JP2017033864A - Control valve type lead-acid battery - Google Patents

Control valve type lead-acid battery Download PDF

Info

Publication number
JP2017033864A
JP2017033864A JP2015155065A JP2015155065A JP2017033864A JP 2017033864 A JP2017033864 A JP 2017033864A JP 2015155065 A JP2015155065 A JP 2015155065A JP 2015155065 A JP2015155065 A JP 2015155065A JP 2017033864 A JP2017033864 A JP 2017033864A
Authority
JP
Japan
Prior art keywords
retainer
control valve
active material
valve type
type lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015155065A
Other languages
Japanese (ja)
Other versions
JP6544126B2 (en
Inventor
鈴木 啓太
Keita Suzuki
啓太 鈴木
有広 櫛部
Arihiro Kushibe
有広 櫛部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2015155065A priority Critical patent/JP6544126B2/en
Publication of JP2017033864A publication Critical patent/JP2017033864A/en
Application granted granted Critical
Publication of JP6544126B2 publication Critical patent/JP6544126B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a control valve type lead-acid battery which has high capacity and improves a high-rate discharge performance.SOLUTION: A control valve type lead-acid battery 1 is manufactured. The control valve type lead-acid battery comprises an electrode plate group which is configured by laminating a cathode plate 2 and an anode plate 3 via a retainer 4, and an electrolyte. The retainer 4 includes one surface 4a which is abutted with the anode plate 3 in a direction of lamination, and another surface 4b which is abutted with the cathode plate 2 in the direction of lamination. An active material mass ratio (N/P) of a total mass N of anode active materials in the anode plate 3 and a total mass P of cathode active materials in the cathode plate 2 under a full charge state is adjusted within a range of 0.7 to 1.1. The retainer 4 contains first glass fibers having a number average fiber diameter equal to or less than 1.0 μm and second glass fibers having a number average fiber diameter equal to or more than 3.0 μm. A velocity ratio (A/B) of a suction velocity A of the electrolyte on the one surface 4a of the retainer 4 and a suction velocity B of the electrolyte on the other surface 4b is adjusted within a range of 1.3 to 1.4.SELECTED DRAWING: Figure 1

Description

本発明は、制御弁式鉛蓄電池に関する。   The present invention relates to a control valve type lead storage battery.

制御弁式鉛蓄電池は、相対的に安価で信頼性が高くメンテナンスフリーの特長を持ち、無停電電源装置や電力貯蔵用途等様々な分野に広く使用されている。   Control valve-type lead-acid batteries are relatively inexpensive, reliable and maintenance-free, and are widely used in various fields such as uninterruptible power supplies and power storage applications.

制御弁式鉛蓄電池の電解液は、通常リテーナと呼ばれるセパレータ中に保時されている。リテーナは正極板と負極板両方に触れているため、電池特性に与えるリテーナ特性の影響は大きい。理想的なリテーナは、極板群において、(1)厚み、幅方向への電解液の拡散が良好であること、(2)極板の耳部から足部方向への電解液の拡散が低く制限されること、(3)充放電時に起こる活物質の膨張収縮への追従性が良好であること、(4)過放電の状態で放置された際に浸透短絡が起きにくいこと、(5)充電時に発生したガスの移動が容易であること等様々であり、これまで、厚み方向でのリテーナ密度の変更(特許文献1)、リテーナ中へ無機物(特許文献2)や有機物(特許文献3)の添加などが行われてきた。   The electrolytic solution of the control valve type lead-acid battery is usually kept in a separator called a retainer. Since the retainer touches both the positive electrode plate and the negative electrode plate, the influence of the retainer characteristics on the battery characteristics is large. The ideal retainer has (1) good diffusion of electrolyte in the thickness and width direction in the electrode group, and (2) low diffusion of electrolyte in the direction from the ear to the foot of the electrode plate. (3) Good follow-up to the expansion and contraction of the active material that occurs during charging and discharging, (4) Osmotic short-circuit is not likely to occur when left in an overdischarged state, (5) It is various such as easy movement of gas generated during charging, so far, change of retainer density in the thickness direction (Patent Document 1), inorganic substance (Patent Document 2) and organic substance (Patent Document 3) into the retainer. Has been added.

特開平08−203490号公報Japanese Patent Laid-Open No. 08-203490 特許第3054254号公報Japanese Patent No. 3054254 特開平11−307074号公報Japanese Patent Application Laid-Open No. 11-307074

しかしながら、特許文献1、2及び3に記載されているリテーナは、リテーナとして幅広く効果があるようにみえるが、すべての電池構成で成立するものではない。特に、正極と負極の活物質質量比が変わると高率放電性能が大きく変化する。   However, although the retainers described in Patent Documents 1, 2, and 3 seem to have a wide effect as retainers, they do not hold for all battery configurations. Particularly, when the mass ratio of the positive electrode and the negative electrode changes, the high rate discharge performance changes greatly.

本発明は上記の課題に鑑みたものであり、高容量であり放電性能に優れた制御弁式鉛蓄電池を提供することにある。   The present invention has been made in view of the above problems, and it is an object of the present invention to provide a control valve type lead-acid battery having a high capacity and excellent discharge performance.

本発明に係る制御弁式鉛蓄電池は、負極板と正極板がリテーナを介して積層されてなる極板群と電解液とを備え、リテーナは負極板と積層方向に当接する一方の面と正極板と積層方向に当接する他方の面とを備える。本発明の制御弁式鉛蓄電池では、満充電状態において、負極板に保持された負極活物質の総質量(N)と正極板に保持された正極活物質の総質量(P)との関係が(N/P)=0.7〜1.1の範囲に調整されている。この正極負極活物質質量比で構成される制御弁式鉛蓄電池に用いられるリテーナが1.0μm以下の数平均繊維径である第1のガラス繊維と3.0μm以上の数平均繊維径である第2のガラス繊維の2種類のガラス繊維から構成されている。この2種類のガラス繊維で構成されたリテーナ中のガラス繊維の数平均繊維長は、200〜300μmの範囲となる。この2種類のガラス繊維で構成されたリテーナには、負極板に当接する一方の面における電解液の吸液速度Aと正極板に当接する他方の面における電解液の吸液速度Bとの相対関係が、(A/B)=1.3〜1.4の範囲に調整されている。   The control valve-type lead-acid battery according to the present invention includes an electrode plate group in which a negative electrode plate and a positive electrode plate are stacked via a retainer, and an electrolyte, and the retainer is in contact with the negative electrode and one surface in the stacking direction and the positive electrode A plate and the other surface in contact with the stacking direction. In the control valve type lead storage battery of the present invention, in the fully charged state, the relationship between the total mass (N) of the negative electrode active material held on the negative electrode plate and the total mass (P) of the positive electrode active material held on the positive electrode plate is (N / P) is adjusted to a range of 0.7 to 1.1. The retainer used in the control valve type lead storage battery constituted by the positive electrode / negative electrode active material mass ratio is a first glass fiber having a number average fiber diameter of 1.0 μm or less and a first glass fiber having a number average fiber diameter of 3.0 μm or more. It is comprised from 2 types of glass fibers of 2 glass fibers. The number average fiber length of the glass fibers in the retainer composed of these two types of glass fibers is in the range of 200 to 300 μm. The retainer made of these two types of glass fibers has a relative relationship between the electrolyte absorption rate A on one surface that contacts the negative electrode plate and the electrolyte absorption rate B on the other surface that contacts the positive electrode plate. The relationship is adjusted to a range of (A / B) = 1.3 to 1.4.

このように、負極活物質と正極活物質の質量比を調整し、2種類のガラス繊維を配合したリテーナの一方の面と他方の面とにおける電解液の吸液速度比を調整することにより、鉛蓄電池の容量を高くすることができ、しかも放電性能を向上させることができる。さらに、負極活物質の総質量Nと正極活物質の総質量Pとの比(活物質質量比)N/Pを0.9〜1.1の範囲に調整すると、放電特性を顕著に向上させることができる。   Thus, by adjusting the mass ratio of the negative electrode active material and the positive electrode active material, by adjusting the liquid absorption rate ratio of the electrolyte solution on one side and the other side of the retainer containing two types of glass fibers, The capacity of the lead storage battery can be increased, and the discharge performance can be improved. Furthermore, when the ratio (active material mass ratio) N / P of the total mass N of the negative electrode active material and the total mass P of the positive electrode active material is adjusted to a range of 0.9 to 1.1, the discharge characteristics are remarkably improved. be able to.

なお、活物質質量比N/Pが0.7に満たない場合は放電特性が低下し、活物質質量比N/Pが1.1を超える場合は電池容量が低下する。また、第1のガラス繊維の数平均繊維径が1.0μmを超える場合、第2のガラス繊維の数平均繊維径が3.0μmに未たない場合は、リテーナ中のガラス繊維の数平均繊維長が200〜300μmの範囲から外れる。リテーナ中のガラス繊維の数平均繊維長が200μm満たない場合は、リテーナの密度が大きくなる(リテーナ内の隙間の体積が小さくなる)ため、リテーナに対する電解液の透過性が低下し、リテーナ中のガラス繊維の数平均繊維長が300μmを超える場合は、リテーナの密度が小さくなる(リテーナ内の隙間の体積が大きくなる)ため、電解液の吸収性に影響を与え、吸液速度比を制御することができない。さらに、リテーナの両面の吸液速度比A/Bが1.3に満たない場合は、電池の高容量化、放電特性の向上のいずれも図ることはできず、リテーナの両面の吸液速度比A/Bが1.4を超える場合は電池容量が低下する。   In addition, when active material mass ratio N / P is less than 0.7, a discharge characteristic will fall, and when active material mass ratio N / P exceeds 1.1, battery capacity will fall. Moreover, when the number average fiber diameter of the first glass fiber exceeds 1.0 μm, the number average fiber diameter of the second glass fiber is not 3.0 μm, and the number average fiber of the glass fiber in the retainer. The length is out of the range of 200 to 300 μm. When the number average fiber length of the glass fibers in the retainer is less than 200 μm, the density of the retainer increases (the volume of the gap in the retainer decreases), so that the permeability of the electrolytic solution to the retainer decreases, and the retainer in the retainer When the number average fiber length of the glass fibers exceeds 300 μm, the density of the retainer becomes small (the volume of the gap in the retainer becomes large), thereby affecting the absorbability of the electrolytic solution and controlling the liquid absorption speed ratio. I can't. Furthermore, when the liquid absorption speed ratio A / B on both sides of the retainer is less than 1.3, neither the capacity increase of the battery nor the improvement of the discharge characteristics can be achieved. When A / B exceeds 1.4, the battery capacity decreases.

このような効果が得られるリテーナは、一方の面が網目状の凹凸面を形成し、他方の面が不規則な凹凸面を形成する構造を備えている。すなわち、2種類のガラス繊維で構成したリテーナが形状の異なる2つの凹凸面を備えることによって、リテーナの両面における電解液の吸液速度比を調整することができる。このような構造を備えるリテーナは、湿式抄造機を用いて製造することができる。具体的には、湿式抄造機の抄き網上に2種類のガラス繊維を混合したスラリーを供給して抄造体を作製する。この抄造体では、抄き網と接触する面が網目状の凹凸面となりセパレータの一方の面を構成し、抄き網と接触しない面が不規則な凹凸面となりセパレータの他方の面を構成することができる。   A retainer capable of obtaining such an effect has a structure in which one surface forms a mesh-like uneven surface and the other surface forms an irregular uneven surface. That is, the retainer composed of two types of glass fibers has two uneven surfaces having different shapes, so that the liquid absorption rate ratio of the electrolyte solution on both surfaces of the retainer can be adjusted. A retainer having such a structure can be manufactured using a wet papermaking machine. Specifically, a papermaking body is produced by supplying a slurry in which two kinds of glass fibers are mixed onto a papermaking net of a wet papermaking machine. In this papermaking body, the surface in contact with the papermaking net becomes a mesh-like uneven surface and constitutes one surface of the separator, and the surface not in contact with the papermaking net becomes an irregular uneven surface and constitutes the other surface of the separator be able to.

上記の効果が得られる前提となる吸液速度比を得るためには、セパレータを構成する2種類のガラス繊維のうち、第1のガラス繊維の寸法は数平均繊維径に換算すると0.8μm〜1.0μmとなり、第2のガラス繊維の寸法は数平均繊維径に換算すると3.5μm〜5.0μmとなり、第1のガラス繊維の質量M1と第2のガラス繊維の質量M2との関係が(M1/M2)=4〜2.3となるように調整すればよい。   In order to obtain the liquid absorption speed ratio which is the premise for obtaining the above effect, among the two types of glass fibers constituting the separator, the dimension of the first glass fiber is 0.8 μm to the number average fiber diameter. 1.0 μm, and the second glass fiber size is 3.5 μm to 5.0 μm in terms of the number average fiber diameter, and the relationship between the mass M1 of the first glass fiber and the mass M2 of the second glass fiber. Adjustment may be made so that (M1 / M2) = 4 to 2.3.

本発明の実施の形態である制御弁式鉛蓄電池の部材構成を示す斜視図である。It is a perspective view which shows the member structure of the control valve type lead acid battery which is embodiment of this invention. 本発明の制御弁式鉛蓄電池を構成するリテーナの外観を撮影した写真であり、(A)はリテーナの一方の面を示し、(B)はリテーナの他方の面を示す。It is the photograph which image | photographed the external appearance of the retainer which comprises the control valve type lead acid battery of this invention, (A) shows one surface of a retainer, (B) shows the other surface of a retainer.

以下、本発明の実施の形態について詳細に説明する。図1は、本例の制御弁式鉛蓄電池を示す斜視図である。図1において符号1は、内部の構成が判るように示された制御弁式鉛蓄電池である。この制御弁式鉛蓄電池1では、正極板2と負極板3がリテーナ4を介して積層されて極板群が構成されている。   Hereinafter, embodiments of the present invention will be described in detail. FIG. 1 is a perspective view showing a control valve type lead storage battery of this example. In FIG. 1, reference numeral 1 is a control valve type lead-acid battery shown so that the internal configuration can be understood. In this control valve type lead storage battery 1, a positive electrode plate 2 and a negative electrode plate 3 are laminated via a retainer 4 to constitute an electrode plate group.

リテーナ4は、負極板3積層方向に当接する一方の面4aおよび正極板2と積層方向に当接する他方の面4bとを備えている。またリテーナ4は、図2の写真が示すように、一方の面4aが網目状の凹凸面を形成し、他方の面4bが不規則な凹凸面を形成している。   The retainer 4 includes one surface 4a that contacts the negative electrode plate 3 in the stacking direction and the other surface 4b that contacts the positive electrode plate 2 in the stacking direction. In the retainer 4, as shown in the photograph of FIG. 2, one surface 4a forms a mesh-like uneven surface, and the other surface 4b forms an irregular uneven surface.

この極板群を構成する同極性の各極板2,3は、耳部6,7を介してストラップ8,9で接続されている。この極板群を、電槽12に収容し、蓋体13により閉塞して鉛蓄電池を組み立てる。このとき、各ストラップ8,9から延びる極柱10,11が、蓋体13の表面に突出する外部端子14,15に蓋体13の裏面から接続される。   The electrode plates 2 and 3 having the same polarity constituting this electrode plate group are connected to each other by straps 8 and 9 via ear portions 6 and 7. The electrode plate group is accommodated in the battery case 12 and closed by the lid 13 to assemble a lead storage battery. At this time, the poles 10 and 11 extending from the straps 8 and 9 are connected to the external terminals 14 and 15 protruding from the surface of the lid 13 from the back surface of the lid 13.

なお、蓋体13には、外部端子14,15の他に、充電時に正極で発生する酸素ガスのうち、負極のガス吸収反応で吸収しきれなかった過剰ガスを、電槽12外へ排出するための制御弁16が設けられている。制御弁16の材質は、耐薬品性(耐酸性、耐シリコンオイル)、耐磨耗性、耐熱性に優れた材質、具体的には、フッ素ゴムを用いることが好ましい。   In addition to the external terminals 14 and 15, the lid 13 discharges, out of the battery case 12, excess gas that could not be absorbed by the gas absorption reaction of the negative electrode out of the oxygen gas generated at the positive electrode during charging. A control valve 16 is provided. The material of the control valve 16 is preferably a material excellent in chemical resistance (acid resistance, silicon oil resistance), wear resistance, and heat resistance, specifically, fluororubber.

そして、蓋体13に設けられた図示しない注液口から、所定量の電解液(図示せず)を電槽12内に注入して、電槽化成を行い、本例の制御弁式鉛蓄電池1を作製した。なお、電槽12の材質は、特に制限されるものではなく、具体的には、ポリプロピレン、ABS、変性PPE(ポリフェニレンエーテル)等を用いることができる。   Then, a predetermined amount of electrolytic solution (not shown) is injected into the battery case 12 from a liquid injection port (not shown) provided in the lid body 13 to form a battery case, and the control valve type lead-acid battery of this example 1 was produced. The material of the battery case 12 is not particularly limited, and specifically, polypropylene, ABS, modified PPE (polyphenylene ether) or the like can be used.

本例では、満充電状態である制御弁式鉛蓄電池1内で負極板3に保持された負極活物質の総質量(N)と正極板2に保持された正極活物質の総質量(P)とが、活物質質量比(N/P)=0.7〜1.1の関係にあり、この活物質重量比で構成される制御弁式鉛蓄電池1に用いられるリテーナ4が1.0μm以下の数平均繊維径であるガラス繊維(第1のガラス繊維)と3.0μm以上の数平均繊維径(第2のガラス繊維)であるガラス繊維との2種類のガラス繊維から構成されている。このガラス繊維で構成されたリテーナ4中のガラス繊維の数平均繊維長は、200〜300μmである。このガラス繊維で構成されたリテーナ4は、負極板3に当接する一方の面4aにおける電解液の吸液速度Aと正極板2に当接する他方の面4bの吸液速度Bとの相対関係が、A/B=1.3〜1.4の範囲に調整されている。   In this example, the total mass (N) of the negative electrode active material held on the negative electrode plate 3 and the total mass (P) of the positive electrode active material held on the positive electrode plate 2 in the fully-charged control valve type lead storage battery 1. And the active material mass ratio (N / P) = 0.7 to 1.1, and the retainer 4 used in the control valve type lead storage battery 1 configured with this active material weight ratio is 1.0 μm or less. It is comprised from two types of glass fibers, the glass fiber (1st glass fiber) which is a number average fiber diameter, and the glass fiber which is a number average fiber diameter (2nd glass fiber) of 3.0 micrometers or more. The number average fiber length of the glass fiber in the retainer 4 comprised with this glass fiber is 200-300 micrometers. The retainer 4 made of this glass fiber has a relative relationship between the liquid absorption rate A of the electrolyte 4 on one surface 4 a that contacts the negative electrode plate 3 and the liquid absorption rate B of the other surface 4 b that contacts the positive electrode plate 2. A / B = 1.3 to 1.4.

<負極活物質の総質量と正極活物質の総質量>
このような負極活物質の総質量と正極活物質の総質量との比を有する制御弁式鉛蓄電池は、活物質ペースト組成、活物質ペースト特性、格子形状、活物質充填量、電槽内の正負極板枚数構成で調整することができる。しかし、制御弁式鉛蓄電池の製造法は、これに限られるものではない。
<Total mass of negative electrode active material and total mass of positive electrode active material>
The control valve type lead-acid battery having the ratio of the total mass of the negative electrode active material and the total mass of the positive electrode active material is the active material paste composition, the active material paste characteristics, the lattice shape, the active material filling amount, The number of positive and negative plates can be adjusted. However, the manufacturing method of the control valve type lead acid battery is not limited to this.

<ガラス繊維>
本発明におけるガラス繊維は、電解液に希硫酸を用いることから、アルカリガラスやECRガラス、アドバンテックガラス等といった耐酸性を有するものが好ましい。本例で用いる2種類のガラス繊維のうち、第1のガラス繊維は数平均繊維径が0.8〜1.0μmであることが好ましく、第2のガラス繊維は数平均繊維径が3.5〜5.0μmであることが好ましい。
<Glass fiber>
The glass fiber in the present invention preferably has acid resistance such as alkali glass, ECR glass, Advantech glass and the like because dilute sulfuric acid is used for the electrolyte. Of the two types of glass fibers used in this example, the first glass fiber preferably has a number average fiber diameter of 0.8 to 1.0 μm, and the second glass fiber has a number average fiber diameter of 3.5. It is preferable that it is -5.0 micrometers.

このような条件を満たす2種類のガラス繊維で構成されたリテーナ中のガラス繊維は、数平均繊維長に換算すると200〜300μmとなっている。リテーナ中のガラス繊維の数平均繊維長がこのような200〜300μmの範囲では、比較的均一な細孔径を有するリテーナが得られ易く、リテーナに対する電解液の透過性が維持される。また、電解液の吸収性に影響を与えないため、後述の吸液速度比の制御が比較的容易である。さらに、リテーナとして十分な強度(例えば引張強度で1MPa以上)を維持することができる。さらに、後述する抄造時には、良好な抄造性が得られ易い。   The glass fiber in the retainer composed of two types of glass fibers satisfying such conditions is 200 to 300 μm in terms of the number average fiber length. When the number average fiber length of the glass fibers in the retainer is in the range of 200 to 300 μm, it is easy to obtain a retainer having a relatively uniform pore diameter, and the permeability of the electrolytic solution to the retainer is maintained. In addition, since it does not affect the absorbability of the electrolytic solution, it is relatively easy to control the liquid absorption speed ratio described later. Furthermore, sufficient strength as a retainer (for example, 1 MPa or more in tensile strength) can be maintained. Furthermore, good papermaking properties are easily obtained during papermaking, which will be described later.

リテーナ中のガラス繊維の数平均繊維長が200μmに満たない場合は、均一な細孔径を有するリテーナが得られ難くなり、リテーナに対する電解液の透過性が低下する。一方、リテーナ中のガラス繊維の数平均繊維長が300μmを超える場合は、リテーナ内の隙間の体積が大きくなり過ぎて(電解液の吸収性に影響を与えるため)、後述の吸液速度比が制御し難い。また、後述する抄造体を作製する際に、用いるスラリーにおいて原料成分の分散性が低下するため、抄造時の抄造性が低下する。   When the number average fiber length of the glass fibers in the retainer is less than 200 μm, it becomes difficult to obtain a retainer having a uniform pore diameter, and the permeability of the electrolytic solution to the retainer decreases. On the other hand, when the number average fiber length of the glass fibers in the retainer exceeds 300 μm, the volume of the gap in the retainer becomes too large (because it affects the absorbability of the electrolyte), and the liquid absorption rate ratio described later is It's hard to control. Moreover, when producing the papermaking body mentioned later, since the dispersibility of a raw material component falls in the slurry used, the papermaking nature at the time of papermaking falls.

ここで、本実施の形態において、繊維の数平均繊維径及び数平均繊維長は、例えば、動的画像解析法、レーザースキャン法(例えば、JIS L1081に準拠)、走査型電子顕微鏡等による直接観察により求めることができる。具体的には、これらの方法を用いて400本程度の繊維を観察し、その平均値をとることで、上記数平均繊維径及び数平均繊維長を求めることができる。   Here, in the present embodiment, the number average fiber diameter and the number average fiber length of the fibers are directly observed by, for example, a dynamic image analysis method, a laser scanning method (for example, conforming to JIS L1081), a scanning electron microscope, or the like. It can ask for. Specifically, the number average fiber diameter and the number average fiber length can be determined by observing about 400 fibers using these methods and taking the average value.

ガラスマット中のガラス繊維の含有量は、リテーナの全質量を100%として、70〜99質量%であることが好ましい。ガラス繊維の含有量を70質量%以上とすることで、リテーナとして充分な強度と保液性の両者が得られる傾向にあり、99質量%以下とすることで強度、保液性、サイクル特性を両立できる傾向にある。   The glass fiber content in the glass mat is preferably 70 to 99% by mass, where the total mass of the retainer is 100%. By setting the glass fiber content to 70% by mass or more, there is a tendency to obtain both strength and liquid retention sufficient as a retainer. By setting the content to 99% by mass or less, strength, liquid retention, and cycle characteristics are improved. It tends to be compatible.

<吸液速度>
本発明における吸液速度は、電池工業会規格SBA S 0406記載の方法で測定した。具体的には、抄紙したリテーナから任意に5枚選び、それぞれのリテーナの縦方向(抄紙方向)と横方向から1枚ずつ30mm×150mmの試験片を採取する。そして、計10枚の試験片を60℃以下の空気中で乾燥させ、重量基準の含水率を0.1%以下にする。比重1.300(20℃)のJIS K 1321に規定する精製希硫酸を容器に注入する。注入する希硫酸の温度は、15〜25℃とする。試験片の短辺側の端面から10mmの位置に短辺と平行に鉛筆で標線を引き、それと対向する短辺側にフックをかけて試験片を垂直に保持し、標線の位置まで手早く希硫酸の中に浸漬する。3分間浸漬した後、希硫酸の液面と試験片に浸透した希硫酸の高さとの間を、長さ計(長さ測定機器)を用いて、長さ計と試験片が接触しないようにして測定する。ここで、希硫酸の高さは、試験片の短辺方向の中央から長さ方向に引いた仮想線と浸透した希硫酸が交差する位置とする。吸液速度は測定した希硫酸高さを浸漬時間で除して算出する。
<Liquid absorption speed>
The liquid absorption rate in the present invention was measured by the method described in the battery industry association standard SBA S 0406. Specifically, five sheets are arbitrarily selected from the paper-made retainers, and test pieces of 30 mm × 150 mm are collected one by one from the longitudinal direction (paper making direction) and the horizontal direction of each retainer. Then, a total of 10 test pieces are dried in air at 60 ° C. or lower, and the moisture content based on weight is made 0.1% or lower. Purified dilute sulfuric acid specified in JIS K 1321 having a specific gravity of 1.300 (20 ° C.) is poured into the container. The temperature of the diluted sulfuric acid to be injected is 15 to 25 ° C. Draw a marked line with a pencil parallel to the short side at a position 10 mm from the end face on the short side of the test piece, hook the short side facing it, hold the test piece vertically, and quickly reach the position of the marked line Immerse in dilute sulfuric acid. After immersion for 3 minutes, use a length meter (length measuring device) to prevent the length meter and the test piece from coming into contact between the surface of the dilute sulfuric acid and the height of the diluted sulfuric acid that has penetrated the test piece. To measure. Here, the height of the dilute sulfuric acid is a position where an imaginary line drawn in the length direction from the center in the short side direction of the test piece intersects with the permeated dilute sulfuric acid. The liquid absorption speed is calculated by dividing the measured dilute sulfuric acid height by the immersion time.

<網目状の凹凸面及び不規則な凹凸面>
本発明における網目状の凹凸面は、後述の抄造体を作製する工程において、ガラス繊維スラリーを抄紙機へ投入する際のスラリーを受ける抄き網側にできる凹凸面であり、ガラス繊維スラリーがガラス繊維を受ける抄紙機の抄き網によって平滑化された面をいう。一方、不規則な凹凸面は、網目状の凹凸面と反対側にできる凹凸面であり、抄紙機の抄き網によって平滑化されていない面である。
<Reticulated uneven surface and irregular uneven surface>
The mesh-like uneven surface in the present invention is an uneven surface that can be formed on the paper-making mesh side that receives the slurry when the glass fiber slurry is charged into the paper machine in the step of producing a paper-making body, which will be described later. The surface smoothed by the net of the paper machine that receives the fiber. On the other hand, the irregular concavo-convex surface is a concavo-convex surface formed on the side opposite to the mesh-shaped concavo-convex surface, and is a surface not smoothed by the papermaking net of the paper machine.

<リテーナの製造方法>
本実施形態のリテーナの製造方法に特に制限は無く、例えば、湿式抄造、乾式抄造等が挙げられる。本実施形態においては、これらの中でも、湿式法に基づく抄造法(湿式抄造)を採用することが好ましい。この製造方法は、ガラス繊維と、必要に応じて樹脂等を水と混合して作製するスラリーを調製する工程と、スラリーを抄紙して抄造体を作製する工程と、加圧機を用いて抄造体を厚み方向に圧縮して圧縮体を作製する工程と、必要に応じ圧縮体を樹脂の軟化点以上の温度で熱処理する工程とを経る製造方法である。
<Retainer manufacturing method>
There is no restriction | limiting in particular in the manufacturing method of the retainer of this embodiment, For example, wet papermaking, dry papermaking, etc. are mentioned. In the present embodiment, among these, it is preferable to employ a papermaking method based on a wet method (wet papermaking). This production method includes a step of preparing a slurry prepared by mixing glass fiber and, if necessary, a resin or the like with water, a step of papermaking the slurry to prepare a papermaking product, and a papermaking product using a pressure machine In the thickness direction, and a manufacturing method through a step of heat-treating the compression body at a temperature equal to or higher than the softening point of the resin as necessary.

<スラリーを調製する工程>
本工程において、ガラス繊維として、数平均繊維径が0.8〜1.0μmの第1のガラス繊維と、数平均繊維径が3.5〜5.0μmの第2のガラス繊維とを、必要に応じて樹脂、パルプ等とともに所定の分散媒体に分散させてスラリーを調製する。スラリーの調整は、例えばミキサー、ボールミル、パルパー等により行うことができる。なお、分散媒体としては水が一般的に用いられている。
<Process for preparing slurry>
In this step, as the glass fiber, a first glass fiber having a number average fiber diameter of 0.8 to 1.0 μm and a second glass fiber having a number average fiber diameter of 3.5 to 5.0 μm are necessary. Accordingly, a slurry is prepared by dispersing in a predetermined dispersion medium together with resin, pulp and the like. The adjustment of the slurry can be performed by, for example, a mixer, a ball mill, a pulper, or the like. Note that water is generally used as the dispersion medium.

スラリー中の各原料成分の含有量は、得られるリテーナ中の各原料成分の含有量が上述した範囲となるように調整すればよい。ただし、良好な抄紙性を確保する観点から、スラリー中の原料成分を100%として、ガラス繊維を70〜99質量%することが好ましい。   What is necessary is just to adjust content of each raw material component in a slurry so that content of each raw material component in the retainer obtained may become the range mentioned above. However, from the viewpoint of ensuring good papermaking properties, it is preferable that the raw material component in the slurry is 100% and the glass fiber is 70 to 99% by mass.

上記のスラリーには必要に応じて有機繊維又はバインダーとしてポリマー粒子を含んでいてもよい。有機繊維、ポリマー粒子は単独で用いてもよいし、二種以上を混合して使用してもよい。有機繊維、ポリマー粒子はスルホン化されたものも含める。   The slurry may contain polymer particles as organic fibers or a binder as necessary. Organic fibers and polymer particles may be used alone or in admixture of two or more. Organic fibers and polymer particles include those sulfonated.

このスラリーは、界面活性剤を含んでいてもよい。界面活性剤を含むことで、リテーナを製造する際に原料成分を分散させやすくなる。界面活性剤は、後の熱処理において分解されてもよい。界面活性剤としては、シランカップリング剤、カチオン性界面活性剤、アニオン性界面活性剤、ノニオン性界面活性剤のいずれであってもよい。界面活性剤の含有量は、スラリー中の原料成分を100%として、0.01〜5質量%とすることが好ましい。   This slurry may contain a surfactant. By including the surfactant, the raw material components can be easily dispersed when the retainer is manufactured. The surfactant may be decomposed in a subsequent heat treatment. As the surfactant, any of a silane coupling agent, a cationic surfactant, an anionic surfactant, and a nonionic surfactant may be used. The content of the surfactant is preferably 0.01 to 5% by mass with 100% of the raw material components in the slurry.

スラリーは凝集剤を含んでいてもよい。凝集剤を含むことで製造されるリテーナの歩留まりを向上させることができる。凝集剤としては、カチオン性高分子凝集剤及びアニオン性高分子凝集剤のいずれであってもよく、両者を共に用いてもよい。凝集剤の含有量は、スラリー中の原料成分を100%として、0.001〜0.5質量%とすることが好ましい。   The slurry may contain a flocculant. The yield of the retainer manufactured by including a flocculant can be improved. The flocculant may be either a cationic polymer flocculant or an anionic polymer flocculant, and both may be used together. The content of the flocculant is preferably 0.001 to 0.5 mass% with the raw material component in the slurry as 100%.

<抄造体を作製する工程〜圧縮する工程>
これらの工程では、スラリーを一般的な抄紙機を用いて抄紙し、抄造体を作製した後、さらに加圧機を用いて抄造体を厚み方向に圧縮する。なお、所望の厚みと密度を得るためには、抄造体を1〜30MPaにて1〜5分間圧縮することが好ましい。
<Process for producing papermaking-process for compression>
In these steps, the slurry is paper-made using a general paper machine to produce a paper-making body, and then the paper-making body is further compressed in the thickness direction using a pressure machine. In order to obtain a desired thickness and density, the papermaking body is preferably compressed at 1 to 30 MPa for 1 to 5 minutes.

<圧縮後、熱処理する工程>
本工程は必ずしも行う工程ではないが、リテーナの材料構成に合わせて必要に応じて行う。本工程において樹脂の軟化点以上の温度で圧縮体を熱処理することで、樹脂が軟化してガラス繊維同士を接着させる、あるいはガラス繊維に粘度鉱物を確実に付着させることができ、また、ガラス繊維、粘度鉱物等の表面の一部又は全部を樹脂で被覆することにより、リテーナに柔軟性を付与することができる。さらに、樹脂が一部分解して、電解液の保持力を向上させることができる。
<Step of heat treatment after compression>
Although this step is not necessarily performed, it is performed as necessary in accordance with the material configuration of the retainer. By heat-treating the compression body at a temperature equal to or higher than the softening point of the resin in this step, the resin is softened and the glass fibers are bonded to each other, or the viscosity mineral is reliably attached to the glass fibers. The retainer can be provided with flexibility by coating a part or all of the surface of a viscous mineral or the like with a resin. Further, the resin can be partially decomposed to improve the holding power of the electrolytic solution.

なお、処理温度は樹脂の軟化点に依存するため必ずしも限定されないが、100〜200℃で行うことが好ましい。処理温度を100℃以上とすることで、ガラス繊維、粘度鉱物等同士を結着させ易くなる傾向にあり、200℃以下とすることで製造工程を簡略化し易くなる。なお、熱処理は、リテーナの構成材料に応じて、前述した加圧工程と組み合わせて適宜加圧しながら行ってもよい。   The treatment temperature is not necessarily limited because it depends on the softening point of the resin, but it is preferably performed at 100 to 200 ° C. By setting the treatment temperature to 100 ° C. or higher, glass fibers, viscous minerals and the like tend to be bound to each other, and by setting the processing temperature to 200 ° C. or lower, the manufacturing process is easily simplified. In addition, you may perform heat processing, pressing suitably according to the constituent material of a retainer, combining with the pressurization process mentioned above.

<制御弁式鉛蓄電池の作製>
正極活物質は一酸化鉛を主成分とする鉛粉に、鉛丹を加えて混合し、所定量の水、希硫酸を加えて混練したペースト状活物質を、鉛合金製の集電体に充填して所定の条件で熟成・乾燥を行う。ここで、水、及び希硫酸の添加量、熟成・乾燥条件を変えることにより、化成後、満充電状態における正極板の活物質の表面積を一定の目標範囲内に調整することができる。
<Production of control valve type lead acid battery>
The positive electrode active material is lead powder containing lead monoxide as a main component, added with red lead, and mixed with a predetermined amount of water and dilute sulfuric acid. Fill and age and dry under specified conditions. Here, by changing the addition amount of water and dilute sulfuric acid, and aging / drying conditions, the surface area of the active material of the positive electrode plate in the fully charged state can be adjusted within a certain target range after the formation.

負極活物質は一酸化鉛を主成分とする鉛粉に、添加剤を加えて混合し、所定量の水、希硫酸を加えて混練したペースト状活物質を、鉛合金製の集電体に充填して所定の条件で熟成・乾燥を行う。ここで、添加剤、水、及び希硫酸の添加量、熟成・乾燥条件を変えることにより、化成後、満充電状態における負極板の活物質の表面積を一定の範囲内に調整することができる。   The negative electrode active material is a powder of lead alloy containing lead powder containing lead monoxide as a main component, mixed with an additive, and mixed with a predetermined amount of water and dilute sulfuric acid. Fill and age and dry under specified conditions. Here, the surface area of the active material of the negative electrode plate in a fully charged state can be adjusted within a certain range after chemical conversion by changing the addition amount of the additive, water and dilute sulfuric acid, and the aging / drying conditions.

さらに、化成条件を変えることにより正負極活物質の表面積を調整することが可能である。   Furthermore, it is possible to adjust the surface area of the positive and negative electrode active materials by changing the chemical conversion conditions.

また、鉛合金製の集電体に充填するペースト状活物質の量を変えることで正負極活物質量を調整することができる。   Further, the amount of the positive and negative electrode active materials can be adjusted by changing the amount of the paste-like active material filled in the lead alloy current collector.

ペースト状負極活物質に添加される添加剤には、強化用耐酸性繊維、硫酸鉛結晶成長抑制添加剤、防縮剤を用いる。強化用耐酸性繊維には、アクリル繊維、ポリエステル繊維、ポリエチレンテレフタレート(PET)繊維等を用いることができ、価格面、耐酸性面からPET繊維を用いることが望ましい。強化用耐酸性繊維を用いることで格子基板へ活物質を充填した際、活物質の抜け、脱落を防止することができる。硫酸鉛結晶成長抑制添加剤には硫酸バリウムを用いるのが一般的である。硫酸バリウムを用いると、電解液に溶解せず、活物質中に留まるので、充電時に生成する硫酸鉛の結晶核となり、微細な硫酸鉛を形成することができる。防縮剤にはリグニンスルホン酸塩が用いられ、リグニンスルホン酸塩は合成リグニンと樹木由来の天然リグニンがあり、長期間運用されるスタンバイユース用途には長期間安定に存在する天然リグニンを用いることが望ましい。リグニンを添加することで、負極活物質が充放電の際に形態変化し、凝集することを防止し、活物質の表面積の大きさを保つことが可能となる。また、カーボンを含まないことで、トリクル充電中のトリクル電流を小さくすることが可能となり寿命性能を十分に確保することができる。   As the additive added to the paste-like negative electrode active material, an acid-resistant fiber for reinforcement, a lead sulfate crystal growth inhibiting additive, and a shrinkage preventing agent are used. As the acid-resistant fiber for reinforcement, acrylic fiber, polyester fiber, polyethylene terephthalate (PET) fiber or the like can be used, and it is desirable to use PET fiber from the viewpoint of price and acid resistance. By using the acid-resistant fiber for reinforcement, when the active material is filled into the lattice substrate, it is possible to prevent the active material from coming off and falling off. In general, barium sulfate is used as a lead sulfate crystal growth inhibiting additive. When barium sulfate is used, it does not dissolve in the electrolytic solution and remains in the active material, so that it becomes a crystal nucleus of lead sulfate generated during charging, and fine lead sulfate can be formed. Lignin sulfonate is used as the anti-shrinking agent, and lignin sulfonate includes synthetic lignin and natural lignin derived from trees. desirable. By adding lignin, it is possible to prevent the negative electrode active material from being changed in shape during charge and discharge and to be aggregated, and to maintain the surface area of the active material. Moreover, by not containing carbon, the trickle current during trickle charge can be reduced, and the life performance can be sufficiently secured.

ペースト状正極活物質に添加される添加剤には、強化用耐酸性繊維、鉛丹を用いる。強化用耐酸性繊維には、アクリル繊維、ポリエステル繊維、PET繊維等を用いることができ、価格面、耐酸性面からPET繊維を用いることが望ましい。強化用耐酸性繊維を用いることで格子基板へ活物質を充填した際、活物質の抜け、脱落を防止することができる。鉛丹は電槽化成時の化成性の向上や、正極活物質の表面積を大きくすること、正極活物質の利用率を高くすることができ、活物質の化成性、活物質の耐久性を両立させるために、鉛粉に対して5〜25質量%添加することが望ましい。鉛丹量が5%より少ないと鉛丹の効果が十分に発揮されず、25%以上であると活物質の耐久性が著しく低下するためである。   As an additive added to the paste-like positive electrode active material, acid-resistant fibers for reinforcement and red lead are used. As the acid-resistant fiber for reinforcement, acrylic fiber, polyester fiber, PET fiber or the like can be used, and it is desirable to use PET fiber from the viewpoint of price and acid resistance. By using the acid-resistant fiber for reinforcement, when the active material is filled into the lattice substrate, it is possible to prevent the active material from coming off and falling off. Lead red can improve the chemical conversion during battery formation, increase the surface area of the positive electrode active material, increase the utilization rate of the positive electrode active material, and achieve both the chemical conversion of the active material and the durability of the active material. Therefore, it is desirable to add 5 to 25% by mass with respect to the lead powder. When the amount of lead is less than 5%, the effect of the lead is not sufficiently exhibited, and when it is 25% or more, the durability of the active material is remarkably lowered.

正極集電体を形成するための鉛合金は、鉛−カルシウム−スズ合金によって作製される。カルシウム含有量、スズ含有量、を鉛に対してカルシウム:0.08質量%、スズ:1.6質量%とすることで、合金組成が緻密になり、耐食性に優れた正極集電体を形成することが可能となる。   The lead alloy for forming the positive electrode current collector is made of a lead-calcium-tin alloy. By making calcium content and tin content calcium: 0.08 mass% and tin: 1.6 mass% with respect to lead, the alloy composition becomes dense and a positive electrode current collector excellent in corrosion resistance is formed. It becomes possible to do.

負極集電体を形成するための鉛合金は特に限定されるものではないが、純鉛、カルシウム−スズ合金、アンチモン合金を用いるのが一般的であり、寿命性能、製造上の取り回し易さから、カルシウム−スズ合金を用いることが望ましい。   The lead alloy for forming the negative electrode current collector is not particularly limited, but it is common to use pure lead, calcium-tin alloy, antimony alloy, and from the viewpoint of life performance and ease of manufacturing. It is desirable to use a calcium-tin alloy.

正負極板は、前述したそれぞれのペースト状活物質を集電体に充填して熟成・乾燥させたものである。集電体は、エキスパンド方式、鋳造方式、鍛造方式等により作製することができる。   The positive and negative electrode plates are obtained by filling the respective pasty active materials described above into current collectors and aging and drying them. The current collector can be produced by an expanding method, a casting method, a forging method, or the like.

本実施の形態の制御弁式鉛蓄電池では、例えば、図1に示すように、鉛蓄電池を組み立て、所定量の電解液を注入して電槽化成を行った。   In the control valve type lead storage battery of the present embodiment, for example, as shown in FIG. 1, a lead storage battery is assembled, and a predetermined amount of electrolyte is injected to form a battery case.

電槽に複数のセル室を設けるときは、各セル室内に極板群が収容され、隣接するセル室内に収容された極板群と反対極性のストラップ間を相互に接続することにより、所定の定格電圧と定格容量を持つ鉛蓄電池が構成される。また、単セル電槽のときは、複数の鉛蓄電池の端子間を、導電板を用いて並列あるいは直列に接続し、所定の電圧、容量の電池を構成することができる。   When a plurality of cell chambers are provided in the battery case, electrode plate groups are accommodated in each cell chamber, and a predetermined polarity is obtained by mutually connecting between the electrode plate groups accommodated in the adjacent cell chambers and the opposite polarity straps. A lead-acid battery having a rated voltage and a rated capacity is configured. In the case of a single-cell battery case, terminals of a plurality of lead storage batteries can be connected in parallel or in series using a conductive plate to constitute a battery having a predetermined voltage and capacity.

本発明の実施例について、詳細に説明する。以下の実施例と比較例では、次の正極集電体と負極集電体、ペースト状正極活物質とペースト状負極活物質を共通して用いた。   Examples of the present invention will be described in detail. In the following examples and comparative examples, the following positive electrode current collector and negative electrode current collector, paste-like positive electrode active material and paste-like negative electrode active material were used in common.

鉛−カルシウム−スズ合金(カルシウム含有量:0.1質量%、スズ含有量:0.2質量%)を溶融し、鋳造方式によって、縦:144.0mm、横:147.0mm、厚み:2.4mmの負極集電体を作製した。   A lead-calcium-tin alloy (calcium content: 0.1% by mass, tin content: 0.2% by mass) is melted and length: 144.0 mm, width: 147.0 mm, thickness: 2 depending on the casting method. A negative electrode current collector of 4 mm was produced.

鉛−カルシウム−スズ合金(カルシウム含有量:0.08質量%、スズ含有量:1.6質量%)を溶融し、鋳造方式によって、縦:143.0mm、横:145.0mm、厚み:4.0mmの正極集電体を作製した。   A lead-calcium-tin alloy (calcium content: 0.08 mass%, tin content: 1.6 mass%) is melted and length: 143.0 mm, width: 145.0 mm, thickness: 4 depending on the casting method. A 0.0 mm positive electrode current collector was produced.

一酸化鉛を主成分とする鉛粉100質量%に対して、PET繊維を0.03質量%、硫酸バリウムを0.5質量%及び、リグニンスルホン酸塩を0.2質量%加えて混合し、次に水を10質量%、希硫酸を10質量%加えた後、混練して調製したペースト状負極活物質を作製した。   To 100% by mass of lead powder mainly composed of lead monoxide, 0.03% by mass of PET fiber, 0.5% by mass of barium sulfate, and 0.2% by mass of lignin sulfonate are added and mixed. Next, 10% by mass of water and 10% by mass of diluted sulfuric acid were added, and then a paste-like negative electrode active material prepared by kneading was prepared.

一酸化鉛を主成分とする鉛粉100質量%に対して、鉛丹を17質量%、PET繊維を0.15質量%加えて混合し、次に水を10質量%、希硫酸を17質量%加えた後、混練して調製したペースト状正極活物質を作製した。   To 100% by mass of lead powder containing lead monoxide as a main component, 17% by mass of red lead and 0.15% by mass of PET fiber are added and mixed, then 10% by mass of water and 17% by mass of dilute sulfuric acid. % And then kneaded to prepare a paste-like positive electrode active material.

以下、実施例および比較例の条件を表1に示す。   The conditions of the examples and comparative examples are shown in Table 1 below.

(実施例1)
<極板の作製>
正極集電体にペースト状正極活物質を、負極集電体にペースト状負極活物質を、満充電状態である制御弁式鉛蓄電池内の負極活物質総重量(N)と正極活物質総量(P)が(N/P)=0.7となるように、それぞれ充填した。ペースト状正極活物質を充填した極板は、以下の熟成条件1〜3、乾燥条件の工程を経ることにより未化成正極板を作製した。
Example 1
<Production of electrode plate>
The positive electrode active material is pasted into the positive electrode current collector, the negative electrode current collector is pasted into the negative electrode active material, and the total weight (N) of the negative electrode active material and the total amount of positive electrode active material ( P was filled so that (N / P) = 0.7. The electrode plate filled with the paste-like positive electrode active material produced an unformed positive electrode plate through the following aging conditions 1 to 3 and drying conditions.

熟成条件1:温度:80℃、湿度:98%、時間:10時間
熟成条件2:温度:65℃、湿度:75%、時間:13時間
熟成条件3:温度:40℃、湿度:65%、時間:40時間
乾燥条件:温度:60℃、時間:24時間
ペースト状負極活物質を充填した極板は、
熟成条件:温度:40℃、湿度:98%、時間:40時間
乾燥条件:温度:60℃、時間:24時間
の熟成、乾燥条件の工程を経ることにより未化成負極板を作製した。
Aging condition 1: temperature: 80 ° C., humidity: 98%, time: 10 hours Aging condition 2: temperature: 65 ° C., humidity: 75%, time: 13 hours Aging condition 3: temperature: 40 ° C., humidity: 65% Time: 40 hours Drying conditions: Temperature: 60 ° C., Time: 24 hours The electrode plate filled with the paste-like negative electrode active material is
Aging condition: temperature: 40 ° C., humidity: 98%, time: 40 hours Drying condition: temperature: 60 ° C., time: 24 hours aging and drying conditions were performed to produce an unformed negative electrode plate.

<リテーナの作製>
数平均繊維径が1.0μmのガラス繊維(第1のガラス繊維)の質量M1を80質量%、数平均繊維径が3.5μmのガラス繊維(第2のガラス繊維)の質量M2を20質量%、凝集剤として硫酸アルミニウムを3質量%、ポリプロピレンエマルジョン樹脂を5質量%加えて混抄し、1.6mm厚のリテーナとした。
<Production of retainer>
The mass M1 of glass fibers (first glass fibers) having a number average fiber diameter of 1.0 μm is 80% by mass, and the mass M2 of glass fibers (second glass fibers) having a number average fiber diameter of 3.5 μm is 20 masses. %, 3% by mass of aluminum sulfate as a flocculant, and 5% by mass of polypropylene emulsion resin were mixed to obtain a 1.6 mm thick retainer.

<制御弁式鉛蓄電池の作製>
作製した未化成正極板3枚と未化成負極板4枚を、作製したリテーナを介して吸液速度の大きい面側を未化成負極板へ当接させて交互に積層し極板群を作製した。作製した極板群を、電槽へ挿入し、正極端子及び負極端子を極板群に溶接した後、電槽を密閉する。次に排気栓口から希硫酸を主成分とする電解液を注入し、制御弁を取り付け、電槽化成を行い、制御弁式鉛蓄電池を作製した。
<Production of control valve type lead acid battery>
Three prepared unformed positive electrode plates and four unformed negative electrode plates were alternately stacked with the surface side having a high liquid absorption rate brought into contact with the unformed negative electrode plate through the produced retainer to produce an electrode plate group. . The produced electrode plate group is inserted into the battery case, and after the positive electrode terminal and the negative electrode terminal are welded to the electrode plate group, the battery case is sealed. Next, an electrolytic solution containing dilute sulfuric acid as a main component was injected from the exhaust plug port, a control valve was attached, a battery case was formed, and a control valve type lead storage battery was produced.

電槽化成条件は、水槽中で水温度:40℃、課電量:正極活物質の理論化成電気量に対し250%、時間:60時間とした。   The battery tank formation conditions were as follows: water temperature: 40 ° C., amount of electricity applied: 250% of the theoretical amount of electricity generated by the positive electrode active material, and time: 60 hours.

(実施例2)
リテーナ作製時のガラス繊維の質量配合比が、数平均繊維径が1.0μmのガラス繊維(第1のガラス繊維)の質量M1を70質量%、数平均繊維径が3.5μmのガラス繊維(第2のガラス繊維)の質量M2を30質量%とする以外は、実施例1と同様にして制御弁式鉛蓄電池を作製した。
(Example 2)
The mass mixing ratio of the glass fibers during the production of the retainer is such that the mass M1 of the glass fibers (first glass fibers) having a number average fiber diameter of 1.0 μm is 70 mass%, and the glass fibers having a number average fiber diameter of 3.5 μm A control valve type lead-acid battery was produced in the same manner as in Example 1 except that the mass M2 of the second glass fiber) was 30% by mass.

(実施例3)
極板作製時のペースト状正極活物質とペースト状負極活物質の充填量を、満充電状態である制御弁式鉛蓄電池内の負極活物質総重量(N)と正極活物質総量(P)の比が(N/P)=0.8となるようそれぞれ充填する以外は、実施例1と同様にして制御弁式鉛蓄電池を作製した。
(Example 3)
The filling amount of the paste-like positive electrode active material and the paste-like negative electrode active material at the time of preparation of the electrode plate is calculated as follows. A control valve type lead-acid battery was produced in the same manner as in Example 1 except that each was filled so that the ratio was (N / P) = 0.8.

(実施例4)
極板作製時のペースト状正極活物質とペースト状負極活物質の充填量を、満充電状態である制御弁式鉛蓄電池内の負極活物質総重量(N)と正極活物質総量(P)の比が(N/P)=0.9となるようそれぞれ充填する以外は、実施例1と同様にして制御弁式鉛蓄電池を作製した。
Example 4
The filling amount of the paste-like positive electrode active material and the paste-like negative electrode active material at the time of preparation of the electrode plate is calculated based on the total weight (N) of the negative electrode active material and the total amount of the positive electrode active material (P) in the fully-charged control valve type lead storage battery. A control valve type lead-acid battery was produced in the same manner as in Example 1 except that each was filled so that the ratio was (N / P) = 0.9.

(実施例5)
極板作製時のペースト状正極活物質とペースト状負極活物質の充填量を、満充電状態である制御弁式鉛蓄電池内の負極活物質総重量(N)と正極活物質総量(P)の比が(N/P)=1.0となるようそれぞれ充填する以外は、実施例1と同様にして制御弁式鉛蓄電池を作製した。
(Example 5)
The filling amount of the paste-like positive electrode active material and the paste-like negative electrode active material at the time of preparation of the electrode plate is calculated based on the total weight (N) of the negative electrode active material and the total amount of the positive electrode active material (P) in the fully-charged control valve type lead storage battery. A control valve type lead-acid battery was produced in the same manner as in Example 1 except that the ratio was (N / P) = 1.0.

(実施例6)
極板作製時のペースト状正極活物質とペースト状負極活物質の充填量を、満充電状態である制御弁式鉛蓄電池内の負極活物質総重量(N)と正極活物質総量(P)の比が(N/P)=1.1となるようそれぞれ充填する以外は、実施例1と同様にして制御弁式鉛蓄電池を作製した。
(Example 6)
The filling amount of the paste-like positive electrode active material and the paste-like negative electrode active material at the time of preparation of the electrode plate is calculated based on the total weight (N) of the negative electrode active material and the total amount of the positive electrode active material (P) in the fully-charged control valve type lead storage battery. A control valve type lead-acid battery was produced in the same manner as in Example 1 except that each was filled so that the ratio was (N / P) = 1.1.

(比較例1)
リテーナ作製時のガラス繊維を数平均繊維径が1.0μmのガラス繊維を100質量%とする以外は、実施例1と同様にして制御弁式鉛蓄電池を作製した。
(Comparative Example 1)
A control valve type lead-acid battery was produced in the same manner as in Example 1 except that the glass fiber at the time of producing the retainer was 100% by mass of the glass fiber having a number average fiber diameter of 1.0 μm.

(比較例2)
リテーナ作製時のガラス繊維の質量配合比が、数平均繊維径が1.0μmのガラス繊維(第1のガラス繊維)の質量M1を60質量%、数平均繊維径が3.5μmのガラス繊維(第2のガラス繊維)の質量M2を40質量%とする以外は、実施例1と同様にして制御弁式鉛蓄電池を作製した。
(Comparative Example 2)
The mass mixing ratio of the glass fibers at the time of producing the retainer is such that the mass M1 of the glass fibers (first glass fibers) whose number average fiber diameter is 1.0 μm is 60% by mass, and the glass fibers whose number average fiber diameter is 3.5 μm A control valve type lead-acid battery was produced in the same manner as in Example 1 except that the mass M2 of the second glass fiber) was 40% by mass.

(比較例3)
極板作製時のペースト状正極活物質とペースト状負極活物質の充填量を、満充電状態である制御弁式鉛蓄電池内の負極活物質総重量(N)と正極活物質総量(P)の比が(N/P)=0.6となるようそれぞれ充填する以外は、実施例1と同様にして制御弁式鉛蓄電池を作製した。
(Comparative Example 3)
The filling amount of the paste-like positive electrode active material and the paste-like negative electrode active material at the time of preparation of the electrode plate is calculated as follows. A control valve type lead-acid battery was produced in the same manner as in Example 1 except that each was filled so that the ratio was (N / P) = 0.6.

(比較例4)
極板作製時のペースト状正極活物質とペースト状負極活物質の充填量を、満充電状態である制御弁式鉛蓄電池内の負極活物質総重量(N)と正極活物質総量(P)の比が(N/P)=1.2となるようそれぞれ充填する以外は、実施例1と同様にして制御弁式鉛蓄電池を作製した。
(Comparative Example 4)
The filling amount of the paste-like positive electrode active material and the paste-like negative electrode active material at the time of preparation of the electrode plate is calculated as follows. A control valve type lead-acid battery was produced in the same manner as in Example 1 except that each was filled so that the ratio was (N / P) = 1.2.

(放電試験)
定格容量確認試験は、0.1CAにて行った。すなわち、満充電後の制御弁式鉛蓄電池を雰囲気温度25℃中に24時間放置した後、0.1CAで終止電圧1.8Vまで放電し、そのときの放電容量を測定する。その後、雰囲気温度25℃中で、放電量の110%充電量到達まで0.1CAで定電流充電し満充電状態とした。高率放電容量確認試験は、3.0CAにて行った。すなわち、満充電後の制御弁式鉛蓄電池を雰囲気温度25℃中に24時間放置した後、3.0CAで終止電圧1.5Vまで放電し、そのときの放電容量を測定する。その後、雰囲気温度25℃中で、放電量の110%充電量到達まで0.1CAで定電流充電し満充電状態とした。
(Discharge test)
The rated capacity confirmation test was conducted at 0.1 CA. That is, after the fully-charged control valve type lead storage battery is allowed to stand for 24 hours at an ambient temperature of 25 ° C., it is discharged at 0.1 CA to a final voltage of 1.8 V, and the discharge capacity at that time is measured. Thereafter, the battery was charged at a constant current of 0.1 CA until the charge amount reached 110% at an atmospheric temperature of 25 ° C. to obtain a fully charged state. The high rate discharge capacity confirmation test was conducted at 3.0 CA. That is, after the fully-charged control valve type lead-acid battery is left in an ambient temperature of 25 ° C. for 24 hours, it is discharged at 3.0 CA to a final voltage of 1.5 V, and the discharge capacity at that time is measured. Thereafter, the battery was charged at a constant current of 0.1 CA until the charge amount reached 110% at an atmospheric temperature of 25 ° C. to obtain a fully charged state.

<試験結果>
作製した制御弁式鉛蓄電池に用いたリテーナの一方の面と他方の面の吸液速度の比、満充電状態である制御弁式鉛蓄電池内の負極活物質総の総質量(N)と正極活物質の総質量(P)の比(N/P)、定格容量及び高率放電容量を、比較例1を基準とした比率で表2に示す。
<Test results>
Ratio of liquid absorption speed between one surface and the other surface of the retainer used for the produced control valve type lead storage battery, total mass (N) of the total negative electrode active material in the control valve type lead storage battery in a fully charged state, and positive electrode The ratio (N / P) of the total mass (P) of the active material, the rated capacity, and the high rate discharge capacity are shown in Table 2 as ratios based on Comparative Example 1.

(N/P)が0.7〜1.1の範囲、リテーナの一方の面と他方の面の吸液速度の比が1.3〜1.4の範囲で、定格容量比、高率放電容量比ともに向上した。(N/P)が0.7〜1.1の範囲では定格容量が正極電位によって制限されるため、吸液速度の比を1.3〜1.4の範囲とし、吸液速度の大きいリテーナの面を負極板に当接させ、吸液速度の小さいリテーナの面を正極板に当接させるので、液位に勾配が生じて、正極側に当接するリテーナには十分な量の電解液が確保されるので、定格容量が向上したと考えられる。 (N / P) is in the range of 0.7 to 1.1, and the ratio of the liquid absorption speed between one surface of the retainer and the other surface is in the range of 1.3 to 1.4. Both capacity ratios improved. Since the rated capacity is limited by the positive electrode potential when (N / P) is in the range of 0.7 to 1.1, the ratio of the liquid absorption speed is in the range of 1.3 to 1.4, and the retainer has a high liquid absorption speed. Since the surface of the retainer is brought into contact with the negative electrode plate and the surface of the retainer having a low liquid absorption rate is brought into contact with the positive electrode plate, a gradient occurs in the liquid level. It is considered that the rated capacity has been improved.

(N/P)が0.7〜1.1の範囲では高率放電容量が負極電位によって制限されるため、吸液速度の比を1.3〜1.4の範囲にすることにより、負極板に当接するリテーナの液位が高くなるので、毛細管現象によって電解液の拡散、循環が起きやすくなり、高率放電容量が向上したと考えられる。(N/P)が、0.7より低くなると負極活物質量が極端に低くなるため、高率放電容量が低下し、(N/P)が、1.1より高くなると、正極活物質量が極端に低くなるため、定格容量が低下し、リテーナの効果(リテーナが2種類のガラス繊維を含み且つ電解液の吸液速度が異なる2つの面を有することによる効果)が現れなくなると考えられる。   Since the high rate discharge capacity is limited by the negative electrode potential when (N / P) is in the range of 0.7 to 1.1, the ratio of the liquid absorption rate is set to the range of 1.3 to 1.4. Since the liquid level of the retainer in contact with the plate is increased, it is considered that diffusion and circulation of the electrolytic solution easily occur due to the capillary phenomenon, and the high rate discharge capacity is improved. When (N / P) is less than 0.7, the amount of the negative electrode active material is extremely low, so that the high rate discharge capacity is reduced. When (N / P) is higher than 1.1, the amount of the positive electrode active material Is extremely low, the rated capacity is reduced, and the effect of the retainer (the effect of the retainer having two surfaces including two types of glass fibers and different electrolyte absorption speeds) is not expected to appear. .

本発明によれば、負極活物質と正極活物質の質量比を調整し、2種類のガラス繊維を配合したリテーナの一方の面と他方の面とにおける電解液の吸液速度比を調整することにより、高容量であり、放電性能に優れた鉛蓄電池を提供することができる。   According to the present invention, the mass ratio between the negative electrode active material and the positive electrode active material is adjusted, and the liquid absorption rate ratio of the electrolyte solution on one side and the other side of the retainer containing two types of glass fibers is adjusted. Thus, a lead storage battery having a high capacity and excellent discharge performance can be provided.

1 制御弁式鉛蓄電池
2 正極板
3 負極板
4 リテーナ
4a 一方の面
4b 他方の面
12 電槽
13 蓋体
DESCRIPTION OF SYMBOLS 1 Control valve type lead acid battery 2 Positive electrode plate 3 Negative electrode plate 4 Retainer 4a One side 4b The other side 12 Battery case 13 Lid

Claims (5)

負極板と正極板がリテーナを介して積層されてなる極板群と電解液とを備え、前記リテーナが前記負極板と積層方向に当接する一方の面と前記正極板と積層方向に当接する他方の面とを備える制御弁式鉛蓄電池であって、
満充電状態における前記負極板の負極活物質の総質量Nと前記正極板の正極活物質の総質量Pの活物質質量比(N/P)が0.7〜1.1の範囲であり、
前記リテーナは、1.0μm以下の数平均繊維径を有する第1のガラス繊維と、3.0μm以上の数平均繊維径を有する第2のガラス繊維とを含み、
前記リテーナの前記一方の面における前記電解液の吸液速度Aと前記他方の面における前記電解液の吸液速度Bとの速度比(A/B)が1.3〜1.4の範囲であることを特徴とする制御弁式鉛蓄電池。
An electrode plate group in which a negative electrode plate and a positive electrode plate are laminated via a retainer, and an electrolyte solution, the retainer being in contact with the negative electrode plate in the laminating direction and the other surface in contact with the positive electrode plate in the laminating direction A control valve type lead acid battery comprising:
The active material mass ratio (N / P) of the total mass N of the negative electrode active material of the negative electrode plate and the total mass P of the positive electrode active material of the positive electrode plate in a fully charged state is in the range of 0.7 to 1.1,
The retainer includes a first glass fiber having a number average fiber diameter of 1.0 μm or less, and a second glass fiber having a number average fiber diameter of 3.0 μm or more,
The ratio (A / B) of the electrolyte solution absorption rate A on the one surface of the retainer to the electrolyte solution absorption rate B on the other surface is in the range of 1.3 to 1.4. There is a control valve type lead-acid battery.
前記リテーナは、前記一方の面が網目状の凹凸面を形成し、前記他方の面が不規則な凹凸面を形成する請求項1に記載の制御弁式鉛蓄電池。   The control valve type lead-acid battery according to claim 1, wherein the retainer has a mesh-like uneven surface on one surface and an irregular uneven surface on the other surface. 前記ガラス繊維で作製されたリテーナの数平均繊維長が200〜300μmである請求項1に記載の制御弁式鉛蓄電池。   The number average fiber length of the retainer produced with the said glass fiber is 200-300 micrometers, The control valve type lead acid battery of Claim 1. 前記第1のガラス繊維の数平均繊維径が0.8μm〜1.0μmあり、
前記第2のガラス繊維の数平均繊維径が3.5μm〜5.0μmであり、
前記第1のガラス繊維の質量M1と前記第2のガラス繊維の質量M2との比(M1/M2)が、4〜2.3である請求項3に記載の制御弁式鉛蓄電池。
The number average fiber diameter of the first glass fiber is 0.8 μm to 1.0 μm,
The number average fiber diameter of the second glass fiber is 3.5 μm to 5.0 μm,
The control valve type lead acid battery according to claim 3, wherein a ratio (M1 / M2) of a mass M1 of the first glass fiber and a mass M2 of the second glass fiber is 4 to 2.3.
前記活物質質量比(N/P)が0.9〜1.1の範囲である請求項1〜4のいずれか1項に記載の制御弁式鉛蓄電池。   The control valve type lead acid battery according to any one of claims 1 to 4, wherein the active material mass ratio (N / P) is in a range of 0.9 to 1.1.
JP2015155065A 2015-08-05 2015-08-05 Control valve type lead storage battery Active JP6544126B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015155065A JP6544126B2 (en) 2015-08-05 2015-08-05 Control valve type lead storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015155065A JP6544126B2 (en) 2015-08-05 2015-08-05 Control valve type lead storage battery

Publications (2)

Publication Number Publication Date
JP2017033864A true JP2017033864A (en) 2017-02-09
JP6544126B2 JP6544126B2 (en) 2019-07-17

Family

ID=57988618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015155065A Active JP6544126B2 (en) 2015-08-05 2015-08-05 Control valve type lead storage battery

Country Status (1)

Country Link
JP (1) JP6544126B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019064792A1 (en) * 2017-09-28 2019-04-04 株式会社Gsユアサ Lead storage cell
CN111712954A (en) * 2018-02-15 2020-09-25 日立化成株式会社 Active material holding tube, electrode, and lead-acid battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56138862A (en) * 1981-02-23 1981-10-29 Yuasa Battery Co Ltd Nonmaintenance type lead battery
JPS6091572A (en) * 1983-10-24 1985-05-22 Yuasa Battery Co Ltd Sealed lead storage battery
JPH0567463A (en) * 1991-05-23 1993-03-19 Nippon Sheet Glass Co Ltd Sheet-like separator and sealed-type lead-acid battery
JP2001102027A (en) * 1999-09-30 2001-04-13 Shin Kobe Electric Mach Co Ltd Enclosed lead battery
WO2004088774A1 (en) * 2003-03-31 2004-10-14 Nippon Sheet Glass Company, Limited Storage battery-use separator and storage battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56138862A (en) * 1981-02-23 1981-10-29 Yuasa Battery Co Ltd Nonmaintenance type lead battery
JPS6091572A (en) * 1983-10-24 1985-05-22 Yuasa Battery Co Ltd Sealed lead storage battery
JPH0567463A (en) * 1991-05-23 1993-03-19 Nippon Sheet Glass Co Ltd Sheet-like separator and sealed-type lead-acid battery
JP2001102027A (en) * 1999-09-30 2001-04-13 Shin Kobe Electric Mach Co Ltd Enclosed lead battery
WO2004088774A1 (en) * 2003-03-31 2004-10-14 Nippon Sheet Glass Company, Limited Storage battery-use separator and storage battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019064792A1 (en) * 2017-09-28 2019-04-04 株式会社Gsユアサ Lead storage cell
CN111149249A (en) * 2017-09-28 2020-05-12 株式会社杰士汤浅国际 Lead-acid battery
CN111149249B (en) * 2017-09-28 2023-08-08 株式会社杰士汤浅国际 Lead storage battery
CN111712954A (en) * 2018-02-15 2020-09-25 日立化成株式会社 Active material holding tube, electrode, and lead-acid battery

Also Published As

Publication number Publication date
JP6544126B2 (en) 2019-07-17

Similar Documents

Publication Publication Date Title
Li et al. A compact nanoconfined sulfur cathode for high-performance lithium-sulfur batteries
CN107565086B (en) Preparation method of battery plate
CN109560249A (en) A kind of double-layer structure anode pole piece, and its preparation method and application
CN112670483A (en) Positive plate, positive polar plate and solid-state battery
KR20160091172A (en) Manufacturing method of positive active material containing reduced residual lithium and positive active material manufactured by the same
CN110350178A (en) A kind of preparation method of lithium ion battery composite graphite negative electrode material
JP2001229920A (en) Method of manufacturing sealed lead acid battery
CN102169974B (en) Composite enhanced baffle containing glass fibers and preparation method thereof
CN108630869A (en) A kind of diaphragm, preparation method and lithium battery
JP6544126B2 (en) Control valve type lead storage battery
JP5396216B2 (en) Lead acid battery
JP5545975B2 (en) Positive electrode active material for lead storage battery and positive electrode plate for lead storage battery comprising the same
CN115692711A (en) Composite conductive agent, conductive agent slurry and negative pole piece
JP7269512B2 (en) METHOD FOR MANUFACTURING SHEET FOR SOLID SECONDARY BATTERY AND BINDER FOR SOLID SECONDARY BATTERY
CN111295779A (en) Separator for lead-acid battery and lead-acid battery
JP6628070B2 (en) Manufacturing method of positive electrode plate for control valve type lead-acid battery
JP2005108538A (en) Separator for sealed lead-acid battery, and sealed lead-acid battery
WO2015064535A1 (en) Separator for valve-regulated lead battery and control valve-regulated lead battery using same
CN112133900A (en) Positive electrode active material and lithium ion battery containing the same
JP6447866B2 (en) Control valve type lead storage battery manufacturing method
CN111933866A (en) Lithium metal battery, interlayer thereof and preparation method
WO2018199124A1 (en) Lead acid storage battery
JP6436092B2 (en) Lead-acid battery separator and lead-acid battery
JP6699383B2 (en) Lead acid battery
JP7410683B2 (en) Positive electrode for lead-acid batteries and lead-acid batteries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190603

R151 Written notification of patent or utility model registration

Ref document number: 6544126

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350