JP6447866B2 - Control valve type lead storage battery manufacturing method - Google Patents

Control valve type lead storage battery manufacturing method Download PDF

Info

Publication number
JP6447866B2
JP6447866B2 JP2014231533A JP2014231533A JP6447866B2 JP 6447866 B2 JP6447866 B2 JP 6447866B2 JP 2014231533 A JP2014231533 A JP 2014231533A JP 2014231533 A JP2014231533 A JP 2014231533A JP 6447866 B2 JP6447866 B2 JP 6447866B2
Authority
JP
Japan
Prior art keywords
lead
active material
positive electrode
graphite
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014231533A
Other languages
Japanese (ja)
Other versions
JP2016096025A (en
Inventor
田中 伸和
伸和 田中
鈴木 啓太
啓太 鈴木
耕二 木暮
耕二 木暮
大祐 保坂
大祐 保坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2014231533A priority Critical patent/JP6447866B2/en
Publication of JP2016096025A publication Critical patent/JP2016096025A/en
Application granted granted Critical
Publication of JP6447866B2 publication Critical patent/JP6447866B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Description

本発明は、制御弁式鉛蓄電池の製造方法に関する。 The present invention relates to a method for manufacturing a control valve type lead storage battery.

鉛蓄電池は、集電体や活物質として用いられている鉛の密度が高く、エネルギ−密度が他の電池に比べて低いが、安全性及び信頼性に優れることから無停電電源装置、電力貯蔵用用途、車載用途等に広く用いられている。無停電電源装置に使われる鉛蓄電池は、近年、高利用率化が望まれると同時に高耐久性も望まれている。さらに耐久性においては、これまでのトリクル又はサイクル用途のいずれかの用途だけでなく、両用途に適用できる鉛蓄電池が望まれている。
特許文献1には、トリクル及びサイクル用途の両用途で耐久性(寿命という場合もある)を向上させるために、鉛粉、黒鉛、四塩基性硫酸鉛、希硫酸及び鉛丹を混練したペースト状活物質を用いる技術が開示されている。
Lead-acid batteries are high in the density of lead used as a current collector and active material, and energy density is low compared to other batteries, but they are excellent in safety and reliability. It is widely used for applications and in-vehicle applications. In recent years, a lead-acid battery used for an uninterruptible power supply is desired to have a high utilization rate and at the same time a high durability. Further, in terms of durability, there is a demand for a lead storage battery that can be applied to both applications, not only the conventional trickle or cycle applications.
Patent Document 1 discloses a paste form in which lead powder, graphite, tetrabasic lead sulfate, dilute sulfuric acid, and red lead are mixed to improve durability (sometimes referred to as life) in both trickle and cycle applications. A technique using an active material is disclosed.

特開2009−48800号公報JP 2009-48800 A

ところで、トリクル及びサイクル用途の両用途で耐久性を向上させようとすると、一般的には、活物質間の結合力を強くするために多孔度を低くする必要がある。しかし多孔度を低くすると活物質と硫酸との接触面積が低くなり、反応し難くなるため、初期放電容量が低下する。初期放電容量が大きく低下すると、容量特性を満足しない問題が生じる。そのため、初期放電容量の低下が殆どなく、トリクル及びサイクル用途の両用途で耐久性を向上させることが重要である。しかしながら、特許文献1に記載の技術では、初期放電容量とトリクル及びサイクル条件での耐久性向上には十分ではなかった。
本発明の目的は、初期放電容量の大きな低下がなく、トリクル及びサイクル用途で耐久性を向上できる制御弁式鉛蓄電池の製造方法を提供することにある。
By the way, in order to improve durability in both trickle and cycle applications, it is generally necessary to lower the porosity in order to increase the bonding force between the active materials. However, when the porosity is lowered, the contact area between the active material and sulfuric acid is lowered and the reaction becomes difficult, so the initial discharge capacity is lowered. When the initial discharge capacity is greatly reduced, there arises a problem that the capacity characteristics are not satisfied. Therefore, there is almost no decrease in the initial discharge capacity, and it is important to improve the durability in both trickle and cycle applications. However, the technique described in Patent Document 1 is not sufficient for improving the durability under the initial discharge capacity, trickle and cycle conditions.
An object of the present invention is to provide a method of manufacturing a control valve type lead-acid battery that does not greatly reduce the initial discharge capacity and can improve durability in trickle and cycle applications.

本発明者らは、鋭意検討した結果、正極活物質の細孔容積が150〜200μl/gであり、平均粒径が100μm未満である黒鉛を含む正極板を備える鉛蓄電池とすることにより、前記課題を解決し、初期放電容量の大きな低下がなく、トリクル及びサイクル用途の両用途で耐久性を向上できる鉛蓄電池を見出した。
すなわち、本発明に係わる制御弁式鉛蓄電池の製造方法では、正極活物質の細孔容積が150〜200μl/gであり、平均粒径が50μm以上、100μm未満である黒鉛を0.1〜2質量%、及び平均粒径1μm以下の四塩基性硫酸鉛を0.1〜2質量%含有する正極活物質ペーストを鉛合金製の集電体格子に充填し、熟成及び乾燥させて得られる正極板を用いる
本発明に係わる制御弁式鉛蓄電池によれば、初期放電容量の大きな低下がなく、トリクル及びサイクル用途で耐久性を向上できる
As a result of intensive studies, the inventors of the present invention have a positive electrode active material having a pore volume of 150 to 200 μl / g and an average particle diameter of less than 100 μm. The present inventors have found a lead-acid battery that solves the problem and can improve durability in both trickle and cycle applications without a significant decrease in initial discharge capacity.
That is, in the method for manufacturing a control valve type lead storage battery according to the present invention, graphite having a pore volume of the positive electrode active material of 150 to 200 μl / g and an average particle size of 50 μm or more and less than 100 μm is 0.1 to A positive electrode active material paste containing 0.1% by mass to 2% by mass of tetrabasic lead sulfate having an average particle diameter of 1 μm or less is filled in a lead alloy collector grid, and is obtained by aging and drying. A positive electrode plate is used .
According to the control valve type lead-acid battery according to the present invention, the initial discharge capacity is not greatly reduced, and the durability can be improved in trickle and cycle applications .

本発明に係わる制御弁式鉛蓄電池の製造方法によれば、初期放電容量の大きな低下がなく、トリクル及びサイクル用途で優れた耐久性を有する制御弁式鉛蓄電池を得ることができる。

According to the method for producing a control valve type lead-acid battery according to the present invention, a control valve type lead-acid battery having excellent durability in trickle and cycle applications without significant reduction in initial discharge capacity can be obtained.

以下、本発明の実施の形態を詳細に説明する。
制御弁式鉛蓄電池は、例えば以下のように作製することができる。
<負極板>
活物質である鉛粉(PbO)に対して、硫酸バリウム、炭素材料、補強用短繊維(アクリル繊維、ポリプロピレン繊維、ポリエチレンテレフタレート繊維等)等を添加して混練した混合物とし、この混合物に水及びリグニンスルホン酸を加えて混合し、さらに希硫酸を加えて負極活物質ペーストを作製する。
前記リグニンスルホン酸の添加量は、鉛粉に対して樹脂固形分で0.01〜2.0質量%が好ましい。
また、前記補強用短繊維の含有量は、0.05〜0.3質量%が好ましい。
前記炭素材料は、カーボンブラック、黒鉛等が挙げられる。
前記カーボンブラックとしては、ファーネスブラック、チャンネルブラック、アセチレンブラック、サーマルブラック、ケッチェンブラック等が挙げられる。
前記炭素材料の含有量は、鉛粉に対して0.2〜1.4質量%とすることが好ましい。
前記硫酸バリウムの含有量は、鉛粉に対して0.01〜1.0質量%とすることが好ましい。
次に、上記のようにして作製した負極活物質ペーストを集電体格子に充填して、熟成した後に、乾燥させ、未化成の負極板を作製する。
Hereinafter, embodiments of the present invention will be described in detail.
A control valve type lead-acid battery can be produced as follows, for example.
<Negative electrode plate>
A mixture obtained by adding barium sulfate, carbon material, reinforcing short fibers (acrylic fiber, polypropylene fiber, polyethylene terephthalate fiber, etc.), etc. to lead powder (PbO), which is an active material, is kneaded. Lignin sulfonic acid is added and mixed, and further dilute sulfuric acid is added to prepare a negative electrode active material paste.
The amount of the lignin sulfonic acid added is preferably 0.01 to 2.0 mass% in terms of resin solid content with respect to lead powder.
The content of the reinforcing short fibers is preferably 0.05 to 0.3% by mass.
Examples of the carbon material include carbon black and graphite.
Examples of the carbon black include furnace black, channel black, acetylene black, thermal black, and ketjen black.
It is preferable that content of the said carbon material shall be 0.2-1.4 mass% with respect to lead powder.
The content of the barium sulfate is preferably 0.01 to 1.0 mass% with respect to the lead powder.
Next, the negative electrode active material paste produced as described above is filled in a current collector grid, aged, and then dried to produce an unformed negative electrode plate.

前記集電体格子としては、鉛−カルシウム−錫合金、鉛−カルシウム合金、又はこれらに砒素、セレン、銀、ビスマスを微量添加した鉛−カルシウム−錫系合金、鉛−カルシウム系合金等からなるものを使用することができる。
前記集電体格子は、活物質ペーストを保持できるものであれば、鋳造方式、エキスパンド方式、打ち抜き方式などの製造方法によらず、いずれも使用することができる。集電体格子の主原料としては、鉛を用いるが、自己放電を抑制するためにカルシウムを添加することが好ましい。また、集電体格子の腐食を抑制するために、スズを添加することが好ましい。カルシウムの添加量は、特に規定されるものではないが、カルシウム添加量が増加すると集電体腐食が増加するため、カルシウムの添加量は0.05〜0.12質量%の範囲が好ましい。またスズの添加量が増加すると、集電体と活物質の密着力が低下し短寿命になりやすいことから、スズの添加量は1.1〜2.5質量%が好ましい。
前記熟成条件は、温度35〜85℃、湿度50〜95%RHの雰囲気で40〜60時間とすることが好ましい。乾燥条件は、温度50〜85℃で20〜50時間とすることが好ましい。
The current collector grid is composed of a lead-calcium-tin alloy, a lead-calcium alloy, or a lead-calcium-tin alloy or a lead-calcium alloy obtained by adding a small amount of arsenic, selenium, silver, or bismuth thereto. Things can be used.
Any current collector grid can be used as long as it can hold an active material paste, regardless of a manufacturing method such as a casting method, an expanding method, or a punching method. Lead is used as the main material of the current collector lattice, but calcium is preferably added to suppress self-discharge. Moreover, it is preferable to add tin in order to suppress corrosion of the current collector lattice. The amount of calcium added is not particularly specified, but current collector corrosion increases as the amount of calcium added increases. Therefore, the amount of calcium added is preferably in the range of 0.05 to 0.12% by mass. Moreover, since the adhesive force of an electrical power collector and an active material falls and it becomes easy to shorten a lifetime when the addition amount of tin increases, 1.1 to 2.5 mass% of the addition amount of tin is preferable.
The aging conditions are preferably 40 to 60 hours in an atmosphere of a temperature of 35 to 85 ° C. and a humidity of 50 to 95% RH. The drying condition is preferably 20 to 50 hours at a temperature of 50 to 85 ° C.

<正極板>
正極板中の正極活物質(正極活物質、黒鉛、四塩基性硫酸鉛及び補強用繊維等を含む)の細孔容積は、150〜200μl/gである。
細孔容積は、水銀圧入法(JISR1655(2003年、ファインセラミックスの水銀圧入法による成形体気孔径分布試験方法))、ガス吸着法(JIS8831−3(2010年、粉体(固体)の細孔径分布及び細孔特性−第3部:ガス吸着によるミクロ細孔の測定方法))により測定することができる。これらは市販の装置があり、それを用いて測定することができる。本発明では、実施例で用いた水銀圧入法で測定した。
前記正極活物質を作製する場合、例えば、鉛粉に対して、平均粒径が100μm未満である黒鉛、四塩基性硫酸鉛、補強用短繊維を加え、更に水と希硫酸を加え、これを混練して正極活物質ペーストを作製する。
この正極活物質ペーストを集電体格子に充填して、熟成した後に、乾燥させ、未化成の正極板を作製する。
前記正極活物質ペーストは、例えば、練合機に一酸化鉛を75質量%含む鉛粉を投入した後、水を投入して5〜30分間練合する。次に30〜50質量%の希硫酸を10〜20質量%投入し、5〜20分間練合することで作製することができる。前記正極活物質ペーストの作製において、水を投入する前に、平均粒径100μm未満の黒鉛を0.1〜5.0質量%加えると共に平均粒径1μmの塩基性硫酸鉛を0.5〜5.0質量%を加えて正極活物質ペーストを作製する。このときの黒鉛は鱗状黒鉛を用いることが好ましい。鱗状黒鉛は活物質の導電性を向上することができるだけでなく、化成時において黒鉛が膨張することで活物質内の多孔度を上げることができる。よって活物質利用率への効果を大きくすることができる。ここで、本発明で述べる「平均粒径」は、JISM8511(天然黒鉛の工業分析及び試験方法)に基づき測定することができる。
前記黒鉛は、化成時に硫酸が黒鉛の層間に入って膨張する。その結果、黒鉛の膨張によって正極活物質に亀裂が生じ、活物質の多孔質化が可能となる。しかし、黒鉛粒径が100μmより大きい場合には、ペースト中への分散性を考慮しながら正極活物質ペーストを製造する必要性がある。分散が不十分な場合は、活物質に生じる亀裂が不均一に生成されることから活物質強度が著しく低下してしまい、活物質の耐久性に悪影響が生じる可能性がある。また、正極活物質中の黒鉛は、活物質の導電性に対しても効果があるため、活物質中に均一に分散することが重要である。一方、黒鉛粒径が50μmより小さい場合では分散性は向上するが、黒鉛が膨張することで生成される亀裂は少なく、多孔質化の効果が現れにくく、容量特性が向上できない傾向がある。前記のような観点から、黒鉛の平均粒径は、50μm以上、100μm未満が好ましく、60μ以上、90μm以下がより好ましく、70μm以上、85μm以下が更に好ましい。黒鉛の添加量は、3.0質量%より多い場合、四塩基性硫酸鉛の生成がされ難くなること及び正極活物質間の結合力が低下することで耐久性が低下する傾向がある。さらに、黒鉛を多く含有することは一定体積において正極活物質が減ることになり、初期放電容量が低下する傾向がある。このような観点から、黒鉛の添加量は、0.1〜2質量%が好ましく、0.2〜1質量%がより好ましく、0.2〜0.6質量%が更に好ましい。
<Positive electrode plate>
The pore volume of the positive electrode active material (including the positive electrode active material, graphite, tetrabasic lead sulfate and reinforcing fibers) in the positive electrode plate is 150 to 200 μl / g.
The pore volume is determined by mercury porosimetry (JISR1655 (2003, molding pore size distribution test method by mercury porosimetry of fine ceramics)), gas adsorption method (JIS8831-3 (2010, fine pore diameter of powder (solid)). Distribution and pore characteristics—Part 3: Measurement method of micropores by gas adsorption)). These have a commercially available apparatus and can be measured using it. In this invention, it measured by the mercury intrusion method used in the Example.
When producing the positive electrode active material, for example, graphite having an average particle diameter of less than 100 μm, tetrabasic lead sulfate, reinforcing short fibers are added to lead powder, and water and dilute sulfuric acid are further added. A positive electrode active material paste is prepared by kneading.
The positive electrode active material paste is filled into a current collector grid, aged and then dried to produce an unformed positive electrode plate.
The positive electrode active material paste is kneaded for 5 to 30 minutes, for example, after adding lead powder containing 75% by mass of lead monoxide to a kneading machine. Next, 10 to 20% by mass of 30 to 50% by mass of dilute sulfuric acid is added and kneaded for 5 to 20 minutes. In preparing the positive electrode active material paste, before adding water, 0.1 to 5.0% by mass of graphite having an average particle size of less than 100 μm is added and 0.5 to 5 basic lead sulfate having an average particle size of 1 μm is added. A positive electrode active material paste is prepared by adding 0.0 mass%. At this time, it is preferable to use scaly graphite as the graphite. The scale-like graphite can not only improve the conductivity of the active material, but also increase the porosity in the active material by expanding the graphite during chemical conversion. Therefore, the effect on the active material utilization rate can be increased. Here, the “average particle diameter” described in the present invention can be measured based on JISM8511 (industrial analysis and test method of natural graphite).
The graphite expands when sulfuric acid enters the graphite layer during chemical conversion. As a result, the positive electrode active material is cracked by the expansion of graphite, and the active material can be made porous. However, when the graphite particle size is larger than 100 μm, it is necessary to produce a positive electrode active material paste in consideration of dispersibility in the paste. When the dispersion is insufficient, cracks generated in the active material are generated non-uniformly, so that the strength of the active material is remarkably lowered, and the durability of the active material may be adversely affected. In addition, since graphite in the positive electrode active material is also effective for the conductivity of the active material, it is important to uniformly disperse in the active material. On the other hand, when the particle size of the graphite is smaller than 50 μm, the dispersibility is improved, but there are few cracks generated by the expansion of the graphite, the effect of making it porous is difficult to appear, and the capacity characteristics tend not to be improved. From the above viewpoint, the average particle size of graphite is preferably 50 μm or more and less than 100 μm, more preferably 60 μm or more and 90 μm or less, and further preferably 70 μm or more and 85 μm or less. When the amount of graphite added is more than 3.0% by mass, it tends to be difficult to generate tetrabasic lead sulfate, and the durability of the positive electrode active material is decreased, resulting in a decrease in durability. Furthermore, containing a large amount of graphite tends to decrease the positive electrode active material at a constant volume, and the initial discharge capacity tends to be reduced. From such a viewpoint, the amount of graphite added is preferably 0.1 to 2% by mass, more preferably 0.2 to 1% by mass, and still more preferably 0.2 to 0.6% by mass.

また、正極活物質ペースト作製時に、平均粒径が1μm以下の四塩基性硫酸鉛を添加した場合、活物質中に均一に分散された四塩基性硫酸鉛が、熟成時の結晶成長する際の核となるため、熟成・乾燥後の活物質には小さく均一な四塩基性硫酸鉛の針状結晶を生成することができる。これにより、正極活物質の反応面積は増加し、一層、高利用率な活物質にすることができる。しかしながら、小さな結晶を過剰に生成した場合には、活物質の耐久性を低下してしまう。このような観点から、四塩基性硫酸鉛の平均粒径の下限は、0.8μm以上であることが好ましい。また、正極活物質の高利用率化及び初期放電容量の向上の観点からは、四塩基性硫酸鉛の添加量が0.1〜2質量%にすることが好ましく、0.3〜1.6質量%にすることがより好ましく、0.5〜1.5質量%にすることが更に好ましい。
集電体格子の種類、熟成条件、乾燥条件は、負極板の場合とほぼ同様である。
In addition, when tetrabasic lead sulfate having an average particle size of 1 μm or less is added at the time of preparing the positive electrode active material paste, the tetrabasic lead sulfate uniformly dispersed in the active material is used when crystals grow during aging. Since it becomes a nucleus, small and uniform needle crystals of tetrabasic lead sulfate can be produced in the active material after ripening and drying. Thereby, the reaction area of a positive electrode active material increases, and it can be made an active material with a still higher utilization factor. However, when small crystals are excessively produced, the durability of the active material is lowered. From such a viewpoint, the lower limit of the average particle diameter of tetrabasic lead sulfate is preferably 0.8 μm or more. Moreover, from the viewpoint of increasing the utilization factor of the positive electrode active material and improving the initial discharge capacity, the addition amount of tetrabasic lead sulfate is preferably 0.1 to 2% by mass, and 0.3 to 1.6%. It is more preferable to set it as the mass%, and it is still more preferable to set it as 0.5-1.5 mass%.
The type of collector grid, aging conditions, and drying conditions are almost the same as in the case of the negative electrode plate.

<制御弁式鉛蓄電池>
上記のように作製した負極板と正極板を、リテーナを介して積層し、同極性の極板同士をストラップで連結させて極板群とする。この極板群を電槽内に配置して未化成電池を作製する。
上記未化成電池に希硫酸を入れ、直流電流を通電して電槽化成する。化成後の硫酸の比重(20℃換算)を適切な電解液比重に調整して制御弁式鉛蓄電池が得られる。化成に用いる硫酸比重(20℃換算)は1.20〜1.25が好ましい。化成後の調整された硫酸比重(20℃換算)は1.26〜1.30が好ましい。
前記リテーナとしては、ガラス繊維と合成樹脂からなる不織布等が挙げられる。なお、化成条件及び硫酸の比重は電極活物質の性状に応じて調整することができる。また、化成処理は、組み立て工程後に実施されることに限られず、電極製造工程の熟成、乾燥後において実施されてもよい(タンク化成)。
<Controlled lead-acid battery>
The negative electrode plate and the positive electrode plate produced as described above are laminated via a retainer, and the electrode plates having the same polarity are connected with a strap to form an electrode plate group. This electrode group is arranged in a battery case to produce an unformed battery.
Dilute sulfuric acid is put into the unformed battery, and a direct current is applied to form a battery case. A control valve type lead-acid battery can be obtained by adjusting the specific gravity (converted to 20 ° C.) of sulfuric acid after conversion to an appropriate specific gravity of the electrolyte. Sulfuric acid specific gravity (20 degreeC conversion) used for chemical conversion has preferable 1.20-1.25. The adjusted sulfuric acid specific gravity after conversion (20 ° C. conversion) is preferably 1.26 to 1.30.
Examples of the retainer include a nonwoven fabric made of glass fiber and synthetic resin. The chemical conversion conditions and the specific gravity of sulfuric acid can be adjusted according to the properties of the electrode active material. Further, the chemical conversion treatment is not limited to being performed after the assembly process, and may be performed after aging and drying of the electrode manufacturing process (tank chemical conversion).

以下、本発明の実施例について具体的に説明する。
<負極板の作製>
一酸化鉛を主成分とする鉛粉にポリエチレンテレフタレート(PET)繊維、リグニンを混合して、水と希硫酸で混練したペースト状活物質を縦:70mm、横:45mm、厚さ:2.5mmの負極格子集電体に充填して保持させた後、温度40℃で、相対湿度が95%RH以上の雰囲気に24時間放置した。続いて温度が80℃で24時間放置して乾燥し、負極板を作製した。
Examples of the present invention will be specifically described below.
<Preparation of negative electrode plate>
Paste active material in which polyethylene terephthalate (PET) fiber and lignin are mixed with lead powder containing lead monoxide as the main component and kneaded with water and dilute sulfuric acid is 70 mm long, 45 mm wide, and 2.5 mm thick. The negative electrode grid current collector was filled and held, and then left in an atmosphere at a temperature of 40 ° C. and a relative humidity of 95% RH or more for 24 hours. Subsequently, the temperature was allowed to stand at 80 ° C. for 24 hours and dried to prepare a negative electrode plate.

<正極板の作製>
(比較例1)
一酸化鉛を主成分とする鉛粉に黒鉛(日本黒鉛工業株式会社製、商品名:ACB−50、平均粒径350μm)、補強用短繊維としてPET繊維、鉛丹を混合して、水と希硫酸で混練した正極活物質ペーストを縦:70mm、横:45mm、厚さ:4.0mmの正極格子集電体格子に充填して保持させた後、熟成、乾燥して正極板を作製した。黒鉛の添加量は、0.5質量%にした。
熟成は、温度60〜80℃で、相対湿度が95%RH以上の雰囲気に24時間放置した。乾燥は、温度80℃で、相対湿度が40%RHに48時間放置した。
<Preparation of positive electrode plate>
(Comparative Example 1)
Lead powder containing lead monoxide as a main component is mixed with graphite (manufactured by Nippon Graphite Industry Co., Ltd., trade name: ACB-50, average particle size 350 μm), PET fiber as a reinforcing short fiber, and red lead. A positive electrode active material paste kneaded with dilute sulfuric acid was filled and held in a positive electrode grid current collector grid of 70 mm in length, 45 mm in width, and 4.0 mm in thickness, and then aged and dried to produce a positive electrode plate. . The amount of graphite added was 0.5 mass%.
The aging was left at a temperature of 60 to 80 ° C. in an atmosphere having a relative humidity of 95% RH or more for 24 hours. The drying was performed at a temperature of 80 ° C. and a relative humidity of 40% RH for 48 hours.

(比較例2)
一酸化鉛を主成分とする鉛粉に黒鉛(日本黒鉛工業株式会社製、商品名:ACB−100´、平均粒径100μm)、四塩基性硫酸鉛、PET繊維、鉛丹を混合して、水と希硫酸で混練したペースト状活物質を前述の比較例1と同じ正極格子集電体に充填して保持させた後、比較例1と同じ条件で熟成、乾燥して正極板を作製した。黒鉛の添加量は、1.0質量%、四塩基性硫酸鉛の添加量は、5.0質量%にした。前記四塩基性硫酸鉛は、Hammond Lead Products社製のSureCure200(平均粒径1μm)を用いた。
(Comparative Example 2)
Mixing graphite (manufactured by Nippon Graphite Industry Co., Ltd., trade name: ACB-100 ′, average particle size 100 μm), tetrabasic lead sulfate, PET fiber, red lead with lead powder containing lead monoxide as a main component, After filling and holding the paste-like active material kneaded with water and dilute sulfuric acid in the same positive electrode grid current collector as in Comparative Example 1, the positive electrode plate was produced by aging and drying under the same conditions as in Comparative Example 1. . The addition amount of graphite was 1.0% by mass, and the addition amount of tetrabasic lead sulfate was 5.0% by mass. As the tetrabasic lead sulfate, SureCure200 (average particle size: 1 μm) manufactured by Hammond Lead Products was used.

(比較例3)
一酸化鉛を主成分とする鉛粉に黒鉛(日本黒鉛工業株式会社製、商品名:ACB−150、平均粒径40μm)、四塩基性硫酸鉛、PET繊維、鉛丹を混合して、水と希硫酸で混練したペースト状活物質を前述の比較例1と同じ正極格子集電体に充填して保持させた後、比較例1と同じ条件で熟成、乾燥して正極板を作製した。黒鉛の添加量は、1.0質量%、四塩基性硫酸鉛の添加量は、1.0質量%にした。
(Comparative Example 3)
Lead powder containing lead monoxide as a main component is mixed with graphite (manufactured by Nippon Graphite Industry Co., Ltd., trade name: ACB-150, average particle size 40 μm), tetrabasic lead sulfate, PET fiber, and red lead. A paste-like active material kneaded with dilute sulfuric acid was filled and held in the same positive electrode grid current collector as in Comparative Example 1 described above, and then aged and dried under the same conditions as in Comparative Example 1 to produce a positive electrode plate. The addition amount of graphite was 1.0% by mass, and the addition amount of tetrabasic lead sulfate was 1.0% by mass.

(比較例4〜6)
黒鉛(日本黒鉛工業株式会社製、商品名:ACB−50、平均粒径350μm)を使用した以外は、比較例1と同様にした。黒鉛の添加量は、0.1質量%(比較例4)、0.5質量%(比較例5)、1.0質量%(比較例6)、四塩基性硫酸鉛の添加量は、いずれも1.0質量%にした。
(Comparative Examples 4-6)
Comparative Example 1 was performed except that graphite (manufactured by Nippon Graphite Industry Co., Ltd., trade name: ACB-50, average particle size 350 μm) was used. The addition amount of graphite is 0.1% by mass (Comparative Example 4), 0.5% by mass (Comparative Example 5), 1.0% by mass (Comparative Example 6), and the addition amount of tetrabasic lead sulfate is any Was also 1.0% by mass.

(実施例1〜4)
黒鉛(日本黒鉛工業株式会社製、商品名:ACB−100、平均粒径80μm)を0.2質量%(実施例1)、0.5質量%(実施例2〜4)、四塩基性硫酸鉛の添加量を、1.0質量%(実施例1〜2)、0.5質量%(実施例3)、1.5質量%(実施例4)にした以外は、比較例1と同様にした。
(Examples 1-4)
0.2% by mass (Example 1), 0.5% by mass (Examples 2 to 4) of graphite (manufactured by Nippon Graphite Industries Co., Ltd., trade name: ACB-100, average particle size 80 μm), tetrabasic sulfuric acid The same as Comparative Example 1 except that the amount of lead added was 1.0% by mass (Examples 1-2), 0.5% by mass (Example 3), and 1.5% by mass (Example 4). I made it.

<制御弁式鉛蓄電池の作製>
上記で作製した負極板と正極板を、リテーナを介して交互に複数枚積層する。積層した正負極板の同極性極板の耳部同士をストラップで接続して極板群を構成する。この極板群を電槽へ収容し、電槽の開口部を安全弁付蓋体により閉塞して制御弁式鉛蓄電池を組み立て、所定量の希硫酸を主成分とする電解液を注入して電槽化成し鉛蓄電池を作製した。化成は、温度40℃の水槽において、正極の酸化鉛、硫酸鉛、金属鉛などの未化活物質が、二酸化鉛に反応する理論電気量に対して、2.5倍の化成電気量条件にて実施した。
<Production of control valve type lead acid battery>
A plurality of the negative electrode plates and positive electrode plates produced above are alternately stacked via a retainer. The electrode plate group is formed by connecting the ears of the same polarity electrode plates of the laminated positive and negative electrode plates with a strap. This electrode plate group is accommodated in a battery case, the opening of the battery case is closed with a lid with a safety valve, a control valve type lead storage battery is assembled, and an electrolyte containing a predetermined amount of dilute sulfuric acid as a main component is injected. A tank-formed lead-acid battery was produced. In a water bath at a temperature of 40 ° C., chemical conversion is performed under a condition of chemical electricity quantity that is 2.5 times the theoretical quantity of electricity in which unactivated active materials such as lead oxide, lead sulfate, and metal lead of the positive electrode react with lead dioxide. Carried out.

<細孔容積の測定>
細孔容積は、以下にようにして測定した。電槽化成後の電池を解体し、取り出した正極既化板を2時間水洗、60℃の雰囲気炉で24時間乾燥して測定用の既化板を得た。既化板から正極活物質を約1.5g採取し、株式会社島津製作所製の細孔分布測定装置オートポア(AutoPore)9500を用いて水銀圧入法により測定した。測定は、33000psia(psi absolute、228MPa)まで水銀を圧入し、得られた細孔容積の積算値を測定質量で除して得た。
<Measurement of pore volume>
The pore volume was measured as follows. The battery after forming the battery case was disassembled, and the taken-out positive electrode plate was washed with water for 2 hours and dried in an atmosphere furnace at 60 ° C. for 24 hours to obtain a measurement plate. About 1.5 g of the positive electrode active material was sampled from the formed plate and measured by a mercury intrusion method using a pore distribution measuring device AutoPore 9500 manufactured by Shimadzu Corporation. The measurement was performed by injecting mercury to 33000 psia (psi absolute, 228 MPa) and dividing the integrated value of the obtained pore volume by the measured mass.

<放電試験>
作製した比較例1〜6、実施例1〜4の鉛蓄電池を、それぞれ充電した後に、25℃、0.1CA(0.45A)の電流値で1.8Vまで放電する。この試験により得た初期放電容量を100とした。他の実施例および比較例の電池の初期放電容量比率は、比較例1に対しての比率で示した。
<Discharge test>
The produced lead acid batteries of Comparative Examples 1 to 6 and Examples 1 to 4 were charged, respectively, and then discharged to 1.8 V at a current value of 25 ° C. and 0.1 CA (0.45 A). The initial discharge capacity obtained by this test was taken as 100. The initial discharge capacity ratios of the batteries of other examples and comparative examples are shown as a ratio to Comparative Example 1.

<サイクル試験>
作製した比較例1の鉛蓄電池を満充電状態まで充電した後に、25℃、0.14CAの電流値で3時間放電した後、2.2V、制限電流0.025CA、48時間の充電を行う充放電サイクルを60回繰り返した。試験後に前述の放電試験を行い、得た容量を初期放電容量で除した数値の100分率を放電容量維持比率とした。他の実施例1〜4および比較例2〜6の電池の容量維持比率も同様に求め、比較例1の放電容量維持比率を100とした場合の比率で示した。本試験では、トリクル及びサイクル用途を考慮した条件であるため、数値が高い程、トリクル及びサイクル用途の両用途で高耐久性を実現可能である意味する。
<Cycle test>
After charging the produced lead acid battery of Comparative Example 1 to a fully charged state, after discharging for 3 hours at a current value of 25 ° C. and 0.14 CA, charging for 2.2 V, limiting current 0.025 CA, 48 hours is performed. The discharge cycle was repeated 60 times. The discharge test described above was performed after the test, and the percentage obtained by dividing the obtained capacity by the initial discharge capacity was taken as the discharge capacity maintenance ratio. The capacity maintenance ratios of the batteries of other Examples 1 to 4 and Comparative Examples 2 to 6 were also obtained in the same manner, and were shown as ratios when the discharge capacity maintenance ratio of Comparative Example 1 was 100. In this test, since the conditions consider the trickle and cycle applications, a higher value means that higher durability can be realized in both the trickle and cycle applications.

Figure 0006447866
Figure 0006447866

表1の比較例1〜6および実施例1〜4において、初期放電容量比率が95%以上であれば、初期放電容量の低下がないと判断した。
黒鉛粒径が100μmの鱗状黒鉛で作製し、細孔容積が219μl/gの比較例2の電池(特許文献1の実施例相当)は、比較例1の電池に比べ、初期放電容量比率が大幅に増加したが、サイクル後の容量維持比率は大幅に低くなり、容量比率と維持比率への効果は両立することができなかった。
黒鉛粒径が40μmの鱗状黒鉛で作製し、細孔容積が205μl/gの比較例3の電池は、初期放電容量比率が比較例2に比べ大幅に減少したが、サイクル後の容量維持比率は増加した。
また、黒鉛粒径が350μmの鱗状黒鉛で作製した比較例4〜6の電池は、初期放電容量比率が増加したが、サイクル後の容量維持比率は低くなった。
黒鉛粒径が80μmの鱗状黒鉛を0.2質量%添加した細孔容積が152μl/gの実施例1は、初期放電容量が比較例1とほぼ同等であり、容量維持比率を向上できることが分かる。また、黒鉛添加量を0.5質量%にし、四塩基性硫酸鉛の添加量を1.5質量%に増加した細孔容積が196μl/gの実施例4でも、初期放電容量が比較例1とほぼ同等であり、容量維持比率を向上できることが分かる。
表1に示したように、細孔容積が150〜200μl/gの正極活物質において、平均粒径が100μm未満である黒鉛を含む制御弁式鉛蓄電池は、放電容量と耐久性を両立することができることが分かる。
In Comparative Examples 1 to 6 and Examples 1 to 4 in Table 1, when the initial discharge capacity ratio was 95% or more, it was determined that there was no decrease in the initial discharge capacity.
The battery of Comparative Example 2 (corresponding to the example of Patent Document 1) made of scaly graphite having a graphite particle diameter of 100 μm and a pore volume of 219 μl / g has a larger initial discharge capacity ratio than the battery of Comparative Example 1. However, the capacity maintenance ratio after the cycle was significantly reduced, and the effects on the capacity ratio and the maintenance ratio could not be compatible.
The battery of Comparative Example 3 made of scaly graphite having a graphite particle size of 40 μm and the pore volume of 205 μl / g had a significantly reduced initial discharge capacity ratio compared to Comparative Example 2, but the capacity maintenance ratio after the cycle was Increased.
In addition, in the batteries of Comparative Examples 4 to 6 made of scaly graphite having a graphite particle size of 350 μm, the initial discharge capacity ratio was increased, but the capacity retention ratio after cycling was low.
Example 1 having a pore volume of 152 μl / g to which 0.2% by mass of scaly graphite having a graphite particle size of 80 μm is added has an initial discharge capacity substantially equal to that of Comparative Example 1, and it can be seen that the capacity retention ratio can be improved. . Further, in Example 4 where the pore volume was 196 μl / g with the graphite addition amount being 0.5 mass% and the tetrabasic lead sulfate addition amount being 1.5 mass%, the initial discharge capacity was Comparative Example 1. It can be seen that the capacity maintenance ratio can be improved.
As shown in Table 1, in a positive electrode active material having a pore volume of 150 to 200 μl / g, a control valve type lead storage battery containing graphite having an average particle size of less than 100 μm has both discharge capacity and durability. You can see that

Claims (1)

正極活物質の細孔容積が150〜200μl/gであり、平均粒径が50μm以上、100μm未満である黒鉛を0.1〜2質量%、及び平均粒径1μm以下の四塩基性硫酸鉛を0.1〜2質量%含有する正極活物質ペーストを鉛合金製の集電体格子に充填し、熟成及び乾燥させて得られる正極板を用いる制御弁式鉛蓄電池の製造方法Tetrabasic lead sulfate having a pore volume of the positive electrode active material of 150 to 200 μl / g, an average particle size of 50 μm or more and less than 100 μm of 0.1 to 2 mass%, and an average particle size of 1 μm or less. A method for producing a control valve type lead-acid battery using a positive electrode plate obtained by filling a positive electrode active material paste containing 0.1 to 2% by mass into a lead alloy current collector grid, aging and drying .
JP2014231533A 2014-11-14 2014-11-14 Control valve type lead storage battery manufacturing method Expired - Fee Related JP6447866B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014231533A JP6447866B2 (en) 2014-11-14 2014-11-14 Control valve type lead storage battery manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014231533A JP6447866B2 (en) 2014-11-14 2014-11-14 Control valve type lead storage battery manufacturing method

Publications (2)

Publication Number Publication Date
JP2016096025A JP2016096025A (en) 2016-05-26
JP6447866B2 true JP6447866B2 (en) 2019-01-09

Family

ID=56071278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014231533A Expired - Fee Related JP6447866B2 (en) 2014-11-14 2014-11-14 Control valve type lead storage battery manufacturing method

Country Status (1)

Country Link
JP (1) JP6447866B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110265733A (en) * 2019-06-14 2019-09-20 江西奥沃森新能源有限公司 A kind of new energy electric motor vehicle power supply control lead-acid accumulator

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61269855A (en) * 1985-05-24 1986-11-29 Japan Storage Battery Co Ltd Positive plate of clad type lead-acid battery
JP2536251B2 (en) * 1990-07-24 1996-09-18 新神戸電機株式会社 Lead acid battery
JP2001229920A (en) * 2000-02-21 2001-08-24 Shin Kobe Electric Mach Co Ltd Method of manufacturing sealed lead acid battery
JP4505464B2 (en) * 2003-10-21 2010-07-21 ジョンソン コントロールズ テクノロジー カンパニー Battery paste materials and methods
JP2009048800A (en) * 2007-08-15 2009-03-05 Shin Kobe Electric Mach Co Ltd Manufacturing method for paste type positive electrode plate
JP6143066B2 (en) * 2013-03-14 2017-06-07 日立化成株式会社 A positive electrode plate for a lead storage battery and a control valve type lead storage battery using the positive electrode plate.

Also Published As

Publication number Publication date
JP2016096025A (en) 2016-05-26

Similar Documents

Publication Publication Date Title
WO2017000219A1 (en) Doped conductive oxide and improved electrochemical energy storage device polar plate based on same
JPWO2013046499A1 (en) Lead-acid battery for energy storage
JP2009048800A (en) Manufacturing method for paste type positive electrode plate
JP6112225B2 (en) Control valve type lead acid battery
JP2001229920A (en) Method of manufacturing sealed lead acid battery
JP6060909B2 (en) Positive electrode plate for lead acid battery, method for producing the electrode plate, and lead acid battery using the positive electrode plate
JP2010225408A (en) Lead storage battery
CN103413946A (en) Formula of lead-acid storage battery negative pole diachylon
JP2009187776A (en) Control valve type lead-acid storage battery
JP6447866B2 (en) Control valve type lead storage battery manufacturing method
CN103633331A (en) Positive active material for lead-acid power battery and preparation method of positive active material
JP2002141066A (en) Control valve type lead acid battery
JP2016162612A (en) Control valve type lead storage battery
JP2017033864A (en) Control valve type lead-acid battery
JP4984430B2 (en) Method for producing paste active material for negative electrode
JPH10302783A (en) Sealed lead-acid battery and manufacture thereof
JP4501246B2 (en) Control valve type stationary lead acid battery manufacturing method
JP2003086178A (en) Sealed lead-acid battery and method of manufacturing the same
JP2008277057A (en) Positive electrode active material for secondary battery and its manufacturing method
JPH0233859A (en) Lead-acid battery
JP2022138753A (en) Lead-acid battery
JP2002198039A (en) Negative electrode active material in paste form and its manufacturing method
JP2013243054A (en) Positive electrode plate for lead-acid battery and lead-acid battery
JP2009231014A (en) Manufacturing method of positive electrode active material paste for lead-acid storage battery, and positive electrode plate for lead-acid storage battery using the paste
JP2008177000A (en) Manufacturing method of paste type positive electrode plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181121

R151 Written notification of patent or utility model registration

Ref document number: 6447866

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees