JP2005108538A - Separator for sealed lead-acid battery, and sealed lead-acid battery - Google Patents

Separator for sealed lead-acid battery, and sealed lead-acid battery Download PDF

Info

Publication number
JP2005108538A
JP2005108538A JP2003338229A JP2003338229A JP2005108538A JP 2005108538 A JP2005108538 A JP 2005108538A JP 2003338229 A JP2003338229 A JP 2003338229A JP 2003338229 A JP2003338229 A JP 2003338229A JP 2005108538 A JP2005108538 A JP 2005108538A
Authority
JP
Japan
Prior art keywords
separator
sealed lead
acid battery
silica particles
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003338229A
Other languages
Japanese (ja)
Inventor
Masashi Sugiyama
昌司 杉山
Takuo Mitani
拓生 三谷
Makoto Shimizu
真琴 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP2003338229A priority Critical patent/JP2005108538A/en
Publication of JP2005108538A publication Critical patent/JP2005108538A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a separator for a sealed lead-acid battery for high voltage capable of preventing a stratification phenomenon without increasing the density of the separator, and of preventing a lead permeation short circuit, and having a certain tight contact property secured; and to provide a sealed lead-acid battery. <P>SOLUTION: This separator for a sealed lead-acid battery has a structure wherein chain connection structure powder-like silica particles are interlaid, in a dispersed state, in a sheet of a mat structure manufactured by using a minute glass fiber as a main constituent to form a three-dimensional network of the silica particles throughout the sheet. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、特に、高電圧用の密閉型鉛蓄電池用セパレータおよび密閉型鉛蓄電池に関する。   The present invention particularly relates to a high-voltage sealed lead-acid battery separator and a sealed lead-acid battery.

充電中に正極から発生する酸素ガスを負極で吸収する構造の密閉型鉛蓄電池では、正極板と負極板とが硫酸電解液を含浸した電解液保持体を兼ねるセパレータを介して積層された構造をしており、流動する電解液を有する開放型鉛蓄電池に比べて電解液量を制限してその流動性をなくし、酸素ガスがセパレータ内を透過し易くしている。しかしながら、このような構造の電池では、放電時には硫酸イオンが活物質に消費され電解液比重は低下し、充電時には逆に放出され電解液比重は上昇するため、高比重の硫酸電解液が下部に移動して、セパレータ上下部で硫酸電解液の濃度勾配、つまり成層化現象が起こることが分かっている。
従来、高電圧用の密閉型鉛蓄電池では、高容量化の要求を満たすために極板高さが高くなり、このため成層化現象が顕著となるという問題があった。この成層化現象を防止するためには、(1)セパレータの電解液保持性を高めること、(2)セパレータの上下において電解液保持性に差を付けないこと、(3)セパレータの上部から下部への電解液の移動をし難くすること、(4)セパレータと電極板との密着性を高めることなどが有効である。
In a sealed lead-acid battery having a structure in which oxygen gas generated from the positive electrode is absorbed by the negative electrode during charging, the positive electrode plate and the negative electrode plate are laminated via a separator that also serves as an electrolyte holding body impregnated with a sulfuric acid electrolyte. Therefore, compared with an open-type lead-acid battery having a flowing electrolytic solution, the amount of the electrolytic solution is limited to eliminate the fluidity, and oxygen gas can easily pass through the separator. However, in a battery having such a structure, sulfate ions are consumed by the active material during discharge and the specific gravity of the electrolyte decreases, and when discharged, the specific gravity of the electrolyte increases and the specific gravity of the electrolyte increases. It is known that the concentration gradient of the sulfuric acid electrolyte solution, that is, the stratification phenomenon occurs at the upper and lower parts of the separator.
Conventionally, in a sealed lead-acid battery for high voltage, there has been a problem that the electrode plate height becomes high in order to satisfy the demand for higher capacity, and thus the stratification phenomenon becomes remarkable. In order to prevent this stratification phenomenon, (1) increase the electrolyte retention of the separator, (2) make no difference in electrolyte retention above and below the separator, (3) from the top to the bottom of the separator It is effective to make it difficult for the electrolyte solution to move to (4), and to improve the adhesion between the separator and the electrode plate.

このため、電解液保持性を高めた密閉型鉛蓄電池用セパレータとして、平均繊維径0.5〜5.0μmのガラス繊維とシリカ粉体を湿式混抄したもの(例えば、特許文献1または2)、また、平均繊維径2μm以下の耐酸性ガラス繊維と、比表面積100m2/gのシリカ粉体と叩解セルロースまたはフィブリル化セルロースとを湿式混抄したもの(特許文献3)が知られている。
これらの密閉型鉛蓄電池用セパレータは、ガラス繊維のマット状シートの空隙部分に粉体状シリカを分散保持することにより、複雑な細孔構造の粉体状シリカが持つ高い電解液親和性と電解液保持性を利用するとともに、セパレータ全体の孔径を細径化するようにして、電解液保持性を高めるようにしている。
ただ、このようなガラス繊維のマット状シートの空隙部分に粉体状シリカを分散保持した構造のセパレータを、湿式抄造法により効率的に製造するためには、湿式抄造時に凝集剤を添加し、粉体状シリカをガラス繊維表面に吸着保持させるようにしなければならない。しかし、添加された凝集剤は、粉体状シリカ同士を吸着する作用も与えるため、原料時点で二次粒子を形成していた粉体状シリカ粒子は、湿式抄造時にはさらに凝集して大きなシリカ凝集体を形成するようになる。
つまり、図2に示すように、球状のシリカ一次粒子(図2(a)参照)が塊状に凝集してシリカ二次粒子4’(図2(b)参照)となったものが原料状態の粉体状シリカ粒子であるが、湿式抄造時の凝集剤の作用により、このシリカ二次粒子4’同士がさらに凝集してさらに大きな塊状のシリカ凝集体4(図2(c)参照)を形成し、このシリカ凝集体4が、ガラス繊維1表面に吸着保持されるようにして(図2(d)参照)、ガラス繊維マット状シート全体の空隙部分に分散保持された状態になっている。
For this reason, as a sealed lead-acid battery separator with improved electrolyte retention, a wet-mixed glass fiber having an average fiber diameter of 0.5 to 5.0 μm and silica powder (for example, Patent Document 1 or 2), Also known is a wet blend of acid-resistant glass fibers having an average fiber diameter of 2 μm or less, silica powder having a specific surface area of 100 m 2 / g, and beaten cellulose or fibrillated cellulose (Patent Document 3).
These separators for sealed lead-acid batteries have high electrolyte affinity and electrolysis that powder silica with complex pore structure possesses by dispersing and holding powder silica in the gaps of the glass fiber mat-like sheet. In addition to utilizing the liquid retainability, the pore diameter of the entire separator is reduced to improve the electrolyte retainability.
However, in order to efficiently produce a separator having a structure in which powdered silica is dispersed and held in the void portion of such a glass fiber mat-like sheet by a wet papermaking method, a flocculant is added during wet papermaking, Powdered silica must be adsorbed and held on the glass fiber surface. However, since the added flocculant also has an action of adsorbing the powdered silica, the powdered silica particles that have formed secondary particles at the time of the raw material are further agglomerated during wet papermaking to form larger silica agglomerates. A collection is formed.
That is, as shown in FIG. 2, spherical silica primary particles (see FIG. 2 (a)) are aggregated in a lump to form silica secondary particles 4 ′ (see FIG. 2 (b)) in the raw material state. Although it is powdery silica particles, the silica secondary particles 4 ′ are further aggregated by the action of an aggregating agent during wet paper making to form a larger lump silica aggregate 4 (see FIG. 2 (c)). The silica aggregate 4 is in a state of being dispersed and held in the void portions of the entire glass fiber mat-like sheet so as to be adsorbed and held on the surface of the glass fiber 1 (see FIG. 2 (d)).

また、セパレータと電極板との密着性、つまり緊圧性を高めた密閉型鉛蓄電池用セパレータとして、細径のガラス繊維と太径のガラス繊維を組み合わせたもの(特許文献4)が知られている。この密閉型鉛蓄電池用セパレータは、細径乃至太径のガラス繊維を適宜組み合わせることによって、セパレータの電解液流下速度を小さくして電解液保持性を著しく高めセパレータ上下方向の電解液保持性を均等化するとともに、注液反発力を大きくして緊圧性を高めるようにしている。   Also, as a sealed lead-acid battery separator with improved adhesion between the separator and the electrode plate, that is, tightness, a combination of a thin glass fiber and a large glass fiber (Patent Document 4) is known. . In this sealed lead-acid battery separator, by combining glass fibers with a small diameter or large diameter as appropriate, the electrolyte flow rate of the separator is reduced to significantly increase the electrolyte retention, and the electrolyte retention in the vertical direction of the separator is even. In addition, the liquid repulsive force is increased to increase the tightness.

特開昭60−221954号公報Japanese Patent Laid-Open No. 60-221554 特開昭61−269852号公報JP-A 61-269852 特開平4−22061号公報JP-A-4-22061 特開平5−67463号公報JP-A-5-67463

しかしながら、前記特許文献1〜3の密閉型鉛蓄電池用セパレータの場合、成層化現象を防止するために、セパレータの電解液保持性を高めるように、粉体状シリカを分散保持するように構成しているものの、前記したように、原料状態の粉体状シリカ二次粒子4’がさらに大きなシリカ凝集体4を形成して、ガラス繊維マット状シートの空隙部分に分散保持されているため、シリカ凝集体4,4同士の間に比較的大きな空間5が形成され易い(図2(d)参照)。したがって、この空間5を通じて電解液が下方に移動し易くなるため、前記したような、繰り返される充放電によって高比重の硫酸電解液が下部に移動する成層化現象が起こり易くなり、成層化現象の防止を図ることができない。この対策として、粉体状シリカの含有量を多くし、前記空間5を小さくする方法も考えられるが、このようにすると、セパレータが高密度となって空間率が低下し、セパレータの電気抵抗が高くなるとともに、電解液保持容量が低下して電池容量が低下するという不都合が生じる。
また、特許文献4の密閉型鉛蓄電池用セパレータは、粉体状シリカを含まず実質的にガラス繊維のみから構成されているため、セパレータの孔径を細径化できないとともに孔構造を複雑化できず、鉛粉がセパレータ内に侵入して樹枝状に成長しセパレータ内を貫通することによって引き起こされる鉛浸透短絡(デンドライトショート)を防止できないという問題がある。
そこで、本発明は、このような従来の問題点に鑑み、セパレータの密度を高くすることなく、成層化現象を防止することができ、鉛浸透短絡を防止するとともに、一定の緊圧性を確保した高電圧用の密閉型鉛蓄電池用セパレータおよび密閉型鉛蓄電池を提供することを目的とする。
However, in the case of the sealed lead-acid battery separators of Patent Documents 1 to 3, in order to prevent the stratification phenomenon, the powdered silica is configured to be dispersed and held so as to improve the electrolyte retention of the separator. However, as described above, since the powdery silica secondary particles 4 ′ in the raw material form a larger silica aggregate 4 and are dispersed and held in the void portions of the glass fiber mat-like sheet, A relatively large space 5 is easily formed between the aggregates 4 and 4 (see FIG. 2D). Accordingly, since the electrolyte easily moves downward through the space 5, the stratification phenomenon in which the high specific gravity sulfuric acid electrolyte moves downward due to repeated charge and discharge as described above is likely to occur. It cannot be prevented. As a countermeasure, a method of increasing the content of powdered silica and reducing the space 5 can be considered. However, in this case, the separator has a high density and the space ratio is reduced, and the electrical resistance of the separator is reduced. In addition to the increase, there is a disadvantage that the electrolytic solution holding capacity decreases and the battery capacity decreases.
Moreover, since the separator for sealed lead-acid batteries of Patent Document 4 does not contain powdered silica and is substantially composed only of glass fibers, the pore diameter of the separator cannot be reduced and the pore structure cannot be complicated. There is a problem that lead penetration short circuit (dendritic short circuit) caused by lead powder entering the separator and growing in a dendritic shape and penetrating through the separator cannot be prevented.
Therefore, in view of such a conventional problem, the present invention can prevent a stratification phenomenon without increasing the density of the separator, prevent a lead penetration short circuit, and ensure a certain tightness. An object of the present invention is to provide a sealed lead-acid battery separator and a sealed lead-acid battery for high voltage.

本発明の密閉型鉛蓄電池用セパレータは、前記目的を達成するべく、請求項1に記載の通り、微細ガラス繊維を主体として抄造してなるマット構造のシート内に、鎖状連結構造粉体状シリカ粒子を分散状態に介在させ、該シート全体に該シリカ粒子の三次元網目状ネットワークを形成したことを特徴とする。
また、請求項2記載の密閉型鉛蓄電池用セパレータは、請求項1記載の密閉型鉛蓄電池用セパレータにおいて、前記鎖状連結構造粉体状シリカ粒子を、1〜50質量%含有したことを特徴とする。
また、請求項3記載の密閉型鉛蓄電池用セパレータは、請求項1または2記載の密閉型鉛蓄電池用セパレータにおいて、前記セパレータの密度が0.30g/cm3以下であることを特徴とする。
また、請求項4記載の密閉型鉛蓄電池用セパレータは、請求項1乃至3の何れかに記載の密閉型鉛蓄電池用セパレータにおいて、前記セパレータは、前記微細ガラス繊維を主体とし前記鎖状連結構造粉体状シリカ粒子を湿式混抄してなるものであることを特徴とする。
また、本発明の密閉型鉛蓄電池は、請求項5に記載の通り、請求項1乃至4の何れかに記載のセパレータを使用したことを特徴とする。
In order to achieve the above object, the separator for a sealed lead-acid battery according to the present invention has a chain connected structure powder form in a sheet of a mat structure formed mainly from fine glass fibers as described in claim 1. Silica particles are interposed in a dispersed state, and a three-dimensional network network of the silica particles is formed on the entire sheet.
Moreover, the separator for sealed lead-acid batteries according to claim 2 is characterized in that, in the separator for sealed lead-acid batteries according to claim 1, 1 to 50% by mass of the chain linked structure powdered silica particles is contained. And
The sealed lead-acid battery separator according to claim 3 is the sealed lead-acid battery separator according to claim 1 or 2, wherein the density of the separator is 0.30 g / cm 3 or less.
Moreover, the separator for sealed lead-acid batteries according to claim 4 is the separator for sealed lead-acid batteries according to any one of claims 1 to 3, wherein the separator is mainly composed of the fine glass fiber and the chain connection structure. It is formed by wet-mixing powdered silica particles.
Moreover, the sealed lead-acid battery according to the present invention uses the separator according to any one of claims 1 to 4 as described in claim 5.

本発明の密閉型鉛蓄電池用セパレータは、微細ガラス繊維を主体として抄造してなるマット構造のシート内に、鎖状連結構造粉体状シリカ粒子を分散状態に介在させ、該シート全体に該シリカ粒子の三次元網目状ネットワークを形成したものであるため、セパレータ全体に、大きさが比較的均一化され微細化された空隙を形成することができるようになる。これにより、該空隙を通じて電解液が下方に移動することができ難くなるため、成層化現象の防止が図れるとともに、セパレータの孔径を全体に細径化でき孔構造も複雑化できるので、鉛浸透短絡の防止が図れる。また、成層化防止や鉛浸透短絡防止を図るために混入する粉体状シリカの含有量を、従来の球状の粉体状シリカを使用した場合のように多くする必要がないため、セパレータを高密度化して空間率を低下させてしまうようなことがなく、セパレータの電気抵抗を高めたり、電解液保持容量を低下させて電池容量を低下させてしまうようなことがない。また、セパレータ全体に比較的均一化された微細な空隙が形成されるため、セパレータ全体に良好な電解液保持性が与えられ、セパレータの上下方向での電解液保持性が均等化できる。また、セパレータ全体にシリカ粒子が三次元網目状ネットワークを形成しているので、セパレータに一定の緊圧性(クッション性)を与えることができ、密閉型鉛蓄電池の電池組立性を向上できるとともに、セパレータと電極板との密着性を向上できる。さらに、シリカ粒子が凝集体を形成しても従来のようなシリカ粒子が互いに密着した塊状のシリカ凝集体とはならないので、従来よりも湿式抄造時の脱水性が向上し生産性を向上できる。
このため、本発明の密閉型鉛蓄電池用セパレータを用いることにより、高出力、高容量化が可能となり、高電圧用の密閉型鉛蓄電池を得ることができる。
The separator for a sealed lead-acid battery according to the present invention has chain-like linked structured powdery silica particles interposed in a dispersed state in a mat-structured sheet made mainly from fine glass fibers, and the silica is dispersed throughout the sheet. Since a three-dimensional network network of particles is formed, it is possible to form voids that are relatively uniform in size and refined over the entire separator. This makes it difficult for the electrolyte solution to move downward through the gap, thus preventing the stratification phenomenon and reducing the overall pore diameter of the separator and complicating the pore structure. Can be prevented. In addition, it is not necessary to increase the content of powdered silica to prevent stratification and lead permeation short circuiting as in the case of using conventional spherical powdered silica. Densification does not reduce the space ratio, and it does not increase the electrical resistance of the separator or decrease the electrolyte holding capacity to decrease the battery capacity. Further, since a relatively uniform fine void is formed in the entire separator, good electrolyte solution retention is given to the entire separator, and electrolyte solution retention in the vertical direction of the separator can be equalized. In addition, since the silica particles form a three-dimensional network network throughout the separator, the separator can be provided with a certain level of tension (cushioning), and the battery assembly of the sealed lead-acid battery can be improved. The adhesion between the electrode plate and the electrode plate can be improved. Furthermore, even if the silica particles form an aggregate, the conventional silica particles do not become a massive silica aggregate in which the silica particles are in close contact with each other. Therefore, the dewaterability during wet papermaking is improved and productivity can be improved.
For this reason, by using the separator for sealed lead-acid batteries of the present invention, high output and high capacity can be achieved, and a sealed lead-acid battery for high voltage can be obtained.

本発明の密閉型鉛蓄電池用セパレータは、微細ガラス繊維を主体として抄造してなるマット構造のシート内に、鎖状連結構造粉体状シリカ粒子を分散状態に介在させ、該シート全体に該シリカ粒子の三次元網目状ネットワークを形成したものである。
これを、粉体状シリカに着目して、図1に模式的に示す。図1に示すように、 球状のシリカ一次粒子(図1(A)参照)が直鎖状、数珠状、分岐状あるいは環状等に連結してシリカ二次粒子2’(図1(B)参照)となったものが原料状態の鎖状連結構造粉体状シリカ粒子であるが、湿式抄造時の凝集剤の作用により、このシリカ二次粒子2’同士が凝集して連結が長くなり鎖状連結構造を維持したまま成長した形のシリカ凝集体2(図1(C)参照)を形成し、このシリカ凝集体2が、ガラス繊維1表面に吸着保持されるようにして(図1(D)参照)、ガラス繊維マット状シート全体の空隙部分に分散保持された状態になっている。
つまり、シリカ粒子がシリカ凝集体を形成する際にも、鎖状連結構造を維持したまま成長して凝集体となるので、ガラス繊維のマット構造のシート全体に、シリカ粒子が三次元網目状ネットワークを形成したような状態にセパレータが形成され、従来の球状の粉体状シリカを使用したセパレータのように、シリカ粒子が互いに密着した塊状を形成するようなことがないとともに、シリカ凝集体同士の間に大きな空間を形成するようなことがなく、セパレータ全体に、大きさが比較的均一化され微細化された空間3,3が形成されるようになる。
したがって、空間3を通じて電解液が下方に移動することができ難くなるため、成層化現象の防止が図れるとともに、セパレータの孔径を全体に細径化でき孔構造も複雑化できるので、鉛浸透短絡の防止が図れる。また、成層化防止や鉛浸透短絡防止を図るために混入する粉体状シリカの含有量を、従来の球状の粉体状シリカを使用した場合のように多くする必要がないため、セパレータを高密度化して空間率を低下させてしまうようなことがなく、セパレータの電気抵抗を高めたり、電解液保持容量を低下させて電池容量を低下させてしまうようなことがない。また、セパレータ全体に比較的均一化された微細な空隙が形成されるため、セパレータ全体に良好な電解液保持性が与えられ、セパレータの上下方向での電解液保持性が均等化される。また、セパレータ全体にシリカ粒子が三次元網目状ネットワークを形成しているので、セパレータに一定の緊圧性(クッション性)を与えることができ、密閉型鉛蓄電池の電池組立性を向上できるとともに、セパレータと電極板との密着性を向上できる。さらに、シリカ粒子が凝集体を形成しても従来のようなシリカ粒子が互いに密着した塊状のシリカ凝集体とはならないので、従来よりも湿式抄造時の脱水性が向上し生産性を向上できる。
The separator for a sealed lead-acid battery according to the present invention has chain-like linked structured powdery silica particles interposed in a dispersed state in a mat-structured sheet made mainly from fine glass fibers, and the silica is dispersed throughout the sheet. A three-dimensional network of particles is formed.
This is schematically shown in FIG. 1, focusing on powdered silica. As shown in FIG. 1, spherical silica primary particles (see FIG. 1 (A)) are connected in a linear, beaded, branched, or annular shape to form silica secondary particles 2 ′ (see FIG. 1 (B)). ) Are chain-linked structured powdery silica particles in the raw material state, but due to the action of the flocculant during wet papermaking, the silica secondary particles 2 'are agglomerated to form a long chain. A silica aggregate 2 (see FIG. 1 (C)) that is grown while maintaining a connected structure is formed, and the silica aggregate 2 is adsorbed and held on the surface of the glass fiber 1 (FIG. 1 (D )), And is dispersed and held in the voids of the entire glass fiber mat-like sheet.
In other words, when the silica particles form a silica aggregate, they grow while maintaining a chain-like connection structure to form an aggregate, so that the silica particles are distributed over the entire sheet of the glass fiber mat structure. The separator is formed in such a state that the silica particles are formed, and unlike the separator using the conventional spherical powdery silica, the silica particles do not form a lump in close contact with each other. A large space is not formed in between, and spaces 3 and 3 that are relatively uniform in size and miniaturized are formed in the entire separator.
Therefore, since it becomes difficult for the electrolyte to move downward through the space 3, the stratification phenomenon can be prevented, and the pore diameter of the separator can be reduced as a whole and the hole structure can be complicated. Prevention can be achieved. In addition, it is not necessary to increase the content of powdered silica to prevent stratification and lead permeation short circuiting as in the case of using conventional spherical powdered silica. Densification does not reduce the space ratio, and it does not increase the electrical resistance of the separator or decrease the electrolyte holding capacity to decrease the battery capacity. Further, since a relatively uniform fine void is formed in the entire separator, good electrolyte solution retention is given to the entire separator, and electrolyte solution retention in the vertical direction of the separator is equalized. In addition, since the silica particles form a three-dimensional network network throughout the separator, the separator can be provided with a certain level of tension (cushioning), and the battery assembly of the sealed lead-acid battery can be improved. The adhesion between the electrode plate and the electrode plate can be improved. Furthermore, even if the silica particles form an aggregate, the conventional silica particles do not become a massive silica aggregate in which the silica particles are in close contact with each other. Therefore, the dewaterability during wet papermaking is improved and productivity can be improved.

前記セパレータは、微細ガラス繊維を主体とし鎖状連結構造粉体状シリカ粒子を湿式混抄してなることが好ましい。このようにすることで、微細ガラス繊維を主体として抄造してなるマット構造のシート内に、鎖状連結構造粉体状シリカ粒子を均一分散状態に介在させ、該シート全体に該シリカ粒子の均一な三次元網目状ネットワークを形成することができるようになる。   The separator is preferably obtained by wet-mixing chain connected structure powdered silica particles mainly composed of fine glass fibers. By doing so, chain-like linked structured powdery silica particles are interposed in a uniformly dispersed state in a mat-structured sheet made mainly of fine glass fibers, and the silica particles are uniformly distributed throughout the sheet. 3D mesh network can be formed.

前記鎖状連結構造粉体状シリカ粒子とは、前記したように、球状の粉体状シリカ一次粒子が直鎖状、数珠状、分岐状あるいは環状等に連結した構造をなして粉体状シリカ二次粒子を形成したものである。
前記鎖状連結構造粉体状シリカ粒子のセパレータ中における含有量は1〜50質量%であることが好ましい。これは、該シリカ粒子の含有量が1質量%未満であると、シリカ粒子をセパレータ中に均一に分散させることが困難となるため好ましくなく、50質量%を超えると、セパレータの密度が向上し空間率が低くなって、電気抵抗を高めたり、電解液保持容量を低下させたりするため好ましくないからである。
As described above, the chain-linked structure powdery silica particles have a structure in which spherical powdery silica primary particles are connected in a linear, beaded, branched, or annular shape to form powdered silica. Secondary particles are formed.
The content of the chain connected structure powdery silica particles in the separator is preferably 1 to 50% by mass. This is not preferable when the content of the silica particles is less than 1% by mass, because it is difficult to uniformly disperse the silica particles in the separator. When the content exceeds 50% by mass, the density of the separator is improved. This is because it is not preferable because the space ratio is lowered and the electric resistance is increased and the electrolytic solution holding capacity is decreased.

前記セパレータの密度は0.30g/cm3以下であることが好ましい。これは、密度が0.30g/cm3を超えると、前記したように、セパレータの空間率が低下し、電気抵抗を高めたり、電解液保持容量を低下させたりするため好ましくないからである。 The density of the separator is preferably 0.30 g / cm 3 or less. This is because if the density exceeds 0.30 g / cm 3 , as described above, the separator porosity decreases, and the electrical resistance is increased or the electrolyte holding capacity is decreased.

前記微細ガラス繊維としては、平均繊維径が2.0μm以下のガラス繊維を用いることが好ましい。このような細いガラス繊維を使用することで、ガラス繊維を抄造してなるマット状シートの空隙部分の平均孔径を10μm以下にすることができ、比較的少量の粉体状シリカの混入で、該空隙部分の目止め(孔径の微小化)が行えるようになる。   As the fine glass fiber, glass fiber having an average fiber diameter of 2.0 μm or less is preferably used. By using such a thin glass fiber, the average pore diameter of the gap portion of the mat-like sheet formed by making the glass fiber can be made 10 μm or less, and by mixing a relatively small amount of powdered silica, It becomes possible to seal the gap (miniaturize the hole diameter).

本発明の密閉型鉛蓄電池用セパレータは、微細ガラス繊維を主体として抄造してなるマット状シートに、鎖状連結構造粉体状シリカ粒子を混入してなるものであるが、繊維材料として、前記微細ガラス繊維以外に、有機繊維を混入するようにしてもよい。有機繊維を混入させると、セパレータの強度を高めることができるようになり、電池組立作業性を向上させることができるようになる。
前記有機繊維としては、ポリオレフィンのモノフィラメント、ポリエステルのモノフィラメント、熱融着性ポリエステル繊維、叩解性アクリル繊維、フィブリル化セルロースの中から、1種以上を選択することができる。
前記有機繊維の含有量は、セパレータを構成する全繊維材料の内、5〜30質量%とすることが好ましい。これは、有機繊維の含有量が5質量%未満であると、前記したセパレータの強度向上効果が得られないため好ましくなく、30質量%を超えると、相対的に微細ガラス繊維の含有量が少なくなり、セパレータの電解液濡れ性が低下するため好ましくないからである。
したがって、セパレータを構成する全繊維材料が、前記微細ガラス繊維と前記有機繊維からなる場合には、前記微細ガラス繊維を70〜95質量%とし、前記有機繊維を30〜5質量%とすることが好ましい。
The separator for a sealed lead-acid battery of the present invention is formed by mixing chain-like linked structured powdery silica particles into a mat-like sheet made mainly from fine glass fibers. In addition to fine glass fibers, organic fibers may be mixed. When the organic fiber is mixed, the strength of the separator can be increased, and the battery assembly workability can be improved.
As the organic fiber, one or more kinds can be selected from polyolefin monofilament, polyester monofilament, heat-fusible polyester fiber, beating acrylic fiber, and fibrillated cellulose.
The content of the organic fiber is preferably 5 to 30% by mass in the total fiber material constituting the separator. This is not preferable when the organic fiber content is less than 5% by mass because the effect of improving the strength of the separator cannot be obtained. When the content exceeds 30% by mass, the content of fine glass fiber is relatively small. This is because the electrolyte solution wettability of the separator is lowered, which is not preferable.
Therefore, when all the fiber materials which comprise a separator consist of the said fine glass fiber and the said organic fiber, the said fine glass fiber shall be 70-95 mass%, and the said organic fiber shall be 30-5 mass%. preferable.

次に、本発明の実施例について比較例と共に詳細に説明する。
(実施例1)
微細ガラス繊維として平均繊維径が1.0μmのガラス繊維80質量%と、有機繊維として、平均繊維径が1.5デニールの芯鞘型熱融着性ポリエステル繊維(ユニチカメルティー 4080)10質量%と、平均繊維径が1.3デニールのモノフィラメント状ポリエステル繊維(クラレエステル EP133)5質量%と、鎖状連結構造粉体状シリカ粒子としてJ.M.Huber社製の「Huberpol 135」5質量%とを水中で分散・混合し、適量のカチオン性高分子凝集剤を添加して、通常の湿式抄造法により湿式抄造して抄造シートを形成し、乾燥して、厚さ0.80mm、密度0.16g/cm3の密閉型鉛蓄電池用セパレータを得た。
Next, examples of the present invention will be described in detail together with comparative examples.
(Example 1)
80% by mass of glass fiber having an average fiber diameter of 1.0 μm as fine glass fiber, and 10% by mass of core-sheath type heat-fusible polyester fiber having an average fiber diameter of 1.5 denier (Unitika Melty 4080) as organic fiber 5% by mass of monofilament-like polyester fiber (Kuraray ester EP133) having an average fiber diameter of 1.3 denier, and J.C. M.M. 5% by mass of “Huberpol 135” manufactured by Huber is dispersed and mixed in water, an appropriate amount of a cationic polymer flocculant is added, and wet papermaking is performed by a normal wet papermaking method to form a papermaking sheet, followed by drying. Thus, a sealed lead-acid battery separator having a thickness of 0.80 mm and a density of 0.16 g / cm 3 was obtained.

(実施例2)
実施例1の材料配合において、微細ガラス繊維の配合量を60質量%に、鎖状連結構造粉体状シリカ粒子の配合量を25質量%にそれぞれ変更した以外は、実施例1と同様にして、厚さ0.78mm、密度0.21g/cm3の密閉型鉛蓄電池用セパレータを得た。
(Example 2)
In the material blending of Example 1, the same procedure as in Example 1 was conducted except that the blending amount of the fine glass fibers was changed to 60% by mass and the blending amount of the chain connected structure powdery silica particles was changed to 25% by mass. A separator for a sealed lead-acid battery having a thickness of 0.78 mm and a density of 0.21 g / cm 3 was obtained.

(実施例3)
実施例1の材料配合において、微細ガラス繊維の配合量を40質量%に、鎖状連結構造粉体状シリカ粒子の配合量を45質量%にそれぞれ変更した以外は、実施例1と同様にして、厚さ0.82mm、密度0.27g/cm3の密閉型鉛蓄電池用セパレータを得た。
(Example 3)
In the material formulation of Example 1, the same procedure as in Example 1 was conducted, except that the compounding amount of the fine glass fiber was changed to 40% by mass and the compounding amount of the chain connected structure powdery silica particles was changed to 45% by mass. A separator for a sealed lead-acid battery having a thickness of 0.82 mm and a density of 0.27 g / cm 3 was obtained.

(比較例1)
微細ガラス繊維として平均繊維径が1.0μmのガラス繊維80質量%と、有機繊維として、平均繊維径が1.5デニールの芯鞘型熱融着性ポリエステル繊維(ユニチカメルティー 4080)10質量%と、平均繊維径が1.3デニールのモノフィラメント状ポリエステル繊維(クラレエステル EP133)5質量%と、従来の球状の粉体状シリカ粒子(ニップシール NSP)5質量%とを水中で分散・混合し、適量のカチオン性高分子凝集剤を添加して、通常の湿式抄造法により湿式抄造して抄造シートを形成し、乾燥して、厚さ0.79mm、密度0.18g/cm3の密閉型鉛蓄電池用セパレータを得た。
(Comparative Example 1)
80% by mass of glass fiber having an average fiber diameter of 1.0 μm as fine glass fiber, and 10% by mass of core-sheath type heat-fusible polyester fiber having an average fiber diameter of 1.5 denier (Unitika Melty 4080) as organic fiber Disperse and mix 5% by mass of monofilament polyester fiber (Kuraray Ester EP133) with an average fiber diameter of 1.3 denier and 5% by mass of conventional spherical powdered silica particles (Nip Seal NSP) in water. A cationic lead-acid battery having a thickness of 0.79 mm and a density of 0.18 g / cm 3. A separator was obtained.

(比較例2)
比較例1の材料配合において、微細ガラス繊維の配合量を60質量%に、従来の球状の粉体状シリカ粒子の配合量を25質量%にそれぞれ変更した以外は、比較例1と同様にして、厚さ0.83mm、密度0.22g/cm3の密閉型鉛蓄電池用セパレータを得た。
(Comparative Example 2)
In the material formulation of Comparative Example 1, the same procedure as in Comparative Example 1 was conducted except that the blending amount of fine glass fibers was changed to 60% by mass and the blending amount of conventional spherical powdery silica particles was changed to 25% by mass, respectively. A separator for a sealed lead-acid battery having a thickness of 0.83 mm and a density of 0.22 g / cm 3 was obtained.

(比較例3)
比較例1の材料配合において、微細ガラス繊維の配合量を40質量%に、従来の球状の粉体状シリカ粒子の配合量を45質量%にそれぞれ変更した以外は、比較例1と同様にして、厚さ0.77mm、密度0.29g/cm3の密閉型鉛蓄電池用セパレータを得た。
(Comparative Example 3)
In the material formulation of Comparative Example 1, the same procedure as in Comparative Example 1 was conducted, except that the compounding amount of fine glass fibers was changed to 40% by mass and the compounding amount of conventional spherical powdery silica particles was changed to 45% by mass, respectively. A separator for a sealed lead-acid battery having a thickness of 0.77 mm and a density of 0.29 g / cm 3 was obtained.

(比較例4)
微細ガラス繊維として平均繊維径が1.0μmのガラス繊維80質量%と、有機繊維として、平均繊維径が1.5デニールの芯鞘型熱融着性ポリエステル繊維(ユニチカメルティー 4080)10質量%と、平均繊維径が1.3デニールのモノフィラメント状ポリエステル繊維(クラレエステル EP133)5質量%と、従来の球状の粉体状シリカ粒子(ニップシール NSP)5質量%とを水中で分散・混合し、適量のカチオン性高分子凝集剤を添加して、通常の湿式抄造法により湿式抄造して抄造シートを形成し、該シートを湿紙状態のままプレス機にかけて圧縮し、乾燥して、厚さ0.81mm、密度0.40g/cm3の密閉型鉛蓄電池用セパレータを得た。
(Comparative Example 4)
80% by mass of glass fiber having an average fiber diameter of 1.0 μm as fine glass fiber, and 10% by mass of core-sheath type heat-fusible polyester fiber having an average fiber diameter of 1.5 denier (Unitika Melty 4080) as organic fiber Disperse and mix 5% by mass of monofilament polyester fiber (Kuraray Ester EP133) with an average fiber diameter of 1.3 denier and 5% by mass of conventional spherical powdered silica particles (Nip Seal NSP) in water. The cationic polymer flocculant was added to form a paper sheet by wet papermaking by a normal wet papermaking method, and the sheet was compressed with a press in a wet paper state and dried to a thickness of 0. A separator for a sealed lead-acid battery having a size of 81 mm and a density of 0.40 g / cm 3 was obtained.

(比較例5)
比較例4の材料配合において、微細ガラス繊維の配合量を60質量%に、従来の球状の粉体状シリカ粒子の配合量を25質量%にそれぞれ変更した以外は、比較例4と同様にして、厚さ0.78mm、密度0.43g/cm3の密閉型鉛蓄電池用セパレータを得た。
(Comparative Example 5)
In the material formulation of Comparative Example 4, the same procedure as in Comparative Example 4 was conducted, except that the compounding amount of fine glass fibers was changed to 60% by mass and the compounding amount of conventional spherical powdery silica particles was changed to 25% by mass, respectively. A separator for a sealed lead-acid battery having a thickness of 0.78 mm and a density of 0.43 g / cm 3 was obtained.

(比較例6)
比較例4の材料配合において、微細ガラス繊維の配合量を40質量%に、従来の球状の粉体状シリカ粒子の配合量を45質量%にそれぞれ変更した以外は、比較例4と同様にして、厚さ0.82mm、密度0.45g/cm3の密閉型鉛蓄電池用セパレータを得た。
(Comparative Example 6)
In the material formulation of Comparative Example 4, the same procedure as in Comparative Example 4 was conducted, except that the compounding amount of fine glass fibers was changed to 40% by mass and the compounding amount of conventional spherical powdery silica particles was changed to 45% by mass, respectively. A separator for a sealed lead-acid battery having a thickness of 0.82 mm and a density of 0.45 g / cm 3 was obtained.

前記実施例1〜3及び比較例1〜6の各セパレータについて、液降下速度、注液反発力、吸液量、電気抵抗を以下の方法によって測定した。結果を表1に示す。
[液降下速度]
(1)セパレータを50mm×250mmの大きさにカットして試料とし、該試料の重量が約6.75gになるように(充填密度0.16〜0.21g/cm3)、両端にスペーサを介して対向して設置された2枚のアクリル板の(幅70〜80mm×長さ500mm)の間にセットする。
(2)前記アクリル板の間にセットした試料を水に漬けた後、脱水機(ドライサクション)により余分な水を取り除く。
(3)湿潤状態の試料を測定治具にセットし、アクリル板の上方から比重1.3の硫酸液をピペットで静かに注液する。尚、硫酸液の注液は、試料の上方から下方へ100mmとしておき、随時液を追加して高さを一定にしておく。尚、硫酸液は、予め赤インクまたはメチルオレンジで着色しておく。
(4)硫酸液を注液し終えた後から、5分、10分、30分、60分後の前記硫酸液の降下距離を測定する。
(5)この測定を、各試料毎に3回ずつ行う。
尚、液降下速度が100mm/hr以下であれば、電解液保持性が良好であることを示す。
[注液反発力]
図3に示す測定器10を用いて次のように測定する。
(1)セパレータを100mm×100mmに30枚裁断し、10枚1組として試料とし、この試料の重量を測定する。
(2)初めに次の予備実験を行う。
試料11を測定器10にセットし、ハンドル12を回して試料11を徐々に圧縮し、この圧縮力をロードセル13で検出して圧力計14で読み取りながら、39.2kPaの圧力にセットする。次いで、試料11の上方から水を徐々に注液して、横から水が出てきた時の注液量(W)を測定する。
(3)予備実験終了後、試料11を測定器10にセットし、再度39.2kPaの圧力にセットする。尚、セット後は1分毎に圧力を39.2kPaに合わせ直し、5分後でも39.2kPaの圧力がかかるようにする。
(4)セット後の試料11の厚みをノギスで4点測定する。
(5)水を10gずつ、試料11に注液し、2分後の圧力を測定する。
(6)注液量が(W−20)gとなる辺りから、注液を5gずつに切り換え、(5)と同じ測定をする。
(7)圧力が変化しなくなったら、測定を終了する。
(8)この測定を2回以上行う。
(9)この測定結果を、横軸に注液量、縦軸に圧力を取ってグラフにし、圧力が最も下がった所の圧力P(kPa)を読み取る。
(10)次式により、注液反発力を算出する。
注液反発力(kPa)=P/39.2
尚、微細ガラス繊維を主体としたマット状シートからなるセパレータの場合、注液量を増やしていくと徐々に収縮していき、その後膨張して、液飽和状態になるが、セパレータが最も収縮した状態における注液反発力を測定した。
尚、注液反発力が0.54kPa以上であれば、緊圧性が良好であることを示す。
[吸液量]
吸液量は次式により算出した。
吸液量(g/g)={(湿潤状態のセパレータ重量)−(乾燥状態のセパレータ重量)}/(乾燥状態のセパレータ重量)
[電気抵抗]
SBA S 0402の方法に準じて測定した。
About each separator of the said Examples 1-3 and Comparative Examples 1-6, the liquid dropping speed, the injection | pouring repulsion force, the liquid absorption amount, and the electrical resistance were measured with the following method. The results are shown in Table 1.
[Liquid descent speed]
(1) A separator is cut into a size of 50 mm × 250 mm to prepare a sample, and spacers are provided at both ends so that the weight of the sample is about 6.75 g (packing density 0.16 to 0.21 g / cm 3 ). And set between two acrylic plates (width 70 to 80 mm × length 500 mm) placed facing each other.
(2) After the sample set between the acrylic plates is immersed in water, excess water is removed by a dehydrator (dry suction).
(3) A wet sample is set on a measuring jig, and a sulfuric acid solution having a specific gravity of 1.3 is gently poured from above the acrylic plate with a pipette. In addition, the injection of the sulfuric acid solution is set to 100 mm from the upper side to the lower side of the sample, and the liquid is added at any time to keep the height constant. The sulfuric acid solution is previously colored with red ink or methyl orange.
(4) After the pouring of the sulfuric acid solution, the descending distance of the sulfuric acid solution after 5 minutes, 10 minutes, 30 minutes and 60 minutes is measured.
(5) This measurement is performed three times for each sample.
In addition, if a liquid dropping speed is 100 mm / hr or less, it will show that electrolyte solution retention property is favorable.
[Liquid repulsion force]
The measurement is performed as follows using the measuring instrument 10 shown in FIG.
(1) 30 sheets of a separator are cut into 100 mm × 100 mm, a set of 10 sheets is used as a sample, and the weight of the sample is measured.
(2) First, the following preliminary experiment is performed.
The sample 11 is set on the measuring instrument 10, the handle 12 is turned to gradually compress the sample 11, and this compressive force is detected by the load cell 13 and read by the pressure gauge 14, and set to a pressure of 39.2 kPa. Next, water is gradually injected from above the sample 11, and the amount (W) of the liquid injected when the water comes out from the side is measured.
(3) After completion of the preliminary experiment, the sample 11 is set in the measuring device 10 and set again at a pressure of 39.2 kPa. After setting, the pressure is adjusted to 39.2 kPa every minute so that a pressure of 39.2 kPa is applied even after 5 minutes.
(4) The thickness of the sample 11 after setting is measured at four points with a caliper.
(5) 10 g of water is poured into the sample 11 and the pressure after 2 minutes is measured.
(6) From the vicinity where the liquid injection amount becomes (W-20) g, the liquid injection is switched to 5 g at a time, and the same measurement as in (5) is performed.
(7) When the pressure no longer changes, the measurement is terminated.
(8) Perform this measurement twice or more.
(9) The measurement result is plotted on the horizontal axis and the pressure is plotted on the vertical axis, and the pressure P (kPa) at which the pressure is the lowest is read.
(10) The liquid injection repulsive force is calculated by the following formula.
Injection repulsive force (kPa) = P / 39.2
In the case of a separator made of a mat-like sheet mainly composed of fine glass fibers, it gradually contracts as the amount of liquid injected is increased, and then expands to a liquid saturated state, but the separator contracts most. The liquid repelling force in the state was measured.
In addition, if the injection repulsion force is 0.54 kPa or more, it indicates that the tightness is good.
[Liquid absorption]
The amount of liquid absorption was calculated by the following formula.
Liquid absorption (g / g) = {(wet separator weight) − (dry separator weight)} / (dry separator weight)
[Electric resistance]
It measured according to the method of SBA S0402.

Figure 2005108538
Figure 2005108538

表1より、以下のようなことが分かった。尚、実施例1〜3、比較例1〜3、比較例4〜6の各グループ間で単一セパレータ同士を比較する場合には、基本的に、微細ガラス繊維:有機繊維:粉体状シリカの配合比率が同一であるセパレータ同士を比較するようにした。つまり、例えば、実施例1を比較する場合は、比較例1や比較例4と比較した。
(1)従来の球状シリカを使用し、実施例1〜3と同様の製造方法で製造した比較例1〜3のセパレータでは、液降下速度が116〜152mm/hrと、電解液保持性が良好とされる100mm/hr以下の基準を満足できていない。また、注液反発力についても0.46、0.52、0.61kPaと、緊圧性が良好とされる0.54kPa以上の基準を満足できない傾向にある。ただ、密度については0.18〜0.29g/cm3と、良好な基準である0.30g/cm3以下の条件を満足しており、吸液量、電気抵抗の各特性については良好であった。
(2)従来の球状シリカを使用した比較例1〜3のセパレータの密度向上タイプである比較例4〜6のセパレータでは、液降下速度が48〜68mm/hrと、比較例1〜3のセパレータに比べて54〜59%改善されており、電解液保持性が良好とされる100mm/hr以下の基準を十分に満足できている。また、注液反発力についても0.62〜0.77kPaと、比較例1〜3のセパレータに比べて26〜42%改善されており、緊圧性が良好とされる0.54kPa以上の基準を十分に満足できている。ただ、密度については0.40〜0.45g/cm3と、良好な基準である0.30g/cm3以下の条件を満足できておらず、比較例1〜3のセパレータに比較して、吸液量で34〜46%、電気抵抗で67〜117%悪化し、製品単価も55〜122%高くなった。
(3)これに対し、鎖状連結構造シリカを使用し、比較例1〜3と同様の製造方法で製造した実施例1〜3のセパレータでは、液降下速度が51〜79mm/hrと、比較例1〜3のセパレータに比べて48〜56%改善されており、電解液保持性が良好とされる100mm/hr以下の基準を十分に満足できている。また、注液反発力についても0.55〜0.69kPaと、比較例1〜3のセパレータに比べて13〜20%改善されており、緊圧性が良好とされる0.54kPa以上の基準を満足できている。また、密度についても0.16〜0.27g/cm3と、良好な基準である0.30g/cm3以下の条件を満足しており、吸液量、電気抵抗共に良好で、比較例1〜3のセパレータに比較してもまったく遜色ない結果であった。
(4)以上から、比較例4〜6のセパレータは、比較例1〜3のセパレータに比較して、液降下速度、注液反発力共に大幅に改善され良好であるが、密度が高いため、吸液性、電気抵抗が悪く、製品単価も高くなっており問題がある。これに対し、実施例1〜3のセパレータは、従来の比較例1〜3のセパレータに対し、吸液量、電気抵抗、製品単価をほぼ同等としつつ、液降下速度、注液反発力を大幅に改善できており、大いにメリットがある。
Table 1 shows the following. In addition, when comparing single separators between each group of Examples 1-3, Comparative Examples 1-3, and Comparative Examples 4-6, fundamentally, fine glass fiber: organic fiber: powdered silica The separators having the same blending ratio were compared with each other. That is, for example, when comparing Example 1, it compared with Comparative Example 1 and Comparative Example 4.
(1) In the separators of Comparative Examples 1 to 3 manufactured using the conventional spherical silica by the same manufacturing method as in Examples 1 to 3, the liquid descent rate is 116 to 152 mm / hr, and the electrolytic solution retention is good. The standard of 100 mm / hr or less is not satisfied. Further, the injection repulsion force tends to be unable to satisfy the criteria of 0.44, 0.52, 0.61 kPa and 0.54 kPa or more, which is considered to have good tightness. However, for the density of the 0.18~0.29g / cm 3, is satisfied, which is a good criterion 0.30 g / cm 3 the following conditions, liquid absorption amount, good for the characteristics of the electrical resistance there were.
(2) In the separators of Comparative Examples 4 to 6, which are density-enhancing types of the separators of Comparative Examples 1 to 3 using conventional spherical silica, the liquid drop rate is 48 to 68 mm / hr, and the separators of Comparative Examples 1 to 3 54-59% compared to the above, sufficiently satisfying the standard of 100 mm / hr or less, which is considered to have good electrolyte solution retention. Also, the injection repulsion force is 0.62 to 0.77 kPa, which is 26 to 42% improved compared to the separators of Comparative Examples 1 to 3, and the criterion of 0.54 kPa or more, which is considered to have good tightness. I am fully satisfied. However, for the density of the 0.40~0.45g / cm 3, not be satisfied are good criteria 0.30 g / cm 3 the following conditions, as compared to the separator of Comparative Examples 1 to 3, The liquid absorption was 34 to 46%, the electrical resistance was 67 to 117% worse, and the product unit price was 55 to 122% higher.
(3) On the other hand, in the separators of Examples 1 to 3 manufactured by the same manufacturing method as Comparative Examples 1 to 3 using chain-linked structure silica, the liquid drop speed is 51 to 79 mm / hr, which is a comparison. Compared to the separators of Examples 1 to 3, it is improved by 48 to 56% and sufficiently satisfies the standard of 100 mm / hr or less, which indicates that the electrolytic solution retainability is good. Also, the injection repulsion force is 0.55 to 0.69 kPa, which is an improvement of 13 to 20% as compared with the separators of Comparative Examples 1 to 3, and a criterion of 0.54 kPa or more, which is considered to have good tension properties. I am satisfied. Further, a 0.16~0.27g / cm 3 also density, which satisfies the good criterion a is 0.30 g / cm 3 the following conditions, liquid absorption amount, the electrical resistance both good and Comparative Example 1 Even if it compared with the separator of -3, it was a result which is not inferior at all.
(4) From the above, the separators of Comparative Examples 4 to 6 are significantly improved and good in both the liquid drop speed and the liquid repelling force compared to the separators of Comparative Examples 1 to 3, but the density is high. There are problems with poor liquid absorption and electrical resistance and high unit price of products. On the other hand, the separators of Examples 1 to 3 have substantially the same liquid absorption rate, electrical resistance, and product unit price as the separators of Comparative Examples 1 to 3, while greatly reducing the liquid drop speed and the injection repulsion force. There are significant advantages.

本発明の密閉型鉛蓄電池用セパレータ中のシリカ凝集体を示す説明図Explanatory drawing which shows the silica aggregate in the separator for sealed lead acid batteries of this invention 従来の密閉型鉛蓄電池用セパレータ中のシリカ凝集体を示す説明図Explanatory drawing which shows the silica aggregate in the separator for conventional sealed lead-acid batteries 注液反発力の測定器を示す説明図Explanatory drawing showing a measuring instrument for liquid repulsion force

符号の説明Explanation of symbols

1 繊維
2’ 本発明の鎖状連結構造粉体状シリカ粒子(シリカ二次粒子)
2 本発明のシリカ凝集体
3 空間
4’ 従来の球状の粉体状シリカ粒子(シリカ二次粒子)
4 従来のシリカ凝集体
5 空間
10 注液反発力の測定器
11 試料
12 ハンドル
13 ロードセル
14 圧力計
1 Fiber 2 'Chain-linked structured powdery silica particles of the present invention (silica secondary particles)
2 Silica aggregate of the present invention 3 Space 4 'Conventional spherical powdery silica particles (silica secondary particles)
4 Conventional Silica Aggregate 5 Space 10 Injection Liquid Repulsion Measuring Instrument 11 Sample 12 Handle 13 Load Cell 14 Pressure Gauge

Claims (5)

微細ガラス繊維を主体として抄造してなるマット構造のシート内に、鎖状連結構造粉体状シリカ粒子を分散状態に介在させ、該シート全体に該シリカ粒子の三次元網目状ネットワークを形成したことを特徴とする密閉型鉛蓄電池用セパレータ。   In a mat-structured sheet made mainly from fine glass fibers, chain-linked structured powdery silica particles are interspersed to form a three-dimensional network of silica particles throughout the sheet. A sealed lead-acid battery separator. 前記鎖状連結構造粉体状シリカ粒子を、1〜50質量%含有したことを特徴とする請求項1記載の密閉型鉛蓄電池用セパレータ。   2. The sealed lead-acid battery separator according to claim 1, wherein the chain-linked structured powdery silica particles are contained in an amount of 1 to 50 mass%. 前記セパレータの密度が0.30g/cm3以下であることを特徴とする請求項1または2記載の密閉型鉛蓄電池用セパレータ。 3. The sealed lead-acid battery separator according to claim 1, wherein the separator has a density of 0.30 g / cm 3 or less. 前記セパレータは、前記微細ガラス繊維を主体とし前記鎖状連結構造粉体状シリカ粒子を湿式混抄してなるものであることを特徴とする請求項1乃至3の何れかに記載の密閉型鉛蓄電池用セパレータ。   The sealed lead-acid battery according to any one of claims 1 to 3, wherein the separator is obtained by wet-mixing the chain-like connected structured powdery silica particles mainly composed of the fine glass fibers. Separator for use. 請求項1乃至4の何れかに記載のセパレータを使用したことを特徴とする密閉型鉛蓄電池。
A sealed lead-acid battery using the separator according to any one of claims 1 to 4.
JP2003338229A 2003-09-29 2003-09-29 Separator for sealed lead-acid battery, and sealed lead-acid battery Withdrawn JP2005108538A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003338229A JP2005108538A (en) 2003-09-29 2003-09-29 Separator for sealed lead-acid battery, and sealed lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003338229A JP2005108538A (en) 2003-09-29 2003-09-29 Separator for sealed lead-acid battery, and sealed lead-acid battery

Publications (1)

Publication Number Publication Date
JP2005108538A true JP2005108538A (en) 2005-04-21

Family

ID=34533812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003338229A Withdrawn JP2005108538A (en) 2003-09-29 2003-09-29 Separator for sealed lead-acid battery, and sealed lead-acid battery

Country Status (1)

Country Link
JP (1) JP2005108538A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008227296A (en) * 2007-03-14 2008-09-25 Nippon Sheet Glass Co Ltd Separator for electric double layer capacitor and electric double layer capacitor
JP2008270186A (en) * 2007-03-29 2008-11-06 Nippon Sheet Glass Co Ltd Separator for sealed lead-acid battery, and sealed lead-acid battery
WO2013108510A1 (en) * 2012-01-18 2013-07-25 ソニー株式会社 Separator, battery, battery pack, electronic device, electric vehicle, electricity storage device, and power system
KR20170018906A (en) * 2014-06-17 2017-02-20 오씨브이 인텔렉츄얼 캐피탈 엘엘씨 Anti-sulphation pasting mats for lead-acid batteries
KR20170021285A (en) * 2014-06-17 2017-02-27 오씨브이 인텔렉츄얼 캐피탈 엘엘씨 Water loss reducing pasting mats for lead-acid batteries
JPWO2018105134A1 (en) * 2016-12-07 2019-10-24 日立化成株式会社 Liquid lead acid battery, charge / discharge method for liquid lead acid battery, and power supply system
CN110651382A (en) * 2017-03-18 2020-01-03 达拉米克有限责任公司 Improved composite layer or separator for lead acid batteries

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008227296A (en) * 2007-03-14 2008-09-25 Nippon Sheet Glass Co Ltd Separator for electric double layer capacitor and electric double layer capacitor
JP2008270186A (en) * 2007-03-29 2008-11-06 Nippon Sheet Glass Co Ltd Separator for sealed lead-acid battery, and sealed lead-acid battery
WO2013108510A1 (en) * 2012-01-18 2013-07-25 ソニー株式会社 Separator, battery, battery pack, electronic device, electric vehicle, electricity storage device, and power system
US10014504B2 (en) 2012-01-18 2018-07-03 Murata Manufacturing Co., Ltd. Separator, battery, battery pack, electronic device, electric vehicle, power storage device, and power system
KR20170018906A (en) * 2014-06-17 2017-02-20 오씨브이 인텔렉츄얼 캐피탈 엘엘씨 Anti-sulphation pasting mats for lead-acid batteries
KR20170021285A (en) * 2014-06-17 2017-02-27 오씨브이 인텔렉츄얼 캐피탈 엘엘씨 Water loss reducing pasting mats for lead-acid batteries
US11380962B2 (en) 2014-06-17 2022-07-05 Owens Corning Intellectual Capital, Llc Anti-sulphation pasting mats for lead-acid batteries
KR102466592B1 (en) * 2014-06-17 2022-11-25 오웬스 코닝 인텔렉츄얼 캐피탈 엘엘씨 Anti-sulphation pasting mats for lead-acid batteries
KR102475499B1 (en) * 2014-06-17 2022-12-08 오웬스 코닝 인텔렉츄얼 캐피탈 엘엘씨 Water loss reducing pasting mats for lead-acid batteries
JPWO2018105134A1 (en) * 2016-12-07 2019-10-24 日立化成株式会社 Liquid lead acid battery, charge / discharge method for liquid lead acid battery, and power supply system
CN110651382A (en) * 2017-03-18 2020-01-03 达拉米克有限责任公司 Improved composite layer or separator for lead acid batteries
EP3596763A4 (en) * 2017-03-18 2021-03-10 Daramic, LLC Improved composite layers or separators for lead acid batteries

Similar Documents

Publication Publication Date Title
KR20010042790A (en) Separator for sealed lead storage batteries
JP2001524248A (en) Filled glass fiber separator for batteries and method for producing such a separator
JPWO2013046499A1 (en) Lead-acid battery for energy storage
CN110350178A (en) A kind of preparation method of lithium ion battery composite graphite negative electrode material
JP2005108538A (en) Separator for sealed lead-acid battery, and sealed lead-acid battery
Toniazzo The key to success: Gelled-electrolyte and optimized separators for stationary lead-acid batteries
WO2019087683A1 (en) Lead storage battery
JP2003077445A (en) Lead acid storage battery
JP6544126B2 (en) Control valve type lead storage battery
JP7352870B2 (en) lead acid battery
JP7167934B2 (en) lead acid battery
WO2021084879A1 (en) Lead acid storage battery
JP4298215B2 (en) Sealed separator for sealed lead-acid battery
JP2014179229A (en) Positive electrode plate for lead storage batteries, and control valve type lead storage battery arranged by use thereof
JP3416992B2 (en) Sealed lead-acid battery separator
WO2015064535A1 (en) Separator for valve-regulated lead battery and control valve-regulated lead battery using same
JP3054254B2 (en) Paper-made separator for lead-acid battery, its manufacturing method and lead-acid battery
JP2001102027A (en) Enclosed lead battery
WO2005031907A1 (en) Closed lead acid storage battery
JP3650439B2 (en) Sealed lead-acid battery separator
JPS61245463A (en) Enclosed lead storage battery
JP6699383B2 (en) Lead acid battery
JPS5916263A (en) Lead battery
JP2572964B2 (en) Separator for sealed storage battery, sealed storage battery as well as its manufacturing equipment
WO2016121511A1 (en) Lead storage cell separator and lead storage cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060508

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090608