JP2536251B2 - Lead acid battery - Google Patents

Lead acid battery

Info

Publication number
JP2536251B2
JP2536251B2 JP2195691A JP19569190A JP2536251B2 JP 2536251 B2 JP2536251 B2 JP 2536251B2 JP 2195691 A JP2195691 A JP 2195691A JP 19569190 A JP19569190 A JP 19569190A JP 2536251 B2 JP2536251 B2 JP 2536251B2
Authority
JP
Japan
Prior art keywords
pore volume
active material
product
present
paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2195691A
Other languages
Japanese (ja)
Other versions
JPH0482159A (en
Inventor
康司 松村
健介 弘中
勝由 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2195691A priority Critical patent/JP2536251B2/en
Publication of JPH0482159A publication Critical patent/JPH0482159A/en
Application granted granted Critical
Publication of JP2536251B2 publication Critical patent/JP2536251B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ペースト式の陰極板と陽極板とを用いて鉛
蓄電池に関するものである。
The present invention relates to a lead storage battery using a paste type cathode plate and an anode plate.

[従来の技術] 従来鉛電池の高容量化を図る場合には、ペースト中の
水分量又は硫酸鉛(PbSO4)の量を増加させてペースト
の密度を下げることにより活物質の多孔度を増加させる
方法がとられていた。
[Prior Art] When increasing the capacity of a conventional lead battery, the porosity of the active material is increased by increasing the amount of water in the paste or the amount of lead sulfate (PbSO 4 ) to reduce the density of the paste. There was a way to make it happen.

[発明が解決しようとする課題] 上記のようにペースト中の水分量または硫酸鉛の量を
コントロールすれば全細孔体積(多孔度)をコントロー
ルすることはできるが、単に水分量または硫酸鉛の量を
コントロールするだけでは細孔の分布を規定することが
困難である。
[Problems to be Solved by the Invention] Although the total pore volume (porosity) can be controlled by controlling the water content or the lead sulfate content in the paste as described above, It is difficult to define the distribution of pores only by controlling the amount.

一般に陽極活物質の細孔分布は、第8図のように2つ
のピークを有する。ここで大きい細孔をマクロポアと
し、小さい細孔をミクロポアとする。本明細書では0.2
μm以上の細孔をマクロポアと定義し、0.2μm未満の
細孔をミクロポアと定義する。
Generally, the pore distribution of the anode active material has two peaks as shown in FIG. Here, the large pores are macropores, and the small pores are micropores. 0.2 here
The pores with a size of μm or more are defined as macropores, and the pores with a size of less than 0.2 μm are defined as micropores.

マクロポアをPbO2母粒子間の細孔とし、ミクロポアを
PbO2母粒子を構成する子粒子間の細孔とすると、ペース
ト中の水分量又は硫酸鉛の量を増加させて陽極活物質の
密度を下げる従来の方法では、ミクロポアの増加は見ら
れるが、マクロポアはほとんど増加しない。つまり子粒
子同士が従来よりは粗に集って母粒子を構成するが、マ
クロポアはほとんど増加しない。そのため放電反応時に
極板内部への液拡散が遅れ、極板表面で集中的に反応が
行われる。またミクロポアが多いため、極板表面のPbO2
母粒子の利用率が高くなり、その分容量が増大する。し
かしながらサイクル寿命試験を行なうと、極板表面の活
物質が局部的に充放電を繰り返すため膨脹収縮反応によ
る体積変化が大きくなり、活物質が早期に泥状化して寿
命が短くなる。
Macropores are used as pores between PbO 2 mother particles, and micropores are used.
With pores between the child particles constituting the PbO 2 mother particles, in the conventional method of decreasing the density of the anode active material by increasing the amount of water or the amount of lead sulfate in the paste, the increase of micropores is seen, Macropores hardly increase. That is, the child particles are more coarsely gathered than in the conventional case to form the mother particles, but the macropores hardly increase. Therefore, the liquid diffusion inside the electrode plate is delayed during the discharge reaction, and the reaction is concentrated on the surface of the electrode plate. Also, since there are many micropores, PbO 2 on the surface of the electrode plate
The utilization rate of the mother particles increases, and the capacity increases accordingly. However, when the cycle life test is performed, the active material on the surface of the electrode plate is repeatedly charged and discharged locally, so that the volume change due to the expansion and contraction reaction becomes large, and the active material becomes muddy at an early stage to shorten the life.

また単に水分量または硫酸鉛の量を増加させるだけで
ペーストの密度を下げるとペーストの粘度が低下し、ペ
ーストの充填性の面で限界が生じるためそれ程多孔度を
増加させることができない。
Also, if the density of the paste is reduced by simply increasing the amount of water or the amount of lead sulfate, the viscosity of the paste will decrease, and there will be a limit in the filling properties of the paste, so the porosity cannot be increased so much.

本発明の目的はミクロポアの細孔体積を減少させ、マ
クロポアの細孔体積を増加させて活物質の泥状化を抑制
するとともに、ペーストの充填性を損うことなく陽極活
物質の密度を低下させて長寿命化を図った鉛蓄電池を提
供することにある。
The object of the present invention is to reduce the pore volume of the micropores, increase the pore volume of the macropores to suppress the mudification of the active material, and reduce the density of the anode active material without impairing the filling property of the paste. The purpose is to provide a lead-acid battery with a long life.

[課題を解決するための手段] 本発明は上記の目的を達成するためになされたもの
で、本発明においては、全細孔体積が0.16〜0.18cc/gの
範囲とし、直径0.2μm未満の細孔の体積を0.02cc/g以
下、直径0.2〜4.0μmの細孔の体積が0.13cc/g以上とし
た陽極活物質を用いる。
[Means for Solving the Problems] The present invention has been made to achieve the above object, and in the present invention, the total pore volume is in the range of 0.16 to 0.18 cc / g, and the diameter is less than 0.2 μm. An anode active material having a pore volume of 0.02 cc / g or less and a pore volume of 0.2 to 4.0 μm and a volume of 0.13 cc / g or more is used.

上記のような細孔分布を有する陽極活物質を備えた陽
極板は、鉛蓄電池の極板の原料である酸化鉛として従来
よりも粒子径の小さいものを用い、該酸化鉛を規定量の
水と希硫酸とで練合したペーストを集電体に充填した
後、通常の乾燥、化成工程を経ることにより得られる。
An anode plate provided with an anode active material having a pore distribution as described above uses a lead oxide having a smaller particle diameter than that of a conventional lead oxide as a raw material of an electrode plate of a lead storage battery, and the lead oxide is mixed with a prescribed amount of water. It is obtained by filling a current collector with a paste kneaded with and dilute sulfuric acid, and then performing ordinary drying and chemical conversion steps.

[作 用] 従来よりも粒子径が小さい硫酸鉛を陽極活物質の原料
として用いると、PbO2母粒子は従来と同程度の大きさで
あっても、該母粒子を構成するPbO2子粒子は従来よりも
小さくなる。したがって粒子同士間のミクロポアの細孔
体積は減少し、逆にマクロポアの細孔体積が増加する。
[Operation] When lead sulfate having a smaller particle size than the conventional one is used as a raw material for the anode active material, even if the PbO 2 mother particle is about the same size as the conventional one, the PbO 2 child particle constituting the mother particle is formed. Is smaller than before. Therefore, the pore volume of the micropores between the particles decreases, and conversely, the pore volume of the macropores increases.

つまり、ミクロポアの細孔体積が従来より少なく、マ
クロポアの細孔体積が多くなるため、放電反応時に極板
内部への液拡散がスムーズに行われ、極板の表面も内部
に均一に使われる。また全活物質利用率が同じであれ
ば、1つのPbO2母粒子の利用率は従来よりも低くなる。
したがって、充放電の繰り返しによる(PbO2PbSO4
応による)体積変化が小さいため泥状化が遅れ、寿命が
長くなる。
That is, since the pore volume of the micropores is smaller than that of the conventional one, and the pore volume of the macropores is large, the liquid is smoothly diffused into the electrode plate during the discharge reaction, and the surface of the electrode plate is evenly used inside. In addition, if the utilization ratio of all active materials is the same, the utilization ratio of one PbO 2 mother particle will be lower than in the past.
Therefore, the change in volume due to repeated charging and discharging (due to the PbO 2 PbSO 4 reaction) is small, so that mud formation is delayed and the life is extended.

更に粒子径が小さい酸化鉛を原料とするため、ペース
ト密度を低下させても従来と同程度のペースト粘度を維
持することができ、十分に多孔度を増加させることがで
きる。
Further, since lead oxide having a small particle size is used as a raw material, even when the paste density is reduced, the paste viscosity can be maintained at the same level as the conventional one, and the porosity can be sufficiently increased.

[実施例] 従来の鉛蓄電池では、陽極活物質の原材料である鉛酸
化物のメジアン径が約2μmであったが、本実施例で
は、メジアン径が従来の鉛酸化物(金属Pbが残留する)
のほぼ1/2の1μmである鉛酸化物を用いて、従来通り
の製法により極板を作成した。
[Example] In the conventional lead-acid battery, the median diameter of lead oxide, which is a raw material of the anode active material, was about 2 μm, but in this example, the median diameter of lead oxide is the conventional lead oxide (metal Pb remains. )
A lead plate was prepared by a conventional manufacturing method using lead oxide having a thickness of 1 μm, which is about ½ of the above.

従来の鉛蓄電池(従来品と呼ぶ。)と本発明に係わる
鉛蓄電池(本発明品と呼ぶ。)との性能を比較するた
め、従来の鉛蓄電池として、従来品Aと、陽極活物質の
ペーストの密度を従来品Aより約15%低くした従来品B
とを用意した。従来品A及びBとも陽極活物質の原材料
である鉛酸化物のメジアン径は約2μmである。
In order to compare the performances of a conventional lead storage battery (referred to as a conventional product) and a lead storage battery according to the present invention (referred to as a product of the present invention), as a conventional lead storage battery, a conventional product A and a paste of an anode active material are used. Conventional product B whose density is about 15% lower than that of conventional product A
And prepared. In both the conventional products A and B, the median diameter of lead oxide, which is a raw material of the anode active material, is about 2 μm.

本発明品では、従来品Bと同様に陽極活物質のペース
トの密度を従来品Aよりも約15%低くした。
In the product of the present invention, as in the case of the conventional product B, the density of the paste of the anode active material was made lower than that of the conventional product A by about 15%.

第1図は従来品A,Bで用いられていたペーストと本発
明品で用いるペーストとの粘度を比較したもので、同図
においては、従来品Aのペーストの粘度を100%として
それぞれの粘度の比を百分率で示している。ペーストの
充填性を良好にするためには、第1図に斜線で示した範
囲の粘度を有するペーストを用いる必要がある。
FIG. 1 compares the viscosities of the pastes used in the conventional products A and B and the paste used in the product of the present invention. In FIG. 1, the viscosities of the pastes of the conventional product A are set to 100%. The ratio is shown as a percentage. In order to improve the filling property of the paste, it is necessary to use a paste having a viscosity in the range shown by the diagonal lines in FIG.

第1図から明らかなように、本発明品で用いるペース
トの粘度は従来品Bで用いられていたペーストの粘度よ
り40%程度高く、従来品Aで用いられていたペーストの
粘度と同程度である。したがって本発明品は従来品Aと
同程度の良好な充填性を得ることができる。
As is clear from FIG. 1, the viscosity of the paste used in the product of the present invention is about 40% higher than the viscosity of the paste used in the conventional product B, and is about the same as the viscosity of the paste used in the conventional product A. is there. Therefore, the product of the present invention can obtain the same good filling property as that of the conventional product A.

また本発明品で用いる陽極活物質の全細孔体積(多孔
度)は0.172CC/gで、直径がミクロポアの細孔体積は0.0
18CC/g、直径が0.2〜4μmのマクロポアの細孔体積は
0.149CC/gであった。
The total pore volume (porosity) of the anode active material used in the product of the present invention is 0.172 CC / g, and the pore volume of the micropores having a diameter of 0.072 CC / g.
The macropore volume of 18CC / g and the diameter of 0.2-4μm is
It was 0.149 CC / g.

以下従来品と本発明品とについて行った試験の結果を
示すが、全ての試験において用いた電池は、同一体積同
一極板群構成(陽極1枚陰極1枚の構成)の単セル電池
である。
The results of the tests conducted on the conventional product and the product of the present invention are shown below. The batteries used in all the tests are single-cell batteries having the same volume and the same electrode group structure (one anode, one cathode). .

第2図は従来品と本発明品とについて行った寿命試験
の結果を示したもので、この寿命試験では、放電電流1A
で終止電圧1.70Vまで放電を行い、充電電圧2.45V(制限
電流1A)で4時間の定電圧充電を行った。
Fig. 2 shows the results of the life test conducted on the conventional product and the product of the present invention. In this life test, the discharge current was 1A.
Then, the battery was discharged to a final voltage of 1.70V, and a constant voltage charge was performed for 4 hours at a charging voltage of 2.45V (limit current 1A).

第2図より、本発明品の初期容量は従来品Aよりも32
%増加し、従来品Bより13%増加していることが分か
る。また本発明品の寿命は従来品Aよりも約100%増加
し、従来品Bよりも約150%増加していることが分か
る。
From FIG. 2, the initial capacity of the product of the present invention is 32 than that of the conventional product A.
%, Which is 13% higher than that of the conventional product B. Further, it can be seen that the life of the product of the present invention is increased by about 100% as compared with the conventional product A and is increased by about 150% as compared with the conventional product B.

第3図に本発明品で用いるペーストの全細孔体積と、
従来品A及びBで用いたペーストの全細孔体積とを比較
して示した。従来品Aではペースト密度が高いため全細
孔体積は小さいが、従来品B及び本発明品では全細孔体
積がそれぞれ0.169CC/g及び0.172CC/gで、従来品Aより
も大きい。
FIG. 3 shows the total pore volume of the paste used in the product of the present invention,
The total pore volume of the pastes used in the conventional products A and B are shown for comparison. In the conventional product A, the total pore volume is small because the paste density is high, but in the conventional product B and the product of the present invention, the total pore volume is 0.169 CC / g and 0.172 CC / g, respectively, which is larger than that of the conventional product A.

第9図に示すように、全細孔体積が0.16CC/gより少な
いとマクロポアまたはミクロポアのいずれかの細孔体積
が少なくなり、容量が劣ることになる。なお第9図の測
定における放電条件は第2図の試験におけるそれと同様
である。
As shown in FIG. 9, if the total pore volume is less than 0.16 CC / g, the pore volume of either macropores or micropores will be small and the capacity will be poor. The discharge conditions in the measurement of FIG. 9 are the same as those in the test of FIG.

また第10図に示すように、陽極活物質の全細孔体積が
0.18CC/gを超えると全体的な活物質な密着が損なわれ、
寿命が短くなる。なお第10図の測定における充放電条件
は、第2図の試験におけるそれと同様である。
Further, as shown in FIG. 10, the total pore volume of the anode active material is
When it exceeds 0.18 CC / g, the adhesion of the whole active material is impaired,
The life is shortened. The charging / discharging conditions in the measurement of FIG. 10 are the same as those in the test of FIG.

以上により、陽極活物質の全細孔体積は、0.16〜0.18
cc/gの範囲に選定する必要がある。
From the above, the total pore volume of the anode active material was 0.16 to 0.18.
It is necessary to select in the range of cc / g.

第4図は、従来品A及びBの陽極活物質の本発明品の
陽極活物質とについて、0.2μm未満の細孔の細孔体積
を比較して示したものである。従来品Aでは、0.2μm
未満の細孔体積が0.023CC/g、従来品Bでは同細孔体積
が0.042CC/gで、ともに0.02CC/gより多いが、本発明品
の陽極活物質の0.2μm未満の細孔体積は、0.018CC/gと
少ない。
FIG. 4 shows a comparison of the pore volume of pores of less than 0.2 μm for the anode active materials of the present invention of the anode active materials of the conventional products A and B. 0.2 μm for conventional product A
Pore volume of less than 0.023 CC / g, conventional product B has the same pore volume of 0.042 CC / g, both of which are more than 0.02 CC / g, but the pore volume of the positive electrode active material of the present invention is less than 0.2 μm. Is as low as 0.018 CC / g.

第5図は0.2〜4μmの細孔の体積を0.13CC/g(一
定)とし、0.2μ0m未満の細孔の体積を種々変えた場合
の活物質利用率を示したもので、この試験での放電電流
は1Aとし、120分で放電を打ち切った。その時の全陽極
活物質利用率は28%であった。ミクロポアの細孔容積が
0.02CC/g以下の場合には、表面と内部の活物質の利用率
の差がほとんどないが、ミクロポアの細孔体積が0.02CC
/gを超えるとその差が極端に広がっていく。したがって
本発明では、陽極活物質のミクロポアの細孔体積を0.02
cc/g以下とする。
Fig. 5 shows the active material utilization rate when the volume of pores of 0.2 to 4 µm is 0.13 CC / g (constant) and the volume of pores of less than 0.2 µ0m is variously changed. The discharge current was set to 1 A, and the discharge was stopped after 120 minutes. At that time, the total anode active material utilization rate was 28%. The pore volume of the micropore is
When it is 0.02CC / g or less, there is almost no difference in the utilization factor of the active material on the surface and the inside, but the pore volume of the micropore is 0.02CC.
When it exceeds / g, the difference becomes extremely wide. Therefore, in the present invention, the pore volume of the micropores of the anode active material is 0.02.
cc / g or less

第6図は従来品A,Bと本発明品とについて、直径が0.2
〜4μmの範囲にある細孔の体積を比較して示したもの
である。第6図より、従来品Aの0.2〜4μm細孔体積
は0.107、従来品Bの0.2〜4μmの細孔体積は0.166CC/
gであるが、本発明品では0.149CC/gと多い。
FIG. 6 shows that the diameters of the conventional products A and B and the product of the present invention are 0.2
It is shown by comparing the volumes of the pores in the range of ˜4 μm. From FIG. 6, 0.2-4 μm pore volume of the conventional product A is 0.107, and 0.2-4 μm pore volume of the conventional product B is 0.166 CC /
However, in the product of the present invention, it is as high as 0.149 CC / g.

第7図はミクロポアの細孔体積を0.02cc/g(一定)と
した時の0.2〜4μmのマクロポアの細孔体積に対する
活物質利用率を示したものである。この試験では、放電
電流1Aで放電を行い、120分で放電を打ち切った。この
場合の全陽極活物質の利用率は28%であった。0.2〜4
μmのマクロポアの細孔体積が0.13cc/g以上あれば、極
板の表面及び内部の活物質利用率の差がほとんどない
が、マクロポアの細孔体積が0.13cc/gを下回ると極板の
表面及び内部の活物質利用率の差が広がっていく。した
がって本発明では、0.2〜4μmのマクロポアの細孔体
積を0.13cc/g以上とする。
FIG. 7 shows the active material utilization rate with respect to the pore volume of macropores of 0.2 to 4 μm when the pore volume of micropores is 0.02 cc / g (constant). In this test, discharge was performed at a discharge current of 1 A, and the discharge was stopped after 120 minutes. In this case, the utilization rate of all positive electrode active materials was 28%. 0.2 ~ 4
If the pore volume of the micropores of μm is 0.13 cc / g or more, there is almost no difference in the active material utilization rate between the surface and the inside of the electrode plate, but if the pore volume of the macropores is below 0.13 cc / g, the electrode plate The difference between the active material utilization rates on the surface and inside increases. Therefore, in the present invention, the pore volume of the macropores of 0.2 to 4 μm is 0.13 cc / g or more.

[発明の効果] 以上のように、本発明によれば、ミクロポアの細孔体
積が小さくして、マクロポアの細孔体積を大きくするこ
とができるため、放電反応時に極板内部への液拡散をス
ムーズに行わせることができ、極板の表面及び内部の活
物質を均一に利用させることができる。また全活物質利
用率が同じであれば、各PbO2母粒子の利用率が従来より
も低くなるため、充放電の繰り返しによる活物質の体積
変化を小さくして泥状化を遅らせ、寿命の延長を図るこ
とができる。
[Effects of the Invention] As described above, according to the present invention, the pore volume of the micropores can be made small and the pore volume of the macropores can be made large, so that the liquid diffusion into the electrode plate during the discharge reaction can be prevented. It can be performed smoothly and the active material on the surface and inside of the electrode plate can be used uniformly. In addition, if the total active material utilization rate is the same, the utilization rate of each PbO 2 base particle will be lower than before, so the volume change of the active material due to repeated charging and discharging will be reduced to delay mud formation and increase the service life. It can be extended.

また本発明によれば、粒子径が小さい酸化鉛を原料と
することになるため、ペースト密度を低下させても従来
と同程度のペースト粘度を維持することができ、十分に
多孔度を増加させて、容量の増大を図ることができる。
Further, according to the present invention, since lead oxide having a small particle size is used as a raw material, it is possible to maintain the paste viscosity at the same level as the conventional one even if the paste density is lowered, and sufficiently increase the porosity. As a result, the capacity can be increased.

【図面の簡単な説明】[Brief description of drawings]

第1図は、従来品と本発明品とについてペーストの粘度
比を示したグラフ、第2図は、従来品と本発明品とにつ
いてサイクル寿命試験結果を比較して示した線図、第3
図は従来品と本発明品の陽極活物質の全細孔体積を比較
して示したグラフ、第4図は従来品及び本発明品で用い
る陽極活物質のミクロポアの細孔体積を比較して示した
グラフ、第5図はミクロポアの細孔体積と活物質利用率
との関係を示した線図、第6図は従来品及び本発明品に
ついて陽極活物質のマクロポアの細孔体積を比較して示
したグラフ、第7図は陽極活物質のマクロポアの細孔体
積と活物質利用率との関係を示した線図、第8図は陽極
活物質の細孔分布を示した線図、第9図は陽極活物質の
全細孔体積と容量比との関係を示した線図、第10図は陽
極活物質の全細孔体積とサイクル寿命との関係を示した
線図である。
FIG. 1 is a graph showing paste viscosity ratios of a conventional product and the present invention product, and FIG. 2 is a diagram showing comparison of cycle life test results of the conventional product and the present invention product, and FIG.
FIG. 4 is a graph showing a comparison of the total pore volumes of the anode active material of the conventional product and the present invention product, and FIG. 4 is a comparison of the micropore pore volumes of the anode active material used in the conventional product and the present invention product. The graph shown in FIG. 5 is a diagram showing the relationship between the pore volume of the micropores and the utilization rate of the active material, and FIG. 6 compares the pore volume of the macropores of the anode active material for the conventional product and the product of the present invention. FIG. 7 is a graph showing the relationship between the pore volume of the macropores of the anode active material and the utilization rate of the active material, and FIG. 8 is a graph showing the pore distribution of the anode active material. FIG. 9 is a diagram showing the relationship between the total pore volume of the anode active material and the capacity ratio, and FIG. 10 is a diagram showing the relationship between the total pore volume of the anode active material and the cycle life.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】全細孔体積が0.16〜0.18cc/gで、直径0.2
μm未満の細孔の体積が0.02cc/g以下、直径0.2〜4.0μ
mの細孔の体積が0.13cc/g以上である陽極活物質を備え
た陽極板を用いたことを特徴とする鉛蓄電池。
1. The total pore volume is 0.16 to 0.18 cc / g and the diameter is 0.2.
Volume of pores less than μm is 0.02cc / g or less, diameter 0.2-4.0μ
A lead-acid battery characterized by using an anode plate provided with an anode active material having a pore volume of m of 0.13 cc / g or more.
JP2195691A 1990-07-24 1990-07-24 Lead acid battery Expired - Fee Related JP2536251B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2195691A JP2536251B2 (en) 1990-07-24 1990-07-24 Lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2195691A JP2536251B2 (en) 1990-07-24 1990-07-24 Lead acid battery

Publications (2)

Publication Number Publication Date
JPH0482159A JPH0482159A (en) 1992-03-16
JP2536251B2 true JP2536251B2 (en) 1996-09-18

Family

ID=16345394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2195691A Expired - Fee Related JP2536251B2 (en) 1990-07-24 1990-07-24 Lead acid battery

Country Status (1)

Country Link
JP (1) JP2536251B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06140030A (en) * 1992-10-26 1994-05-20 Shin Kobe Electric Mach Co Ltd Sealed lead-acid battery
JP5211681B2 (en) * 2007-12-26 2013-06-12 株式会社Gsユアサ Method for producing lead-acid battery
JP6447866B2 (en) * 2014-11-14 2019-01-09 日立化成株式会社 Control valve type lead storage battery manufacturing method
WO2017013822A1 (en) * 2015-07-21 2017-01-26 株式会社Gsユアサ Lead acid storage battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5410943A (en) * 1977-06-27 1979-01-26 Mizusawa Industrial Chem Lead storage battery and method of making same

Also Published As

Publication number Publication date
JPH0482159A (en) 1992-03-16

Similar Documents

Publication Publication Date Title
JP2536251B2 (en) Lead acid battery
JP3468492B2 (en) Plate for lead-acid battery
JP5017746B2 (en) Control valve type lead acid battery
JP4186197B2 (en) Positive electrode plate for lead acid battery
JP3339080B2 (en) Anode plate for lead storage battery and method of manufacturing the same
JP4066509B2 (en) Manufacturing method of lead acid battery
JPH10302783A (en) Sealed lead-acid battery and manufacture thereof
JPH01128367A (en) Sealed type lead storage battery
JPH0679486B2 (en) Lead acid battery and manufacturing method thereof
JPH05242887A (en) Manufacture of electrode plate for lead-acid battery
JP3284860B2 (en) Electrode for lead-acid battery and its manufacturing method
JPH11162456A (en) Lead-acid battery
JP2004079198A (en) Lead accumulator
CN109637832B (en) Flat carbon electrode with high energy density
JPH0850896A (en) Manufacture of lead-acid battery
JPH10247491A (en) Lead-acid battery and its manufacture
JP2000149932A (en) Lead-acid battery and its manufacture
JPH08115718A (en) Manufacture of lead-acid battery
JP2000036305A (en) Plate for lead-acid battery
JPH05205732A (en) Manufacture of anode plate for lead-acid battery
JPH08180857A (en) Electrode plate for lead-acid battery
JPH0423383B2 (en)
CA1102409A (en) Battery plates covered with porous thermoplastic resin
JPH1173951A (en) Manufacture of lead-acid battery
JPS61161660A (en) Lead-acid battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees