JP3339080B2 - Anode plate for lead storage battery and method of manufacturing the same - Google Patents

Anode plate for lead storage battery and method of manufacturing the same

Info

Publication number
JP3339080B2
JP3339080B2 JP30843892A JP30843892A JP3339080B2 JP 3339080 B2 JP3339080 B2 JP 3339080B2 JP 30843892 A JP30843892 A JP 30843892A JP 30843892 A JP30843892 A JP 30843892A JP 3339080 B2 JP3339080 B2 JP 3339080B2
Authority
JP
Japan
Prior art keywords
active material
lead
anode plate
material paste
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30843892A
Other languages
Japanese (ja)
Other versions
JPH0676815A (en
Inventor
仁彦 乾
康司 松村
健介 弘中
一郎 向谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Kobe Electric Machinery Co Ltd
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP30843892A priority Critical patent/JP3339080B2/en
Publication of JPH0676815A publication Critical patent/JPH0676815A/en
Application granted granted Critical
Publication of JP3339080B2 publication Critical patent/JP3339080B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は鉛蓄電池用陽極板及びそ
の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an anode plate for a lead storage battery and a method for producing the same.

【0002】[0002]

【従来の技術】従来の鉛蓄電池用陽極板は次のようにし
て製造する。まず一酸化鉛粉末と希硫酸と水とを混合し
て活物質ペーストを作り、この活物質ペーストを鉛また
は鉛合金の集電体に充填して未乾燥極板を作る。次に、
この未乾燥極板を熟成、乾燥して活物質中に三塩基性硫
酸鉛を生成した後に、化成を行って鉛蓄電池用陽極板を
製造する。このように活物質ペーストの原料として一酸
化鉛粉末だけを用いると、熟成、乾燥及び化成を経て極
板を完成するまでに要する時間が最低でも3〜4日かか
るという問題がある。そこで、鉛丹(四酸化三鉛)を主
成分とする酸化鉛と水とを混練した混練物、または鉛丹
を主成分とする酸化鉛と希硫酸とを混練した混練物を活
物質ペーストとして用いることが提案された。鉛丹は熟
成を行わなくても化成時に硫酸と反応して二酸化鉛(P
bO)を生成する上、化成に必要な理論電気量も活
物質ペーストの原料として一酸化鉛粉末を用いた極板に
比べて約65%程度低くなる。そのため、このような混
練物を活物質ペーストとして用いると化成効率の高い鉛
蓄電池用陽極板を短時間で製造することができる。
2. Description of the Related Art A conventional anode plate for a lead storage battery is manufactured as follows. First, an active material paste is prepared by mixing lead monoxide powder, dilute sulfuric acid and water, and this active material paste is filled into a lead or lead alloy current collector to prepare a wet electrode plate. next,
The undried electrode plate is aged and dried to produce tribasic lead sulfate in the active material, and then subjected to chemical conversion to produce a lead storage battery anode plate. When only lead monoxide powder is used as a raw material of the active material paste, there is a problem that it takes at least 3 to 4 days to complete an electrode plate through aging, drying and chemical formation. Therefore, a kneaded material obtained by kneading lead oxide mainly composed of leadtan (trilead tetroxide) and water, or a kneaded material kneaded lead oxide mainly composed of leadtan and dilute sulfuric acid is used as an active material paste. It was proposed to use. Lead mushrooms react with sulfuric acid during chemical formation without aging, and lead dioxide (P
In addition to generating bO 2 ), the theoretical amount of electricity required for chemical formation is also reduced by about 65% as compared with an electrode plate using lead monoxide powder as a raw material of an active material paste. Therefore, when such a kneaded material is used as an active material paste, a lead storage battery anode plate having high conversion efficiency can be manufactured in a short time.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、鉛丹を
水で混練した活物質ペーストを集電体に充填した未乾燥
極板は、化成時に電解液(希硫酸)に接触し易い表面部
分での化成効率は高いものの、極板内部に硫酸が浸透す
るのに時間がかかるために、極板内部での化成効率は低
い。図7は同一条件で化成(低比重硫酸溶液中にて課電
量250%で化成)した厚みの異なる極板を用いて作っ
た複数の2V−2Ahの電池について1CAで放電を行っ
て調べた極板の厚みと放電時間との関係を示す図であ
る。図7に示すように極板が厚くなるほど内部が化成さ
れ難くなり、放電時間が短く(初期容量が低下)なるの
が判る。また、このように鉛丹を水で混練した活物質ペ
ーストは、粘度が低いために、水分が遊離しやすい。そ
のため、活物質ペーストの充填時や乾燥時に活物質が収
縮して多孔度が低下し、その結果、容量が低下するとい
う問題があった。
However, an undried electrode plate in which an active material paste obtained by kneading leadtan with water is filled in a current collector, has a surface portion which is easily contacted with an electrolytic solution (dilute sulfuric acid) during chemical formation. Although the formation efficiency is high, the formation efficiency inside the electrode plate is low because it takes time for sulfuric acid to penetrate inside the electrode plate. FIG. 7 shows a plurality of 2V-2Ah batteries formed using electrode plates having different thicknesses formed under the same conditions (formed in a low-density sulfuric acid solution at a charge amount of 250%). FIG. 4 is a diagram illustrating a relationship between a plate thickness and a discharge time. As shown in FIG. 7, it can be seen that the thicker the electrode plate, the more difficult it is to form the inside, and the shorter the discharge time (the lower the initial capacity). In addition, since the active material paste obtained by kneading lead red with water as described above has a low viscosity, water is easily released. Therefore, when the active material paste is filled or dried, the active material shrinks, and the porosity is reduced. As a result, there is a problem that the capacity is reduced.

【0004】また水で混練する代りに希硫酸で鉛丹を混
練した活物質ペーストを用いた場合には、希硫酸と鉛丹
とが反応してできる二酸化鉛や硫酸鉛の相互間の結合力
が弱いために、活物質相互間の結合力が十分に大きくな
らず、電池の寿命が短くなるという問題があった。
When an active material paste obtained by kneading lead ginseng with dilute sulfuric acid is used instead of kneading with water, the bonding force between lead dioxide and lead sulfate formed by the reaction between dilute sulfuric acid and ginseng. Is weak, the bonding force between the active materials is not sufficiently increased, and there is a problem that the life of the battery is shortened.

【0005】本発明の目的は、高容量で長寿命な鉛蓄電
池用陽極板と、該鉛蓄電池用陽極板を化成効率を高めて
短時間で製造する方法とを提供することにある。
An object of the present invention is to provide a positive electrode plate for a lead-acid battery having a high capacity and a long life, and a method for producing the positive electrode plate for a lead-acid battery in a short time by increasing the formation efficiency.

【0006】[0006]

【課題を解決するための手段】請求項1の発明では、
電体に活物質ペーストを充填して未乾燥極板を作り、こ
の未乾燥極板を乾燥した後に化成を行って鉛蓄電池用極
板を製造する方法を対象にして、三塩基性硫酸鉛と鉛丹
と水とを混練した活物質ペーストを集電体に充填して内
側活物質ペースト層を形成する工程と、鉛丹と水とを混
練した活物質ペーストを内側活物質ペースト層の上に充
填して外側活物質ペースト層を形成する工程とによって
未乾燥極板を製造する。請求項2の発明は、請求項1の
発明の方法で製造した陽極板の結晶構造を特定するもの
であり、集電体に活物質が保持されてなる鉛蓄電池用陽
極板を対象にして、活物質を各部の寸法が1μm 以下の
角柱状の二酸化鉛(鉛丹から作られたもの)に球状また
は平板状の二酸化鉛(三塩基性硫酸鉛から作られたも
の)が結合した結晶構造を有する内側活物質層と、各部
の寸法が1μm 以下の角柱状の二酸化鉛の結晶構造を有
する外側活物質層とから構成する。
According to the first aspect of the present invention, a collection
Fill the conductor with the active material paste to make an undried electrode plate.
After drying the undried electrode plate of
Tribasic lead sulphate and lead tan
The active material paste obtained by kneading water and water
Mixing the process of forming the side-active material paste layer with lead red and water
Fill the kneaded active material paste on the inner active material paste layer
Filling to form the outer active material paste layer
Manufacture undried plates. The invention of claim 2 is the invention of claim 1
To specify the crystal structure of the anode plate manufactured by the method of the invention
And a positive electrode for a lead storage battery in which an active material is held on a current collector.
The size of each part of the active material is less than 1μm
Prismatic lead dioxide (made of lead-tin)
Is tabular lead dioxide (made from tribasic lead sulfate
), An inner active material layer having a crystal structure in which
It has a prismatic lead dioxide crystal structure with a size of 1 μm or less.
And an outer active material layer.

【0007】[0007]

【作用】請求項1の発明の方法では、三塩基性硫酸鉛と
鉛丹と水とを混練した活物質ペーストからなる活物質ペ
ースト層を内側活物質ペースト層とし、その外側に鉛丹
と水とを混練した活物質ペーストからなる外側活物質ペ
ースト層を設けた。この外側活物質ペースト層は電解液
の極板内への拡散を大きく抑制することがないため、本
発明によれば容量を高くして、しかも化成効率を向上さ
せることができる。尚、鉛丹を水で混練した活物質ペー
ストは、集電体のように表面が滑らかな所に充填すると
活物質が収縮して多孔度が低下するが、内側活物質ペー
スト層のように表面が凹凸な所に充填するとこの凹凸部
に活物質ペーストが入り込むため、活物質は収縮せず多
孔度は低下しない。
According to the method of the first aspect of the present invention, an active material paste layer composed of an active material paste obtained by kneading tribasic lead sulfate, lead ginseng and water is used as an inner active material paste layer, and on the outside thereof, lead ginseng and water are placed. And an outer active material paste layer made of an active material paste obtained by kneading the above. Since the outer active material paste layer does not significantly suppress the diffusion of the electrolyte into the electrode plate, according to the present invention, the capacity can be increased and the formation efficiency can be improved. In addition, the active material paste obtained by kneading lead red with water fills a smooth surface such as a current collector, causing the active material to shrink and reduce the porosity. Is filled in an uneven portion, the active material paste enters into the uneven portion, so that the active material does not shrink and the porosity does not decrease.

【0008】請求項2の発明のように、各部の寸法が1
μm 以下の角柱状の二酸化鉛に球状または平板状の二酸
化鉛が結合した結晶構造を有する内側活物質層と、各部
の寸法が1μm 以下の角柱状の二酸化鉛の結晶構造を有
する外側活物質層とから活物質を構成すると、内側活物
質層は結合強度が高くなり、外側活物質層は電解液の浸
透性が高くなるので、長寿命で高容量の電池を得ること
ができる。
According to the second aspect of the present invention, the size of each part is 1
An inner active material layer having a crystalline structure in which spherical or flat lead dioxide is bonded to prismatic lead dioxide having a diameter of 1 μm or less, and an outer active material layer having a prismatic lead dioxide crystal structure having a dimension of 1 μm or less. When the active material is formed from the above, the inner active material layer has a higher bonding strength, and the outer active material layer has a higher permeability of the electrolyte, so that a long-life, high-capacity battery can be obtained.

【0009】[0009]

【実施例】以下に本発明の実施例を詳細に説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below in detail.

【0010】[実施例1] この実施例では次のようにして鉛蓄電池用陽極板を作っ
た。
Example 1 In this example, an anode plate for a lead storage battery was manufactured as follows.

【0011】まず一酸化鉛の粉末0.8kgに比重1.2
6の硫酸203.6ml加えて混練して三塩基性硫酸鉛を
作った。次にこの三塩基性硫酸鉛0.9gと鉛丹2.1
kgと水320mlとを混練して活物質ペーストを作り、こ
の活物質ペーストを鉛合金の格子体からなる集電体に充
填して厚み2.5mmの活物質ペースト層を形成した。
尚、三塩基性硫酸鉛の鉛丹に対する好ましい重量範囲は
20〜40%であり、この実施例では30重量%であっ
た。この未乾燥極板を乾燥した後に課電量300%で化
成を行うと、活物質ペースト層は各部の寸法が1μm 以
下の角柱状の二酸化鉛(鉛丹から作られたもの)に球状
または平板状の二酸化鉛(三塩基性硫酸鉛から作られた
もの)が結合した結晶構造を有する活物質層になる。
First, a specific gravity of 1.2 kg was added to 0.8 kg of lead monoxide powder.
203.6 ml of sulfuric acid of No. 6 was added and kneaded to prepare tribasic lead sulfate. Next, 0.9 g of the tribasic lead sulfate and 2.1 g
kg and 320 ml of water were kneaded to prepare an active material paste, and the active material paste was filled into a current collector comprising a grid of lead alloy to form an active material paste layer having a thickness of 2.5 mm.
The preferred weight range of the tribasic lead sulfate with respect to the lead was 20 to 40%, and in this example, 30% by weight. When the undried electrode plate is dried and then subjected to chemical formation at a charge amount of 300%, the active material paste layer is converted into a prismatic lead dioxide (made of lead tin) having a dimension of 1 μm or less in a spherical or flat plate. The active material layer has a crystal structure in which lead dioxide (made of tribasic lead sulfate) is bonded.

【0012】次に本実施例の方法で製造した鉛蓄電池用
陽極板の特性を調べるために、4種類の陽極板a1 〜d
1 を作り試験を行った。陽極板a1 は本実施例の陽極板
である。陽極板b1 は一酸化鉛粉末3kgと比重1.26
の希硫酸373mlと水300mlとを混合した活物質ペー
ストを用いて製造した従来の陽極板である。陽極板c1
は鉛丹3.5kgと一酸化鉛の粉末1.5kgと水865.
8mlとを混練した活物質ペーストを用いて製造した従来
の陽極板である。陽極板d1 は鉛丹2.1kgと一酸化鉛
粉末0.8kgと比重1.26の希硫酸203.6mlと水
320mlとを混練した活物質ペーストを用いて製造した
従来の陽極板である。尚、各陽極板a1〜d1 の活物質
の重量は同じである。そして各陽極板a1 〜d1 を用い
て4Ah−6Vタイプの電池A1 〜D1 を作って、各電
池A1 〜D1 の初期容量及びサイクル寿命特性を調べ
た。各電池の初期容量は25±1℃の雰囲気温度で、
0.25CA(終止電圧1.7V)で放電して放電時間
を測定した。また各電池のサイクル寿命特性は0.25
CA(終止電圧1.75V)で放電してから1時間放置
した後に、2.45V(制限電流0.3CA)で6時間
充電する充放電を繰り返して電池の寿命に至るサイクル
回数を調べた。表1は従来の陽極板b1 を用いた電池B
1 の性能を100%とした場合の各電池の特性の比率が
示されている。尚、表1には各電池の製造時間の比率も
併せて記載した。
Next, in order to investigate the characteristics of the anode plate for a lead storage battery manufactured by the method of the present embodiment, four types of anode plates a1 to d were used.
1 and tested. The anode plate a1 is the anode plate of this embodiment. The anode plate b1 is composed of 3 kg of lead monoxide powder and a specific gravity of 1.26.
Is a conventional anode plate manufactured using an active material paste obtained by mixing 373 ml of diluted sulfuric acid with 300 ml of water. Anode plate c1
Is 3.5kg of lead red, 1.5kg of lead monoxide powder and 865.
This is a conventional anode plate manufactured using an active material paste kneaded with 8 ml of an active material. The anode plate d1 is a conventional anode plate manufactured using an active material paste obtained by kneading 2.1 kg of lead red, 0.8 kg of lead monoxide powder, 203.6 ml of dilute sulfuric acid having a specific gravity of 1.26 and 320 ml of water. The weight of the active material in each of the anode plates a1 to d1 is the same. Using the anode plates a1 to d1, 4Ah-6V type batteries A1 to D1 were manufactured, and the initial capacity and cycle life characteristics of each of the batteries A1 to D1 were examined. The initial capacity of each battery is 25 ± 1 ° C ambient temperature,
Discharge was performed at 0.25 CA (final voltage: 1.7 V), and the discharge time was measured. The cycle life characteristic of each battery was 0.25.
After discharging at CA (final voltage 1.75 V), the battery was left for 1 hour, and then charged and discharged at 2.45 V (limited current 0.3 CA) for 6 hours. Table 1 shows the battery B using the conventional anode plate b1.
The ratio of the characteristics of each battery when the performance of No. 1 is 100% is shown. Table 1 also shows the ratio of the production time of each battery.

【0013】[0013]

【表1】 本表より従来の陽極板c1 を用いた電池C1 は活物質ペ
ーストが水の遊離を起こしやすいため活物質層の多孔度
が低下して電池の初期容量が低下しているのが判る。ま
た従来の陽極板d1 を用いた電池D1 は活物質同志の結
合力が弱いためサイクル寿命特性が低下しているのが判
る。これらの電池に対して本実施例の陽極板aを用いた
電池A1 は従来の陽極板b1 を用いた電池B1 より初期
容量が19%、サイクル寿命特性が90%向上し、製造
時間も40%減少しているのが判る。
[Table 1] From this table, it can be seen that in the battery C1 using the conventional anode plate c1, since the active material paste easily releases water, the porosity of the active material layer is reduced and the initial capacity of the battery is reduced. Also, it can be seen that the cycle life characteristic of the battery D1 using the conventional anode plate d1 is deteriorated because the bonding force between the active materials is weak. In contrast to these batteries, the battery A1 using the anode plate a of the present embodiment has an initial capacity of 19%, a cycle life characteristic improved by 90%, and a manufacturing time of 40% compared to the battery B1 using the conventional anode plate b1. You can see that it is decreasing.

【0014】次に三塩基性硫酸鉛の鉛丹に対する重量比
と該重量比の活物質ペーストを用いて作った電池の初期
容量比との関係を図1に示す。尚、この試験は本実施例
の製造方法において三塩基性硫酸鉛の鉛丹に対する重量
比だけを変えて製造した電池を用いて行い、本図では従
来の陽極板b1 を用いた電池B1 の初期容量を100%
とした。本図より三塩基性硫酸鉛の鉛丹に対する重量比
が40%を超えると化成効率が低下して初期容量比が低
下し、重量比が20%を下回ると活物質ペーストの粘度
が低下して活物質の多孔度が低くなり容量が低下するの
が判る。
FIG. 1 shows the relationship between the weight ratio of the tribasic lead sulfate to the lead and the initial capacity ratio of the battery made using the active material paste having the weight ratio. This test was carried out using a battery manufactured by changing the weight ratio of tribasic lead sulfate to lead in the manufacturing method of the present embodiment. In this figure, the initial value of the battery B1 using the conventional anode plate b1 is shown. 100% capacity
And According to this figure, when the weight ratio of tribasic lead sulfate to lead is more than 40%, the conversion efficiency is reduced and the initial capacity ratio is reduced. When the weight ratio is less than 20%, the viscosity of the active material paste is reduced. It can be seen that the porosity of the active material decreases and the capacity decreases.

【0015】次に図1の測定に用いた電池に充放電を繰
り返して三塩基性硫酸鉛の鉛丹に対する重量比と電池の
サイクル寿命回数比との関係を調べた。図2はその測定
結果を示している。尚、この図でも従来の陽極板b1 を
用いた電池B1 のサイクル寿命回数を100%とした。
本図より三塩基性硫酸鉛の鉛丹に対する重量比を20〜
40%とすると従来の陽極板b1 を用いた電池B1 に比
べて約90%サイクル寿命特性が向上するのが判る。重
量比が20%を下回ると活物質同志の結合力が低下して
サイクル寿命特性が低下する。重量比が40%を上回る
と化成不良による低級酸化物(PbO)が増加して
サイクル寿命特性が低下する。
Next, the battery used for the measurement of FIG. 1 was repeatedly charged and discharged to examine the relationship between the weight ratio of tribasic lead sulfate to lead and the cycle life ratio of the battery. FIG. 2 shows the measurement results. In this figure, the cycle life of the battery B1 using the conventional anode plate b1 was set to 100%.
From this figure, the weight ratio of tribasic lead sulfate to lead red is 20 to
It can be seen that when it is 40%, the cycle life characteristics are improved by about 90% as compared with the battery B1 using the conventional anode plate b1. When the weight ratio is less than 20%, the bonding force between the active materials is reduced, and the cycle life characteristics are reduced. When the weight ratio exceeds 40%, lower oxides (PbO x ) due to poor conversion increase and cycle life characteristics deteriorate.

【0016】次に活物質層を形成する角柱状のPbO
の平均長さと、該活物質層を有する電池の初期容量
比との関係を図3に示す。尚、この図ではPbO
平均長さが1μm の電池のサイクル寿命特性を100%
とし、角柱状のPbOの平均長さの異なる陽極板は
鉛丹の大きさや化成条件を極端に変えることにより作っ
た。本図よりPbOの平均長さが1μm を超えると
結晶同志の接触面積(結合面積)が小さくなり活物質層
の結合強度は低下してサイクル寿命特性が低下するのが
判る。
Next, a prismatic PbO for forming an active material layer is formed.
FIG. 3 shows the relationship between the average length of No. 2 and the initial capacity ratio of the battery having the active material layer. In this figure, the cycle life characteristic of a battery having an average PbO 2 length of 1 μm is 100%.
The anode plates having different average lengths of prismatic PbO 2 were produced by changing the size of lead and the formation conditions extremely. From this figure, it can be seen that when the average length of PbO 2 exceeds 1 μm, the contact area (bonding area) between the crystals becomes small, the bonding strength of the active material layer is reduced, and the cycle life characteristic is reduced.

【0017】次に活物質層の比表面積と、該比表面積の
活物質層を有する電池の初期容量比との関係を図4に示
す。尚、この図では活物質層の比表面積が5 m/gの
電池の初期容量を100%とし、活物質層の比表面積の
異なる陽極板は化成条件を変えることにより作った。本
図より活物質層の比表面積が10 m/gを下回ると活
物質と電解液との反応面積が減少して電池の容量が低下
するのが判る。
FIG. 4 shows the relationship between the specific surface area of the active material layer and the initial capacity ratio of a battery having the active material layer having the specific surface area. In this figure, the initial capacity of a battery having an active material layer having a specific surface area of 5 m 2 / g was set to 100%, and anode plates having different active material layer specific surface areas were prepared by changing formation conditions. From this figure, it can be seen that when the specific surface area of the active material layer is less than 10 m 2 / g, the reaction area between the active material and the electrolyte decreases, and the capacity of the battery decreases.

【0018】[実施例2] この実施例では次のようにして鉛蓄電池用陽極板を作っ
た。
Example 2 In this example, an anode plate for a lead storage battery was manufactured as follows.

【0019】まず重量比10:10:3の三塩基性硫酸
鉛と鉛丹と水とを混練して活物質ペーストを作り、この
活物質ペーストを鉛合金の格子体からなる集電体に充填
して厚み1.5mmの内側活物質ペースト層を形成した。
尚、使用した三塩基性硫酸鉛は酸化鉛と比重1.260
の硫酸とを3:1の重量比で混合して予め作ったものを
使用した。次に、重量比20:3の鉛丹と水とを混練し
て活物質ペーストを作り、この活物質ペーストを内側活
物質ペースト層の上に充填して厚み0.75mmの外側活
物質ペースト層を形成して厚み3mmの未乾燥極板を製造
した。尚、三塩基性硫酸鉛の活物質ペースト全体の鉛丹
に対する好ましい重量範囲は20〜40%である。この
未乾燥極板を乾燥した後に課電量300%で化成を行う
と、内側活物質ペースト層は各部の寸法が1μm 以下の
角柱状の二酸化鉛(鉛丹から作られたもの)に球状また
は平板状の二酸化鉛(三塩基性硫酸鉛から作られたも
の)が結合した結晶構造を有する内側活物質層になり、
外側活物質ペースト層は各部の寸法が1μm 以下の角柱
状の二酸化鉛(鉛丹から作られたもの)の結晶構造を有
する外側活物質層になる。本実施例の方法で極板を製造
すると、一酸化鉛粉末と希硫酸と水とを混合した活物質
ペーストを用いて極板を製造する場合と比較して製造時
間を約60%短縮できた。
First, an active material paste is prepared by kneading tribasic lead sulfate, lead tin and water in a weight ratio of 10: 10: 3, and this active material paste is filled in a current collector comprising a grid of lead alloy. As a result, an inner active material paste layer having a thickness of 1.5 mm was formed.
The used tribasic lead sulfate was 1.260 in specific gravity with lead oxide.
And sulfuric acid at a weight ratio of 3: 1. Next, an active material paste is prepared by kneading a 20: 3 weight ratio of lead red and water, and the active material paste is filled on the inner active material paste layer to form a 0.75 mm thick outer active material paste layer. Was formed to produce a 3 mm-thick wet electrode plate. The preferable weight range of the tribasic lead sulfate with respect to the lead in the entire active material paste is 20 to 40%. When the undried electrode plate is dried and then subjected to chemical formation at a charge amount of 300%, the inner active material paste layer becomes spherical or flat on prismatic lead dioxide (made of lead tin) having a dimension of 1 μm or less. Lead oxide (made from tribasic lead sulfate) in the form of an inner active material layer with a combined crystal structure,
The outer active material paste layer is an outer active material layer having a prismatic lead dioxide (made of lead-tin) crystal structure having a dimension of 1 μm or less in each part. When the electrode plate was manufactured by the method of the present example, the manufacturing time could be reduced by about 60% as compared with the case where the electrode plate was manufactured using an active material paste in which lead monoxide powder, dilute sulfuric acid and water were mixed. .

【0020】次に本実施例の方法で製造した鉛蓄電池用
陽極板の特性を調べるために、4種類の陽極板a2 〜d
2 を作り試験を行った。陽極板a2 は本実施例の陽極板
である。陽極板b2 は活物質層を全て内側活物質ペース
ト層(三塩基性硫酸鉛と鉛丹と水とを混練した活物質ペ
ースト)で作った他の実施例の陽極板である。尚、この
陽極板b2 は極板の厚みを除いては実施例1の陽極板と
同じ構成を有している。陽極板c2 は一酸化鉛粉末と希
硫酸と水とを混合した活物質ペーストを用いて製造した
従来の陽極板である。陽極板d2 は鉛丹のみと水とを混
練した活物質ペーストを用いて製造した従来の陽極板で
ある。尚、陽極板a2 〜d2 はそれぞれ同量の活物質ペ
ーストを集電体に充填した厚み3mmの極板であり、各陽
極板a2〜d2 は活物質ペーストを除いては同じ構成を
有している。各陽極板a2 〜d2と同じ構成の陰極板と
を用いて2V−2Ahの電池A2 〜D2 を作り、電池A2
〜D2 を低比重硫酸溶液中にて課電量300%で電槽化
成した後に1CAで放電して各電池A2 〜D2 の放電時
間を測定した。測定結果は本実施例の陽極板a2 を用い
た電池A2 は放電時間が45分であったのに対して、他
の実施例の陽極板b2 を用いた電池B2 は放電時間が4
3分であり、従来の陽極板c2 及びd2 を用いた電池C
2 ,D2 は放電時間がそれぞれ40分であった。この測
定結果より、本実施例の陽極板a2 を用いると従来の陽
極板c2 及びd2 に比べて化成効率が高く、初期容量の
高い電池を得られるのが判る。
[0020] Then in order to investigate the characteristics of the anode plate for a lead storage battery prepared by the method of this embodiment, the anode plate of the four types of a2 to d
2 and tested. The anode plate a2 is the anode plate of this embodiment. The anode plate b2 is an anode plate of another embodiment in which the active material layer is entirely formed of an inner active material paste layer (an active material paste obtained by kneading lead tribasic sulfate, lead tin and water). The anode plate b2 has the same configuration as the anode plate of the first embodiment except for the thickness of the electrode plate. The anode plate c2 is a conventional anode plate manufactured using an active material paste obtained by mixing lead monoxide powder, diluted sulfuric acid and water. The anode plate d2 is a conventional anode plate manufactured using an active material paste obtained by kneading only lead and water. Each of the anode plates a2 to d2 is a 3 mm-thick electrode plate in which the same amount of active material paste is filled in a current collector, and each of the anode plates a2 to d2 has the same configuration except for the active material paste. I have. Using the anode plates a2 to d2 and the cathode plates having the same configuration, batteries 2A to D2 of 2V-2Ah are made, and the battery A2
-D2 was formed in a low specific gravity sulfuric acid solution at a charge of 300%, and then discharged at 1 CA to measure the discharge time of each battery A2-D2. The measurement results show that the battery A2 using the anode plate a2 of this embodiment had a discharge time of 45 minutes, while the battery B2 using the anode plate b2 of the other embodiment had a discharge time of 4 minutes.
3 minutes, battery C using conventional anode plates c2 and d2
2 and D2 each had a discharge time of 40 minutes. From this measurement result, it can be seen that the use of the anode plate a2 of this embodiment can provide a battery with higher formation efficiency and higher initial capacity than the conventional anode plates c2 and d2.

【0021】次に電池A2 〜D2 の課電量を変えて化成
を行ってこれを放電し、各電池A2〜D2 の課電量と放
電時間との関係を測定した。図5はその測定結果を示し
ている。本図より本実施例の陽極板a2 は他の実施例の
陽極板b2 及び従来の陽極板c2 及びd2 に比べて化成
効率が高い(同じ課電量で放電時間が長くなる)のが判
る。
Next, the batteries A2 to D2 were subjected to chemical formation while changing the amount of power applied thereto, and were discharged. The relationship between the amount of power applied to each of the batteries A2 to D2 and the discharge time was measured. FIG. 5 shows the measurement results. From this figure, it can be seen that the anode plate a2 of this embodiment has a higher conversion efficiency (discharge time is longer at the same charge amount) than the anode plate b2 of the other embodiments and the conventional anode plates c2 and d2.

【0022】次に電池A2 〜D2 を0.25CAで、終
止電圧1.75Vまで充電してから1時間放置した後
に、2.45V、制限電流0.9CAで4時間充電する
充放電を繰り返し電池A2 〜D2 のサイクル寿命特性を
調べた。図6はその測定結果を示している。本図より本
実施例の陽極板a2 を用いた電池A2 は、他の実施例の
陽極板b2 を用いた電池B2 及び従来の陽極板c2 及び
d2 を用いた電池C2 ,D2 より長寿命であるのが判
る。特に鉛丹のみを活物質として用いた比較例の陽極板
d2 を用いた電池D2 と比べると、電池Aは200%も
寿命が伸びる。
Next, the batteries A2 to D2 were charged at 0.25 CA to a final voltage of 1.75 V, allowed to stand for 1 hour, and then charged and discharged at 2.45 V and a limited current of 0.9 CA for 4 hours. The cycle life characteristics of A2 to D2 were examined. FIG. 6 shows the measurement results. From this figure, the battery A2 using the anode plate a2 of this embodiment has a longer life than the battery B2 using the anode plate b2 of another embodiment and the batteries C2 and D2 using the conventional anode plates c2 and d2. I understand. Particularly, as compared with the battery D2 using the anode plate d2 of the comparative example using only lead red as an active material, the life of the battery A is extended by 200%.

【0023】[0023]

【発明の効果】請求項1の発明によれば、三塩基性硫酸
鉛と鉛丹と水とを混練した活物質ペーストからなる活物
質ペースト層を内側活物質ペースト層とし、その外側に
硫酸を含まない外側活物質ペースト層を設けため、極板
の厚みを厚くした場合に、電解液の極板内への拡散が大
きく抑制されることがなく、電池の化成効率を向上でき
る。 請求項2の発明によれば、各部の寸法が1μm 以下
の角柱状の二酸化鉛に球状または平板状の二酸化鉛が結
合した結晶構造を有する内側活物質層と、各部の寸法が
1μm 以下の角柱状の二酸化鉛の結晶構造を有する外側
活物質層とから活物質を構成するため、内側活物質層は
結合強度が高くなり、しかも外側活物質層は電解液の浸
透性が高くなるので、長寿命で高容量の電池を得ること
ができる。
According to the first aspect of the present invention, tribasic sulfuric acid
Active material consisting of active material paste obtained by kneading lead, lead red and water
Material paste layer as the inner active material paste layer,
Electrode plates to provide an outer active material paste layer that does not contain sulfuric acid
When the thickness of the electrode is increased, diffusion of the electrolyte into the electrode plate is large.
Battery formation efficiency can be improved
You. According to the invention of claim 2 , an inner active material layer having a crystal structure in which spherical or flat lead dioxide is bonded to prismatic lead dioxide having dimensions of 1 μm or less, and a corner having a dimension of 1 μm or less. Since the active material is composed of the outer active material layer having a columnar lead dioxide crystal structure, the inner active material layer has a higher bond strength, and the outer active material layer has a higher electrolyte permeability, so that the longer the active material layer is, the longer the active material layer becomes. A long-life, high-capacity battery can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 三塩基性硫酸鉛の鉛丹に対する重量比と、電
池の初期容量比との関係を示す図である。
FIG. 1 is a diagram showing the relationship between the weight ratio of tribasic lead sulfate to lead and the initial capacity ratio of a battery.

【図2】 三塩基性硫酸鉛の鉛丹に対する重量比と、電
池のサイクル寿命回数比との関係を示す図である。
FIG. 2 is a graph showing the relationship between the weight ratio of tribasic lead sulfate to lead and the cycle life cycle ratio of a battery.

【図3】 角柱状のPbOの平均長さと、電池の初
期容量比との関係を示す図である。
FIG. 3 is a diagram showing a relationship between an average length of prismatic PbO 2 and an initial capacity ratio of a battery.

【図4】 活物質層の比表面積と、電池の初期容量比と
の関係を示す図である。
FIG. 4 is a diagram showing a relationship between a specific surface area of an active material layer and an initial capacity ratio of a battery.

【図5】 試験に用いた電池の課電量と放電時間との関
係を示す図である。
FIG. 5 is a diagram showing the relationship between the amount of power applied to a battery used in the test and the discharge time.

【図6】 試験に用いた電池のサイクル寿命特性を示す
図である。
FIG. 6 is a diagram showing the cycle life characteristics of the batteries used in the test.

【図7】 従来の鉛蓄電池用陽極板の極板の厚みと放電
時間との関係を示す図である。
FIG. 7 is a diagram showing the relationship between the thickness of a conventional anode plate for a lead storage battery and the discharge time.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 向谷 一郎 東京都新宿区西新宿二丁目1番1号 新 神戸電機株式会社内 (56)参考文献 特開 平4−79156(JP,A) 特開 平5−242887(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/14 - 4/62 ──────────────────────────────────────────────────続 き Continuation of front page (72) Inventor Ichiro Mukaya 2-1-1, Nishi-Shinjuku, Shinjuku-ku, Tokyo Inside Shin-Kobe Electric Co., Ltd. (56) References JP-A-4-79156 (JP, A) JP-A-4-79156 Hei 5-242887 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4/14-4/62

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 集電体に活物質ペーストを充填して未乾
燥極板を作り、前記未乾燥極板を乾燥した後に化成を行
って鉛蓄電池用陽極板を製造する方法において、 三塩基性硫酸鉛と鉛丹と水とを混練した活物質ペースト
を集電体に充填して内側活物質ペースト層を形成する工
程と、 鉛丹と水とを混練した活物質ペーストを前記内側活物質
ペースト層の上に充填して外側活物質ペースト層を形成
する工程とに よって前記未乾燥極板を製造することを特
徴とする鉛蓄電池用陽極板の製造方法。
1. A current collector filled with an active material paste and dried
After forming the dried electrode plate and drying the undried electrode plate,
The method for producing an anode plate for a lead-acid battery according to claim 1, wherein the active material paste is obtained by kneading tribasic lead sulfate, lead red and water.
To form the inner active material paste layer by filling
And the active material paste obtained by kneading leadtan and water is mixed with the inner active material.
Fill on top of paste layer to form outer active material paste layer
Method for producing a positive electrode plate for a lead storage battery, characterized in that to produce the on Therefore the wet electrode plate step of.
【請求項2】 集電体に活物質が保持されてなる鉛蓄電
池用陽極板において、 前記活物質は、各部の寸法が1μm 以下の角柱状の二酸
化鉛に球状または平板状の二酸化鉛が結合した結晶構造
を有する内側活物質層と、各部の寸法が1μm以下の角
柱状の二酸化鉛の結晶構造を有する外側活物質層とから
なることを特徴とする鉛蓄電池用陽極板
2. A lead storage device in which an active material is held on a current collector.
In the anode plate for a pond, the active material is a prismatic diacid having a dimension of each part of 1 μm or less.
Crystal structure of spherical or flat lead dioxide bonded to lead iodide
Having an inner active material layer having a thickness of 1 μm or less
From the outer active material layer having a columnar lead dioxide crystal structure
An anode plate for a lead storage battery, comprising:
JP30843892A 1992-06-29 1992-11-18 Anode plate for lead storage battery and method of manufacturing the same Expired - Fee Related JP3339080B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30843892A JP3339080B2 (en) 1992-06-29 1992-11-18 Anode plate for lead storage battery and method of manufacturing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP17046392 1992-06-29
JP4-170463 1992-06-29
JP30843892A JP3339080B2 (en) 1992-06-29 1992-11-18 Anode plate for lead storage battery and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0676815A JPH0676815A (en) 1994-03-18
JP3339080B2 true JP3339080B2 (en) 2002-10-28

Family

ID=26493447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30843892A Expired - Fee Related JP3339080B2 (en) 1992-06-29 1992-11-18 Anode plate for lead storage battery and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3339080B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010021154A (en) * 2003-08-27 2010-01-28 Shin Kobe Electric Mach Co Ltd Method of manufacturing pasty active material of positive electrode
BR112012021876A2 (en) * 2010-03-01 2016-05-24 Shin Kobe Electric Machinery lead acid storage battery
MX2012012944A (en) * 2010-05-10 2012-12-17 Shin Kobe Electric Machinery Lead storage battery.
CN102576911B (en) * 2010-09-30 2016-06-08 日立化成株式会社 Lead acid cell
JP5938254B2 (en) * 2012-03-30 2016-06-22 古河電池株式会社 Negative electrode plate for lead acid battery, method for producing the same and lead acid battery

Also Published As

Publication number Publication date
JPH0676815A (en) 1994-03-18

Similar Documents

Publication Publication Date Title
JP3339080B2 (en) Anode plate for lead storage battery and method of manufacturing the same
JP4186197B2 (en) Positive electrode plate for lead acid battery
JP3764978B2 (en) Manufacturing method of lead acid battery
JPH10302783A (en) Sealed lead-acid battery and manufacture thereof
JP2002075379A (en) Lead-acid battery
JPH1040907A (en) Manufacture of positive electrode plate for lead-acid battery
KR100342198B1 (en) Method for producing the positive plate of a lead battery
JPH10247491A (en) Lead-acid battery and its manufacture
JP2536082B2 (en) Lead acid battery
JP3040718B2 (en) Lead storage battery
JPH11162456A (en) Lead-acid battery
JP3284860B2 (en) Electrode for lead-acid battery and its manufacturing method
JP2773311B2 (en) Manufacturing method of sealed lead-acid battery
JP2000036305A (en) Plate for lead-acid battery
JP3987998B2 (en) Unformed positive electrode plate for lead acid battery
JP2929894B2 (en) Manufacturing method of sealed lead-acid battery
JPH0793135B2 (en) Lead acid battery and manufacturing method thereof
JP2949767B2 (en) Lead battery manufacturing method
JP2000149932A (en) Lead-acid battery and its manufacture
JP3414941B2 (en) Electrode plate for lead storage battery and method of manufacturing the same
JP3458594B2 (en) Current collector for lead-acid battery, method of manufacturing the same, and electrode plate using the same
KR100468957B1 (en) Method for the formation of positive plate of a lead storage battery
JP3368590B2 (en) Electrode for lead-acid battery and method of manufacturing the same
JP2002231234A (en) Method of preparing paste active material for use in positive electrode
JP2023037324A (en) Liquid type lead storage battery

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020716

LAPS Cancellation because of no payment of annual fees