing separator material for fuel cell
US6746792B2 (en) Fuel cell separator composition, fuel cell separator and method of manufacture, and solid polymer fuel cell
CN114784307B (en) Graphene reinforced expanded graphite/polyimide-polyether-ether-ketone composite bipolar plate and preparation method thereof
JP5600158B2 (en) Separation plate for fuel cell and fuel cell including the same
JP3808478B2 (en) Molding material for fuel cell separator
JP5450088B2 (en) Hydrophilic inorganic aggregate, method for producing the same, hydrophilic composite material containing the same, and bipolar plate for fuel cell
JPH11354138A (en) Ribbed fuel-cell separator, its manufacture, and fuel cell
KR100577608B1 (en) Mixed powder material for separators of fuel cell
JP2010511279A (en) Nickel-plated fuel cell separator and method for manufacturing the same (FUELCELLSEPARAPARORPLATTEDWITHNICKELANDITMANUFACTURINGMETHOD)
KR100808332B1 (en) Method of preparing separator for fuel cell and separator for fuel cell prepared by the same
JP2005071887A (en) Separator-molding resin composition for fuel cell and separator for fuel cell
JP2005129507A (en) Graphitic powder for fuel cell separator, and fuel cell separator
US9048010B2 (en) Method for preparing an electrically conducting article
JP2001216977A (en) Separator material for fuel cell
JP5208199B2 (en) Raw material composition for high-temperature composite resin separator for fuel cell and high-temperature composite resin separator for fuel cell manufactured using the same
JP2015038840A (en) Fuel cell separator, and method for manufacturing fuel cell separator
JP5915935B2 (en) Manufacturing method of fuel cell separator
Okhawilai et al. Effects of Graphene and Graphite on Properties of Highly Filled Polybenzoxazine Bipolar Plate for Proton Exchange Membrane Fuel Cell: A Comparative Study
JP5845458B2 (en) Manufacturing method of fuel cell separator
WO2016092606A1 (en) Separator for fuel cells and method for manufacturing separator for fuel cells
JP5681565B2 (en) Molding material for fuel cell separator, method for producing fuel cell separator, and fuel cell separator
JP4385670B2 (en) Manufacturing method of fuel cell separator
JP2005339899A (en) Resin composite for fuel cell separator
Wenkai et al. Current status of research on composite bipolar plates for proton exchange membrane fuel cells (PEMFCs): nanofillers and structure optimization
KR20060081185A (en) A cabon separator for fuel cell, and a method for manufacturing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060517

R150 Certificate of patent or registration of utility model

Ref document number: 3808478

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100526

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130526

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140526

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees