JP4716649B2 - Conductive molding material, fuel cell separator using the same, and method for producing the same - Google Patents

Conductive molding material, fuel cell separator using the same, and method for producing the same Download PDF

Info

Publication number
JP4716649B2
JP4716649B2 JP2003330437A JP2003330437A JP4716649B2 JP 4716649 B2 JP4716649 B2 JP 4716649B2 JP 2003330437 A JP2003330437 A JP 2003330437A JP 2003330437 A JP2003330437 A JP 2003330437A JP 4716649 B2 JP4716649 B2 JP 4716649B2
Authority
JP
Japan
Prior art keywords
fuel cell
molding material
conductive molding
separator
thermoplastic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003330437A
Other languages
Japanese (ja)
Other versions
JP2005100703A (en
Inventor
敏彦 兼岩
成光 大坪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Yukizai Corp
Original Assignee
Asahi Organic Chemicals Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Organic Chemicals Industry Co Ltd filed Critical Asahi Organic Chemicals Industry Co Ltd
Priority to JP2003330437A priority Critical patent/JP4716649B2/en
Publication of JP2005100703A publication Critical patent/JP2005100703A/en
Application granted granted Critical
Publication of JP4716649B2 publication Critical patent/JP4716649B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Conductive Materials (AREA)
  • Fuel Cell (AREA)

Description

本発明は、導電性成形材料、該導電性成形材料を用いて得られる燃料電池用セパレータ及び該燃料電池用セパレータの製造方法に関するものである。   The present invention relates to a conductive molding material, a fuel cell separator obtained by using the conductive molding material, and a method for producing the fuel cell separator.

燃料電池は、エネルギー効率が高く環境汚染を低減でき、更に低温で作動する固体高分子型燃料電池は将来自動車の動力源を始め、小型可搬電源、定置発電用電源等に広く普及するものとして注目されている。この固体高分子型燃料電池は周知のように、イオン交換膜からなる電解質膜とその両面に電極を設置し、それぞれの電極に燃料ガスあるいは酸化剤ガスを供給するための溝パターンを設けたセパレータなどからなる単セルを多数積層したスタックを形成している。更にその多層に積層した外側の集電板で集電する構造となっている。その発電のメカニズムはアノード側電極に供給される燃料ガスとカソード側電極に供給される酸化剤ガスとを反応させて電気エネルギーを作製し外側の集電板で外部に取り出すものである。   Fuel cells are highly energy efficient, can reduce environmental pollution, and solid polymer fuel cells that operate at lower temperatures will be widely used in the future as power sources for automobiles, small portable power sources, power sources for stationary power generation, etc. Attention has been paid. As is well known, this polymer electrolyte fuel cell has an electrolyte membrane made of an ion exchange membrane and electrodes on both sides thereof, and is provided with a groove pattern for supplying fuel gas or oxidant gas to each electrode. A stack is formed by laminating a large number of single cells made up of and the like. Furthermore, it has a structure in which current is collected by an outer current collecting plate laminated in multiple layers. The power generation mechanism is such that electric energy is produced by reacting the fuel gas supplied to the anode side electrode with the oxidant gas supplied to the cathode side electrode, and is taken out to the outside by the outer current collecting plate.

このため、セパレータには燃料ガスと酸化剤ガスを供給する流路形成する溝と、ガスの混合を隔てる高度なガスバリア性、破損によるガスリークを防ぐための機械的特性、そして各燃料電池セル間で電気が通電可能となりうる電気導電性等の特性が要求される。また、燃料電池設置スペースと言う観点から特に車載用に関しては燃料電池本体の小型化・軽量化が望まれており、このことからより肉厚が薄いセパレータが必要とされているのが現状である。   For this reason, the separator has a groove that forms a flow path for supplying fuel gas and oxidant gas, a high gas barrier property that separates the gas mixture, mechanical characteristics to prevent gas leakage due to breakage, and between each fuel cell. Characteristics such as electrical conductivity that can be energized are required. In addition, from the viewpoint of fuel cell installation space, especially for in-vehicle use, it is desired to reduce the size and weight of the fuel cell body, and from this, a separator with a thinner wall thickness is required. .

これら特性を満たすため種々検討が行なわれており、ステンレスやチタン系合金などのような耐食性のある金属などを燃料電池用セパレータの材質に使用した場合、ガスバリア性、耐熱性及び導電性に優れているものの、電解質によるイオン化や加工の困難さ、更には重量が大きくなることから懸念される材質の一つと言われている。そこで、近年では、炭素質材料を主原料とした燃料電池用セパレータの検討が行なわれている。   Various studies have been conducted to satisfy these characteristics. When a metal having corrosion resistance such as stainless steel or titanium alloy is used as a material for a separator for a fuel cell, the gas barrier property, heat resistance and conductivity are excellent. However, it is said to be one of the materials that are concerned because of the difficulty of ionization and processing by electrolytes and the increased weight. Therefore, in recent years, a fuel cell separator using a carbonaceous material as a main raw material has been studied.

例えば、特定の粒子径の膨張黒鉛を熱可塑性樹脂又は熱硬化性樹脂に分散させてブロック状の成形体を得た後、溝を機械加工するという手法が提案されている(特許文献1)。しかしながらこの手法では、機械加工の加工性が悪くコスト高となるという問題があった。   For example, a technique has been proposed in which expanded graphite having a specific particle diameter is dispersed in a thermoplastic resin or a thermosetting resin to obtain a block-shaped molded body, and then a groove is machined (Patent Document 1). However, this method has a problem that the workability of machining is poor and the cost is high.

また、黒鉛粉末とフェノール樹脂との混合物を造粒した後、射出成形によって成形体を製造する方法が開示されている(特許文献2)。この方法では確かに生産性は高くなるが、原料に流動性を持たせるためにバインダーとしての樹脂の量を多くする必要があり、その結果、導電性が低下してしまうという問題あった。更に、自動車用燃料電池として使用する場合など燃料電池本体の小型化が要求されており、セパレータの肉厚を薄くする必要があるが、この方法では流動性及び樹脂の配合割合などの限界があるため、薄肉化することが難しいという問題もあった。   Moreover, after granulating the mixture of graphite powder and a phenol resin, the method of manufacturing a molded object by injection molding is disclosed (patent document 2). This method certainly increases the productivity, but it is necessary to increase the amount of resin as a binder in order to make the raw material fluid, and as a result, there is a problem that the conductivity is lowered. Furthermore, there is a demand for miniaturization of the fuel cell body, such as when used as a fuel cell for automobiles, and it is necessary to reduce the thickness of the separator. However, this method has limitations such as fluidity and resin blending ratio. Therefore, there is a problem that it is difficult to reduce the thickness.

さらに、カーボン粉末と熱可塑性樹脂をペレット状混合体とした後、押出し成形によりシート化してコンプレッションするという方法が開示されている(特許文献3)。しかしながら、この方法では、バインダーにより黒鉛材料が被覆されるため導電性能が低下しやすくなり、バインダー含有量を減らした場合にはシート化が困難になるという問題があった。   Furthermore, a method is disclosed in which a carbon powder and a thermoplastic resin are formed into a pellet-like mixture, and then formed into a sheet by extrusion and compression (Patent Document 3). However, this method has a problem that since the graphite material is coated with the binder, the conductive performance tends to be lowered, and when the binder content is reduced, it becomes difficult to form a sheet.

WO97/02612WO97 / 02612 特開2000−331690JP 2000-331690 A 特開2002−198062JP2002-198062

従って、本発明は、前記課題を解決するためになされたものであり、肉厚が薄く、導電性及び強度に優れた燃料電池用セパレータを提供することを目的とする。   Accordingly, an object of the present invention is to provide a fuel cell separator having a small thickness and excellent conductivity and strength.

本発明者らは、前記目的を達成するため鋭意検討した結果、炭素質基材と熱可塑性樹脂繊維とを特定の割合で配合することによって、導電性及び機械的強度に優れた導電性成形材料及び燃料電池用セパレータが得られることを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above object, the present inventors have found that a conductive molding material having excellent electrical conductivity and mechanical strength is obtained by blending a carbonaceous substrate and thermoplastic resin fibers at a specific ratio. And it discovered that the separator for fuel cells was obtained, and came to complete this invention.

すなわち、本発明は、炭素質基材(A)と熱可塑性樹脂繊維(B)とを必須成分として含有する導電性成形材料であって、A/B(質量比)が90/10〜62/38の比率で含有することを特徴とするものであり、さらに、前記導電性成形材料を用いて成形してなることを特徴とする燃料電池用セパレータである。   That is, the present invention is a conductive molding material containing a carbonaceous substrate (A) and a thermoplastic resin fiber (B) as essential components, and the A / B (mass ratio) is 90/10 to 62 /. The fuel cell separator is characterized in that it is contained in a ratio of 38, and further molded by using the conductive molding material.

また、他の本発明は、炭素質基材(A)と熱可塑性樹脂繊維(B)とをA/B(質量比)が90/10〜62/38の比率で水と懸濁せしめて攪拌混合した後、粒子捕集剤を添加して抄造用スラリーを得、該スラリーを湿式抄造してシート化し、さらに該シートを成形して燃料電池用セパレータを製造する工程を有することを特徴とする燃料電池用セパレータの製造方法である。   In another aspect of the present invention, the carbonaceous substrate (A) and the thermoplastic resin fiber (B) are suspended in water at a ratio of A / B (mass ratio) of 90/10 to 62/38 and stirred. After mixing, a particle collecting agent is added to obtain a papermaking slurry, the paper is wet-papered to form a sheet, and the sheet is further formed to produce a fuel cell separator. It is a manufacturing method of the separator for fuel cells.

本発明の導電性成形材料は、導電性及び機械的強度に優れており、燃料電池用セパレータとして好適に用いることができ、各種性能のバランスに優れ実用性の高い燃料電池用セパレータを得ることができる。また、湿式抄造法を用いて燃料電池用セパレータを製造することによって、薄肉のセパレータを容易に製造することが可能となり、燃料電池本体の小型化に寄与できる。   The conductive molding material of the present invention is excellent in electrical conductivity and mechanical strength, can be suitably used as a fuel cell separator, and can provide a fuel cell separator that is excellent in balance of various performances and highly practical. it can. In addition, by manufacturing a fuel cell separator using a wet papermaking method, a thin separator can be easily manufactured, which contributes to downsizing of the fuel cell main body.

本発明における炭素質基材としては、天然黒鉛、人造黒鉛、土壌黒鉛、膨張黒鉛などの黒鉛、カーボンブラック、ケッチェンブラック、カーボンナノチューブ、フラーレン、メソフェーズカーボン等が挙げられ、これらを単独または2種類以上組み合わせて使用できる。ここで、好ましくは黒鉛であり、なかでも成形品を薄肉化した場合でも機械的強度を維持できる膨張黒鉛が好適に用いられる。膨張黒鉛としては特に制限は無く、市販品を用いることができ、その平均粒径は1〜100μmのものが好ましく、より好ましくは4〜50μmである。   Examples of the carbonaceous substrate in the present invention include graphite such as natural graphite, artificial graphite, soil graphite, and expanded graphite, carbon black, ketjen black, carbon nanotube, fullerene, mesophase carbon, and the like. It can be used in combination. Here, graphite is preferably used, and in particular, expanded graphite that can maintain mechanical strength even when the molded product is thinned is suitably used. There is no restriction | limiting in particular as expanded graphite, A commercial item can be used, The average particle diameter has a preferable thing of 1-100 micrometers, More preferably, it is 4-50 micrometers.

本発明における熱可塑性樹脂繊維としては、ポリオレフィン系樹脂、ポリエステル系樹脂、ポリカーボネート系樹脂、ポリスチレン系樹脂、アクリル系樹脂、ポリ塩化ビニル系樹脂、ポリアミド樹脂、ポリフェニレンエーテル系樹脂、ポリフェニレンスルフィド系樹脂、ポリスルホン系樹脂、塩化ビニル系樹脂及びポリフッ化ビニリデン樹脂などの繊維が挙げられ、これらを単独または2種類以上組み合わせて使用できる。なかでも、耐酸性に優れかつ比較的安価であることから、ポリエチレン樹脂やポリプロピレン樹脂等のポリオレフィン系樹脂繊維が好適である。   The thermoplastic resin fibers in the present invention include polyolefin resins, polyester resins, polycarbonate resins, polystyrene resins, acrylic resins, polyvinyl chloride resins, polyamide resins, polyphenylene ether resins, polyphenylene sulfide resins, polysulfones. Fibers such as vinyl resins, vinyl chloride resins, and polyvinylidene fluoride resins can be used, and these can be used alone or in combination of two or more. Especially, since it is excellent in acid resistance and is comparatively cheap, polyolefin resin fibers, such as a polyethylene resin and a polypropylene resin, are suitable.

熱可塑性樹脂繊維に関しては、成形品中に均一に分散させるという観点から微細繊維状のものが好適に用いられ、その平均繊維長分布が100μm〜6000μm、かつ繊維径が0.1〜50μmであることが好ましい。なかでも、多分岐状(フィブリル状)の形状を有するものが好ましく、こうした形状を有する熱可塑性樹脂繊維を用いると、特に抄造工程において黒鉛等を炭素質基材を補足しやすくなる。このような特性を有する熱可塑性樹脂繊維の特に好ましいものとして、例えば、三井化学(株)製のSWPが挙げられる。   With respect to the thermoplastic resin fibers, those in the form of fine fibers are preferably used from the viewpoint of being uniformly dispersed in the molded product, the average fiber length distribution is 100 μm to 6000 μm, and the fiber diameter is 0.1 to 50 μm. It is preferable. Among them, those having a multi-branched (fibril) shape are preferable, and when a thermoplastic resin fiber having such a shape is used, it becomes easy to supplement the carbonaceous substrate with graphite or the like particularly in a papermaking process. As a particularly preferable thermoplastic resin fiber having such characteristics, for example, SWP manufactured by Mitsui Chemicals, Inc. may be mentioned.

本発明においては、これらの炭素質基材(A)と熱可塑性樹脂繊維(B)との配合割合は、A/B(質量比)が90/10〜62/38であり、好ましくは80/20〜65/35である。炭素質基材がこの範囲より少なくなると十分な導電性が得られにくく、また、熱可塑性樹脂繊維がこの範囲より少なくなると、十分な機械的強度が得られにくくなる。   In the present invention, the blending ratio of these carbonaceous substrate (A) and thermoplastic resin fiber (B) is A / B (mass ratio) of 90/10 to 62/38, preferably 80 / 20-65 / 35. When the carbonaceous substrate is less than this range, it is difficult to obtain sufficient electrical conductivity, and when the number of thermoplastic resin fibers is less than this range, it is difficult to obtain sufficient mechanical strength.

本発明の導電性成形材料においては、本発明の目的及び効果に反しない範囲で、炭素繊維等の充填材、ステアリン酸等の離型剤、酸化防止剤等を併用することができる。それらの添加の態様は、樹脂繊維中に混合すること、スラリーとして、炭素質基材および樹脂繊維と共に混合して、導電性成形材料中に分散混合することにより実施できる。   In the conductive molding material of the present invention, a filler such as carbon fiber, a release agent such as stearic acid, an antioxidant and the like can be used in combination as long as the object and effect of the present invention are not adversely affected. These addition modes can be carried out by mixing in resin fibers, mixing as a slurry with a carbonaceous substrate and resin fibers, and dispersing and mixing in a conductive molding material.

本発明においては、これらの導電性成形材料を用いて成形することによって燃料電池用セパレータを得ることができる。燃料電池用セパレータの製造方法は特に限定されず、粉末成形法でもよいが、セパレータの薄肉化という観点からいわゆる湿式抄造法を用いることが好ましい。   In the present invention, a fuel cell separator can be obtained by molding using these conductive molding materials. The manufacturing method of the fuel cell separator is not particularly limited, and may be a powder molding method, but it is preferable to use a so-called wet papermaking method from the viewpoint of thinning the separator.

湿式抄造法による燃料電池用セパレータの製造方法を以下に説明する。先ず、多量の水を入れた離解叩解機(例えばパルパー、リファイナー、ヘンシェルミキサー)内に炭素質基材及び繊維状熱可塑性樹脂を投入後、高速攪拌混合して混合物を得る。次いで得られた混合物を攪拌翼付混合槽内に移した後、粒子捕集剤を添加し低速攪拌混合して濃度0.01〜10%の抄造用スラリーを得る。次いで、この抄造用スラリーを例えば長網型や円筒型の連続式またはバッチ式抄造機により所望寸法の湿潤状態のシートを抄造した後、濾過、減圧、圧搾等により脱水し、乾燥装置(例えばドラム式乾燥機、誘電加熱乾燥機、遠赤外線乾燥機、熱風通気乾燥機)で乾燥してシート状の導電性成形材料を得る。   A method for producing a fuel cell separator by wet papermaking will be described below. First, a carbonaceous base material and a fibrous thermoplastic resin are put into a disaggregation beating machine (for example, a pulper, refiner, Henschel mixer) containing a large amount of water, and then mixed at a high speed to obtain a mixture. Next, after the obtained mixture is transferred into a mixing vessel equipped with a stirring blade, a particle collecting agent is added and mixed at a low speed to obtain a slurry for papermaking having a concentration of 0.01 to 10%. Next, the papermaking slurry is made into a wet sheet having a desired size by using, for example, a continuous or batch type papermaking machine of a long net type or a cylindrical type, and then dehydrated by filtration, decompression, squeezing, etc., and then dried. A sheet type conductive molding material is obtained by drying with a dry dryer, dielectric heating dryer, far-infrared dryer, hot air ventilation dryer).

ここで、粒子捕集剤としては特に限定されず、燃料電池の性能に影響を及ぼす塩素イオンやアンモニウムイオンなどを含まなければ一般的に製紙工程や水処理に使用する粒子捕集剤(凝集剤)が使用でき、例えばファイレックスRC104、ファイレックスRC107(商品名、明成化学工業社製)、アラフィックス502、アラフィックス530、アラフィックス580(商品名、荒川化学工業社製)、115CH、102 (商品名、三井化学社製)などのカチオン系粒子捕集剤が挙げられる。これらは単独で用いてもよく、また例えばファイレックスM(商品名、明成化学工業社製)、アラフロックA−185 (商品名、荒川化学工業社製)、3100C、3150B(商品名、三井化学社製)などのアニオン系粒子捕集剤と組み合わせで使用することもある。   Here, the particle collecting agent is not particularly limited, and a particle collecting agent (flocculating agent) generally used in a papermaking process or water treatment unless chlorine ions or ammonium ions that affect the performance of the fuel cell are included. For example, Pyrex RC104, Pyrex RC107 (trade name, manufactured by Meisei Chemical Co., Ltd.), Arafix 502, Arafix 530, Arafix 580 (Brand name, manufactured by Arakawa Chemical Industries), 115CH, 102 ( Cationic particle scavengers such as trade names, manufactured by Mitsui Chemicals, Inc. These may be used alone. For example, Pyrex M (trade name, manufactured by Meisei Chemical Co., Ltd.), Arafloc A-185 (trade name, manufactured by Arakawa Chemical Industry Co., Ltd.), 3100C, 3150B (trade names, Mitsui Chemicals, Inc.) In some cases, it is used in combination with an anionic particle scavenger.

こうして得られたシート状の導電性成形材料を、コンプレッション成形することにより燃料電池用セパレータを作成する。まず、燃料電池用セパレータ成形用金型にシート状の導電性成形材料を充填し、加熱温度110〜300℃、成形圧力30〜400kgf/cm程度の条件で加熱圧縮を行い、次いで温度25〜100℃、成形圧力30〜400kgf/cm程度の条件で冷却することによって、目的とする燃料電池用セパレータを得る。 A fuel cell separator is prepared by compression-molding the sheet-like conductive molding material thus obtained. First, a sheet-shaped conductive molding material is filled in a fuel cell separator molding die, and heated and compressed under conditions of a heating temperature of 110 to 300 ° C. and a molding pressure of 30 to 400 kgf / cm 2 , and then a temperature of 25 to 25 The target fuel cell separator is obtained by cooling under conditions of 100 ° C. and a molding pressure of about 30 to 400 kgf / cm 2 .

本発明で得られる燃料電池用セパレータは、目的に応じて種々のサイズを製造することが可能であるが、特に肉厚が0.2mm〜2mm程度の薄いものを製造することができる。肉厚が0.2mm未満では、電気的特性及び燃料電池の軽量化に貢献できるものの、脆く割れやすくなりガスバリア性にも劣るという問題がある。一方、肉厚が2.0mmを超えると、燃料電池用セパレータの体積が大きくなり、燃料電池自体の重量・サイズが大きくなるという問題がある。   The fuel cell separator obtained in the present invention can be produced in various sizes depending on the purpose, but in particular, a thin one having a thickness of about 0.2 mm to 2 mm can be produced. If the wall thickness is less than 0.2 mm, although it can contribute to the electrical characteristics and the weight reduction of the fuel cell, there is a problem that it is brittle and easily cracked and has poor gas barrier properties. On the other hand, when the wall thickness exceeds 2.0 mm, the volume of the fuel cell separator increases, and there is a problem that the weight and size of the fuel cell itself increase.

また、本発明で得られる燃料電池用セパレータは、ガスバリア性と高い導電性と機械的強度に優れたものであり、電気抵抗が3〜50mΩ・cm、機械的強度としては曲げ強度が50〜70MPa、曲げ弾性率が10〜30GPa、曲げ歪みが0.6〜1.5%という性能を有している。   Further, the fuel cell separator obtained in the present invention is excellent in gas barrier properties, high conductivity and mechanical strength, and has an electric resistance of 3 to 50 mΩ · cm and a mechanical strength of 50 to 70 MPa in bending strength. , The bending elastic modulus is 10 to 30 GPa and the bending strain is 0.6 to 1.5%.

以下に本発明を実施例により詳しく説明するが、本発明は実施例に限定されるものではない。尚、得られた導電性成形材料及び燃料電池用セパレータの性能は以下に示す方法に従って評価した。   EXAMPLES The present invention will be described in detail below with reference to examples, but the present invention is not limited to the examples. The performance of the obtained conductive molding material and fuel cell separator was evaluated according to the following method.

(1)曲げ強度、曲げ弾性率及び曲げ歪み
曲げ強度及び曲げ弾性率は、JIS−K−6911に準処して測定した。また、曲げ歪みは、試験片の厚みT、支点間距離L(=16T)、試験片が割れるまでのたわみ距離ΔLとして、下式に従い算出した。
曲げ歪み(%)=6T×ΔL/L×100
(1) Bending strength, bending elastic modulus and bending strain The bending strength and bending elastic modulus were measured according to JIS-K-6911. Further, the bending strain was calculated according to the following equation as the thickness T of the test piece, the distance L between fulcrums (= 16T), and the deflection distance ΔL until the test piece breaks.
Bending strain (%) = 6T × ΔL / L 2 × 100

(2)電気抵抗
四端子四探針法抵抗率計(商品名三菱化学株式会社製、ロレスターGP)を用い、JISK7194に準じて測定した。
(2) Electric resistance It measured according to JISK7194 using the 4-terminal four-probe method resistivity meter (trade name, Lorester GP, manufactured by Mitsubishi Chemical Corporation).

(3)分散性
燃料電池用セパレータから30mm角に切り出した試験片(n=6)の比重を測定し、その最大値、最小値及び平均値から比重バラツキを下式に従い算出し、その数値が5%未満であれば○、5%以上であれば×として評価した。
〔比重バラツキ(%)〕={(最大値)−(最小値)}÷(平均値)×100
(3) Dispersibility The specific gravity of a test piece (n = 6) cut into a 30 mm square from a fuel cell separator is measured, and the specific gravity variation is calculated from the maximum value, minimum value, and average value according to the following formula. If it was less than 5%, it was evaluated as ◯ if it was 5% or more.
[Specific gravity variation (%)] = {(maximum value) − (minimum value)} ÷ (average value) × 100

(4)ガスバリア性
燃料電池用セパレータ70mm角の片面に石鹸水を塗布し、その反対側から0.02MPaの窒素ガスを流して、石鹸水の泡の有無を目視で判定し、泡が無ければ○、泡が有れば×とした。
(4) Gas barrier property Applying soapy water to one side of 70mm square of fuel cell separator, flowing 0.02MPa of nitrogen gas from the opposite side, and visually judging the presence or absence of soapy water bubbles, ○ if there are no bubbles, When there was a bubble, it was set as x.

実施例1
ヘンシェルミキサー内に、水7リットル、膨張黒鉛粉末 (商品名カルファイトCS−30、丸豊鋳材製作所社製、平均粒径15±3μm)80質量部、ポリプロピレン合成繊維(商品名SWP Y600、三井化学社製、平均繊維長1.0mm、繊維径分布5〜50μm)20質量部を仕込み、高速で撹拌混合して混合物を得た。次いで、得られた混合物を撹拌翼付混合槽内に移した後0.30質量部 のカチオン系粒子捕集剤(商品名 ファイレックスRC−104、明成化学工業社製)及び0.2質量部のアニオン系粒子捕集剤(商品名ファイレックスM、明成化学工業社製)を加えて、十分に低速で撹拌混合して抄造スラリーを得た。
Example 1
In a Henschel mixer, 7 liters of water, expanded graphite powder (trade name Calfite CS-30, manufactured by Marufyo Casting Co., Ltd., average particle size 15 ± 3 μm), polypropylene synthetic fiber (trade name SWP Y600, Mitsui) 20 parts by mass (manufactured by Kagaku Co., Ltd., average fiber length: 1.0 mm, fiber diameter distribution: 5 to 50 μm) were charged and stirred and mixed at high speed to obtain a mixture. Subsequently, after the obtained mixture was transferred into a mixing vessel equipped with a stirring blade, 0.30 parts by mass of a cationic particle collector (trade name Phyrex RC-104, manufactured by Meisei Chemical Co., Ltd.) and 0.2 parts by mass An anionic particle scavenger (trade name Phyrex M, manufactured by Meisei Chemical Industry Co., Ltd.) was added and sufficiently stirred and mixed at a low speed to obtain a papermaking slurry.

次に、この抄造スラリーを標準角型シートマシン(東洋精機製実験用抄造機、抄造網100メッシュ、縦250mm ×横200mm )に全量注入し、濾過及び吸引圧搾脱水を行って湿潤状態のシートを得た後、100℃の熱風循環乾燥機内で乾燥してシート状の導電性成形材料を完成させた。これを10×10cmにカットして180℃に加熱した金型に充填し、圧縮成形機で、成形圧力200kgf/cm、成形時間5分間の条件でプレス後、加圧状態で100℃まで冷却し、肉厚0.5mmの燃料電池用セパレータを作成し、性能を評価した。また、同様にして、物性試験用の試験片を作成し、性能を評価した。評価結果を表1に示す。 Next, the entire amount of the papermaking slurry is injected into a standard square sheet machine (Toyo Seiki's experimental papermaking machine, papermaking mesh 100 mesh, length 250 mm × width 200 mm), filtered and suction-pressed and dehydrated to obtain a wet sheet. After being obtained, it was dried in a hot air circulating dryer at 100 ° C. to complete a sheet-like conductive molding material. This is cut into 10 × 10 cm and filled in a mold heated to 180 ° C., pressed with a compression molding machine at a molding pressure of 200 kgf / cm 2 and a molding time of 5 minutes, and then cooled to 100 ° C. under pressure. Then, a separator for a fuel cell having a thickness of 0.5 mm was prepared and performance was evaluated. Similarly, test pieces for physical property tests were prepared and performance was evaluated. The evaluation results are shown in Table 1.

実施例2〜6
表1に示すように配合割合を変更した以外は、実施例1と同じ方法にてシート状の導電性成形材料を得た後、圧縮成形により燃料電池用セパレータ及び物性試験用の試験片を得、性能を評価した。その結果を表1に示す。尚、実施例5においては、熱可塑性樹脂繊維として、ポリエチレン合成繊維(製品名SWP UL410、三井化学(株)製、平均繊維長1.0mm、繊維径分布2〜30μm)を、実施例6においては、熱可塑性樹脂繊維として、ポロプロピレン繊維(製品名パイレン、三菱レイヨン(株)製、平均繊維長6.0mm、繊維径30μm)を用いた。
Examples 2-6
As shown in Table 1, except that the blending ratio was changed, a sheet-like conductive molding material was obtained in the same manner as in Example 1, and then a fuel cell separator and a test piece for physical property testing were obtained by compression molding. The performance was evaluated. The results are shown in Table 1. In Example 5, polyethylene synthetic fiber (product name SWP UL410, manufactured by Mitsui Chemicals, Inc., average fiber length 1.0 mm, fiber diameter distribution 2 to 30 μm) is used as the thermoplastic resin fiber in Example 6. Used a polypropylene resin fiber (product name: Pyrene, manufactured by Mitsubishi Rayon Co., Ltd., average fiber length: 6.0 mm, fiber diameter: 30 μm) as a thermoplastic resin fiber.

実施例7
膨張黒鉛粉末 (商品名カルファイトCS−30、丸豊鋳材製作所社製、平均粒径15±3μm)80質量部、ポリプロピレン合成繊維(商品名SWP Y600、三井化学社製、平均繊維長1.0mm、繊維径分布5〜50μm)20質量部をミキサーで混合し、得られた粉末状の導電性成形材料から17.0質量部を秤量し、180℃に加熱した10×10cmの金型に均一充填した。以降、成形条件は実施例1と同じ方法で、圧縮成形により燃料電池用セパレータ及び物性試験用の試験片を得、性能を評価した。その結果を表1に示す。
Example 7
Expanded graphite powder (trade name Calfite CS-30, manufactured by Maruho Castings Manufacturing Co., Ltd., average particle size 15 ± 3 μm) 80 parts by mass, polypropylene synthetic fiber (trade name SWP Y600, manufactured by Mitsui Chemicals, Inc., average fiber length) (0 mm, fiber diameter distribution 5 to 50 μm) 20 parts by mass are mixed with a mixer, 17.0 parts by mass are weighed from the obtained powdered conductive molding material, and heated to 180 ° C. in a 10 × 10 cm mold. Uniform filling. Thereafter, the molding conditions were the same as in Example 1, and a fuel cell separator and a test piece for physical property testing were obtained by compression molding, and the performance was evaluated. The results are shown in Table 1.

比較例1及び2
表1に示すように配合割合を変更した以外は、実施例1と同様にしてシート状の導電性成形材料を得た後、圧縮成形により燃料電池用セパレータ及び物性試験用の試験片を作成した。その結果を表1に示す。
Comparative Examples 1 and 2
As shown in Table 1, except that the blending ratio was changed, a sheet-like conductive molding material was obtained in the same manner as in Example 1, and then a fuel cell separator and a test piece for physical property testing were prepared by compression molding. . The results are shown in Table 1.

Figure 0004716649
Figure 0004716649

表1に示されたとおり、実施例1〜6の導電性成形材料及び燃料電池用セパレータは、成形性、分散性及びガスバリア性に優れ、曲げ強度、曲げ弾性率、曲げ歪み、電気抵抗のいずれの特性も満足するものである。これに対して、比較例1のものは、炭素質基材(A)の量が多いため曲げ強度が劣り、比較例2のものは、熱可塑性樹脂繊維(B)の量が多いため導電性に劣るという結果が得られた。   As shown in Table 1, the conductive molding materials and fuel cell separators of Examples 1 to 6 are excellent in moldability, dispersibility, and gas barrier properties, and are any of bending strength, bending elastic modulus, bending strain, and electrical resistance. These characteristics are also satisfied. On the other hand, the thing of the comparative example 1 is inferior in bending strength since there is much quantity of a carbonaceous base material (A), and the thing of the comparative example 2 is conductive because there is much quantity of thermoplastic resin fiber (B). The result was inferior to.

ここで実施例5は、熱可塑性樹脂繊維(B)をポリエチレン繊維としたものであるが、実施例1とほぼ同等の特性を兼ね備えたものである。   Here, in Example 5, the thermoplastic resin fiber (B) is made of polyethylene fiber, and has characteristics substantially equivalent to those of Example 1.

本発明のシート状の導電性成形材料は、導電性及び機械的強度に優れており、電極等に応用できる可能性を有しており、特に燃料電池用セパレータとして好適に用いることができ、各種性能のバランスに優れ実用性の高い燃料電池セパレータを得ることができる。また、湿式抄造法を用いて燃料電池用セパレータを製造することによって、生産効率が高くなりコスト面で優位となるだけでなく、更には薄肉のセパレータを容易に製造することが可能となることから、燃料電池本体の小型化に寄与できるものである。   The sheet-like conductive molding material of the present invention is excellent in conductivity and mechanical strength and has a possibility of being applicable to electrodes and the like, and can be suitably used particularly as a separator for a fuel cell. A fuel cell separator having a good balance of performance and high practicality can be obtained. In addition, by producing a separator for a fuel cell using a wet papermaking method, not only is production efficiency high and cost is superior, but also a thin separator can be easily produced. This can contribute to the miniaturization of the fuel cell main body.

Claims (6)

炭素質基材(A)と平均繊維径が0.1〜50μm、かつ平均繊維長が100〜6000μmである熱可塑性樹脂繊維(B)とを必須成分として含有する導電性成形材料であって、A/B(質量比)が90/10〜62/38の比率で含有することを特徴とする導電性成形材料。 A conductive molding material containing, as essential components, a carbonaceous substrate (A) and a thermoplastic resin fiber (B) having an average fiber diameter of 0.1 to 50 μm and an average fiber length of 100 to 6000 μm , A conductive molding material characterized by containing A / B (mass ratio) in a ratio of 90/10 to 62/38. 前記炭素質基材(A)が黒鉛であることを特徴とする請求項1に記載の導電性成形材料。   The conductive molding material according to claim 1, wherein the carbonaceous substrate (A) is graphite. 前記熱可塑性樹脂繊維(B)がポリオレフィン系樹脂繊維であることを特徴とする請求項1または2に記載の導電性成形材料。   The conductive molding material according to claim 1 or 2, wherein the thermoplastic resin fiber (B) is a polyolefin resin fiber. 前記熱可塑性樹脂繊維(B)多分岐状の形状を有することを特徴とする請求項1〜3のいずれかに記載の導電性成形材料。 The conductive molding material according to claim 1, wherein the thermoplastic resin fiber (B) has a multi-branched shape. 請求項1〜4のいずれかに記載の導電性成形材料を用いて成形してなることを特徴とする燃料電池セパレータ。   A fuel cell separator formed by using the conductive molding material according to claim 1. 炭素質基材(A)と平均繊維径が0.1〜50μm、かつ平均繊維長が100〜6000μmである熱可塑性樹脂繊維(B)とをA/B(質量比)が90/10〜62/38の比率で水と懸濁せしめて攪拌混合した後、粒子捕集剤を添加して抄造用スラリーを得、該スラリーを湿式抄造してシート化し、さらに該シートを成形して燃料電池用セパレータを製造する工程を有することを特徴とする燃料電池用セパレータの製造方法。 A / B (mass ratio) is 90/10 to 62 of carbonaceous substrate (A) and thermoplastic resin fiber (B) having an average fiber diameter of 0.1 to 50 μm and an average fiber length of 100 to 6000 μm. After suspension with water at a ratio of / 38 and stirring and mixing, a particle collecting agent is added to obtain a papermaking slurry, the slurry is wet-papered to form a sheet, and the sheet is further molded to form a fuel cell The manufacturing method of the separator for fuel cells characterized by including the process of manufacturing a separator.
JP2003330437A 2003-09-22 2003-09-22 Conductive molding material, fuel cell separator using the same, and method for producing the same Expired - Lifetime JP4716649B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003330437A JP4716649B2 (en) 2003-09-22 2003-09-22 Conductive molding material, fuel cell separator using the same, and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003330437A JP4716649B2 (en) 2003-09-22 2003-09-22 Conductive molding material, fuel cell separator using the same, and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005100703A JP2005100703A (en) 2005-04-14
JP4716649B2 true JP4716649B2 (en) 2011-07-06

Family

ID=34459408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003330437A Expired - Lifetime JP4716649B2 (en) 2003-09-22 2003-09-22 Conductive molding material, fuel cell separator using the same, and method for producing the same

Country Status (1)

Country Link
JP (1) JP4716649B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2636487C (en) * 2006-01-25 2012-03-13 Dic Corporation Fuel cell bipolar plate, process for producing the same, and fuel cell including the bipolar plate
JP5068051B2 (en) * 2006-09-29 2012-11-07 昭和電工株式会社 Fuel cell separator and method for producing the same
JP5545669B2 (en) * 2011-01-18 2014-07-09 信越ポリマー株式会社 Separator manufacturing method
JP6962061B2 (en) * 2017-08-10 2021-11-05 日清紡ホールディングス株式会社 Conductive sheet for fuel cell separator and fuel cell separator
WO2019176995A1 (en) * 2018-03-13 2019-09-19 信越ポリマー株式会社 Separator for fuel cell and method for manufacturing same
JP7093713B2 (en) * 2018-10-23 2022-06-30 信越ポリマー株式会社 Separator for fuel cell and its manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5297130A (en) * 1976-02-12 1977-08-15 Toray Industries Fuel cell
JP2001122677A (en) * 1999-10-26 2001-05-08 Osaka Gas Co Ltd Method for manufacturing separator for fuel battery
JP2004356091A (en) * 2003-05-08 2004-12-16 Dainippon Ink & Chem Inc Manufacturing method of fuel cell separator, and fuel cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5297130A (en) * 1976-02-12 1977-08-15 Toray Industries Fuel cell
JP2001122677A (en) * 1999-10-26 2001-05-08 Osaka Gas Co Ltd Method for manufacturing separator for fuel battery
JP2004356091A (en) * 2003-05-08 2004-12-16 Dainippon Ink & Chem Inc Manufacturing method of fuel cell separator, and fuel cell

Also Published As

Publication number Publication date
JP2005100703A (en) 2005-04-14

Similar Documents

Publication Publication Date Title
EP3240071B1 (en) Electrode for redox flow batteries, and redox flow battery
JP5623036B2 (en) Molding material for fuel cell separator
CA2413146C (en) Conductive composition for solid polymer type fuel cell separator, solid polymer type fuel cell separator, solid polymer type fuel cell and solid polymer type fuel cell system using the separator
KR20190078576A (en) Conductive Flake-Strengthened, Polymer-Stabilized Electrode Composition and Method of Making Same
TWI633145B (en) Conductive resin composition and film formed from the same
KR100834057B1 (en) Material for preparing fuel cell separator, fuel cell separator and fuel cell
Karam et al. Development of surface‐engineered tape‐casting method for fabricating freestanding carbon nanotube sheets containing Fe2O3 nanoparticles for flexible batteries
EP1577971A1 (en) Method for producing separator for fuel cell, separator for fuel cell and fuel cell
JP5224860B2 (en) Fuel cell separator and method for producing the same
JP2016081900A (en) Fuel cell separator and manufacturing method thereof, fuel cell, conductive molding body and manufacturing method thereof, and conductive molding unwoven fabric and sheet making method thereof
Jabbour et al. Use of paper-making techniques for the production of Li-ion paper-batteries
JP5600158B2 (en) Separation plate for fuel cell and fuel cell including the same
JP4716649B2 (en) Conductive molding material, fuel cell separator using the same, and method for producing the same
JP2019160795A (en) Bipolar plate for redox flow battery and manufacturing method thereof
JP3900947B2 (en) Manufacturing method of fuel cell separator, fuel cell separator and fuel cell
JPH11354136A (en) Fuel cell, separator for fuel cell, and manufacture therefor
KR20070084217A (en) Sheet made by papermaking process, multilayer sheet and separator for fuel cell
US20040036190A1 (en) Gas diffusion electrode manufacturing method and fuel cell
JP3437935B2 (en) Manufacturing method of fuel cell separator
JP2017033864A (en) Control valve type lead-acid battery
JP2021197245A (en) Gas diffusion layer, membrane electrode assembly, fuel cell, and manufacturing method of gas diffusion layer
JP3956956B2 (en) Manufacturing method of fuel cell separator and fuel cell
KR101380401B1 (en) Hybrid bipolar plate for fuel cell
KR101041034B1 (en) Composition for bipolar plate of fuel cell, manufacturing method thereof, and bipolar plate and fuel cell comprising the same
JP3925806B2 (en) Fuel cell separator material, fuel cell separator using the material, and fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100818

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110329

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250