JP2005158383A - Redox cell - Google Patents

Redox cell Download PDF

Info

Publication number
JP2005158383A
JP2005158383A JP2003393478A JP2003393478A JP2005158383A JP 2005158383 A JP2005158383 A JP 2005158383A JP 2003393478 A JP2003393478 A JP 2003393478A JP 2003393478 A JP2003393478 A JP 2003393478A JP 2005158383 A JP2005158383 A JP 2005158383A
Authority
JP
Japan
Prior art keywords
diaphragm
film
intermediate film
redox battery
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003393478A
Other languages
Japanese (ja)
Inventor
Tadahiro Kaibuki
忠拓 貝吹
Nobuyuki Tokuda
信幸 徳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Sumitomo Electric Industries Ltd
Original Assignee
Kansai Electric Power Co Inc
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Sumitomo Electric Industries Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP2003393478A priority Critical patent/JP2005158383A/en
Publication of JP2005158383A publication Critical patent/JP2005158383A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a redox cell having a structure whereby a diaphragm is not easily damaged even when a thin diaphragm is used, and causing no lowering of current efficiency while having low cell resistance. <P>SOLUTION: This redox cell has the diaphragm 1 permeable by a hydrogen ion, and an intermediate film 2 disposed on the surface of the diaphragm while being permeable by the hydrogen ion. A PTFE porous film, a polyolefine-based porous film, a polyolefine-based non-woven fabric, a vinyl chloride woven fabric, or a composite film obtained by compounding them is preferably used for the intermediate film. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、正極液と負極液(以下、正極液と負極液を合わせて電解液ということがある。)を隔てる隔膜を有するレドックス電池に関するものである。   The present invention relates to a redox battery having a diaphragm that separates a positive electrode solution and a negative electrode solution (hereinafter, the positive electrode solution and the negative electrode solution may be collectively referred to as an electrolytic solution).

レドックスフロー電池などのレドックス電池は、隔膜の両側に、電極(正電極及び負電極)を配設したセルからなり、正電極が配設される正極室には正極液が循環され、同時に負電極が配設される負極室には負極液が循環され、電解液間の電池反応により電気を発生する電池である。レドックス電池は、前記のセルを複数積層することによりその主要部が形成される。   A redox battery such as a redox flow battery consists of a cell in which electrodes (positive and negative electrodes) are arranged on both sides of a diaphragm. A positive electrode solution is circulated in a positive electrode chamber in which a positive electrode is arranged, and at the same time a negative electrode. Is a battery in which a negative electrode solution is circulated in a negative electrode chamber in which is generated and electricity is generated by a battery reaction between electrolyte solutions. A redox battery has a main portion formed by stacking a plurality of the cells.

レドックス電池において正極液と負極液を隔てる隔膜は、通常イオン交換膜からなり、水素イオンを透過できるものである。そして、水素イオンが隔膜内を透過することにより、隔膜両側の電解液間での電池反応がおこり、電気が発生する。   In the redox battery, the diaphragm that separates the positive electrode solution and the negative electrode solution is usually made of an ion exchange membrane, and can transmit hydrogen ions. Then, when hydrogen ions permeate through the diaphragm, a battery reaction occurs between the electrolytes on both sides of the diaphragm, and electricity is generated.

隔膜としては、従来は、100〜150μm程度の厚みのものが通常使用されていた。しかし、隔膜が厚い場合は、水素イオンの透過が困難になり電池の内部抵抗(セル抵抗)が増大する。従って、セル抵抗低減のためには隔膜は薄い方が好ましい。また、隔膜は高価なものであり、この面からも薄い隔膜が望まれている。そこで、製膜技術の進歩により薄い隔膜の製造が可能になるとともに、隔膜の薄膜化が進められており、近年は厚みが50μm以下、中には5μm程度の隔膜の使用も検討されるようになった。   Conventionally, a diaphragm having a thickness of about 100 to 150 μm has been usually used. However, when the diaphragm is thick, hydrogen ion permeation becomes difficult and the internal resistance (cell resistance) of the battery increases. Therefore, it is preferable that the diaphragm is thinner in order to reduce the cell resistance. Moreover, the diaphragm is expensive, and a thin diaphragm is desired from this aspect. Therefore, the progress of film forming technology enables the production of thin diaphragms and the thinning of the diaphragms has been promoted. In recent years, the use of diaphragms having a thickness of 50 μm or less, and in particular about 5 μm is also considered. became.

しかし反面、隔膜が薄くなると、その機械的強度が低下し隔膜の破損などの問題が発生する。レドックス電池では、隔膜の両面に電解液が流通し隔膜に圧力や振動が加わるので、薄膜化による破損などが発生しやすく、例えば、以下に述べるような問題が生じる。   On the other hand, when the diaphragm is thinned, its mechanical strength is reduced, causing problems such as damage to the diaphragm. In a redox battery, since electrolyte flows through both sides of the diaphragm and pressure and vibration are applied to the diaphragm, damage due to thinning is likely to occur. For example, the following problems occur.

通常、隔膜は電池のセルを形成するフレームにより挟まれるが、このフレームのエッジ部に隔膜が触れ、圧力や振動により亀裂が発生することがある。
また、隔膜を両面から挟む電極は、通常黒鉛フェルトなどの多孔質の材質により形成されている。また高価な黒鉛フェルトなどの使用量を増加させることなく、通液路の断面積を向上させるためガラス繊維不織布などの多孔質絶縁材が、電極と隔膜間に配設されることもある(特許文献1)。従って、これらの表面は粗く針状の突起部などが存在し、この突起部などが隔膜に突き刺さりやすい。隔膜が薄い場合、この突起部の突き刺さりにより両表面間を連結する孔が生じやすく、隔膜の破損がおこりやすくなる。
Normally, the diaphragm is sandwiched between frames that form battery cells, but the diaphragm may touch the edge of the frame, and cracks may occur due to pressure or vibration.
The electrode sandwiching the diaphragm from both sides is usually made of a porous material such as graphite felt. In addition, a porous insulating material such as a glass fiber nonwoven fabric may be disposed between the electrode and the diaphragm in order to improve the cross-sectional area of the liquid passage without increasing the amount of expensive graphite felt used (patent) Reference 1). Accordingly, these surfaces have rough and needle-like protrusions, and the protrusions easily pierce the diaphragm. When the diaphragm is thin, a hole connecting between both surfaces is likely to be generated by the piercing of the protrusion, and the diaphragm is easily damaged.

隔膜に破損が生じると、正極液と負極液の混合が生じ、その結果電流効率、ひいては電池効率、すなわち充電された電力量に対する放電され得る電力量の比率が低下する。
従って、隔膜を薄くしながらも、隔膜に破損が生じさせない方法の開発が望まれるようになって来た。
特開平2−148658号公報
When the diaphragm is damaged, the positive electrode solution and the negative electrode solution are mixed, and as a result, the current efficiency, and consequently the battery efficiency, that is, the ratio of the amount of electric power that can be discharged to the amount of charged electric power is reduced.
Therefore, it has been desired to develop a method that does not cause damage to the diaphragm while making the diaphragm thinner.
JP-A-2-148658

本発明は、薄い隔膜を使用する場合であっても、隔膜に破損が生じにくい構造を有し、その結果、低いセル抵抗を有しながらも、電流効率の低下がないレドックス電池の提供を目的とする。   An object of the present invention is to provide a redox battery having a structure in which even when a thin diaphragm is used, the diaphragm is not easily damaged, and as a result, the cell efficiency is low but the current efficiency is not lowered. And

発明者らは、隔膜の表面を中間膜で覆うことにより、前記の目的が達成されることを見出し、本発明に至った。
さらに発明者らは、この中間膜や形状などを特定のものとすることにより、より優れた効果が得られることを見出し、本発明の好ましい態様を完成した。
The inventors have found that the above object can be achieved by covering the surface of the diaphragm with an intermediate film, and have reached the present invention.
Furthermore, the inventors have found that a more excellent effect can be obtained by making the intermediate film, shape, and the like specific, and have completed a preferred embodiment of the present invention.

本発明の請求項1は、水素イオンが透過可能な隔膜と、水素イオンが透過可能で前記隔膜の表面上に配設された中間膜とを有することを特徴とするレドックス電池である。
前記のように隔膜の両表面は、正極液と負極液がそれぞれ接触し、隔膜内を水素イオンが透過可能である。水素イオンが透過しない膜は、電池反応を起すことができないので、本発明の隔膜としては使用できない。また、水素イオンの透過性が高い隔膜を使用する場合の方が、セル抵抗が増大しないので好ましい。
A first aspect of the present invention is a redox battery characterized by having a diaphragm that is permeable to hydrogen ions and an intermediate film that is permeable to hydrogen ions and disposed on the surface of the diaphragm.
As described above, the positive electrode solution and the negative electrode solution are in contact with each other on both surfaces of the diaphragm, and hydrogen ions can pass through the diaphragm. A membrane that does not allow hydrogen ions to permeate cannot cause a battery reaction, and therefore cannot be used as a diaphragm of the present invention. In addition, it is preferable to use a diaphragm having high hydrogen ion permeability because cell resistance does not increase.

本発明のレドックス電池は、前記隔膜の表面上に中間膜が配設されることを特徴とする。
この中間膜は、前記隔膜の一方の表面上にのみ配設されてもよいが、両方の表面に配設されることにより、隔膜の破損を防ぐとの効果がより顕著に奏されるので好ましい。
中間膜は、好ましくは、隔膜の表面に接触して配設される。
The redox battery of the present invention is characterized in that an intermediate film is disposed on the surface of the diaphragm.
The intermediate film may be disposed only on one surface of the diaphragm, but it is preferable because the effect of preventing the diaphragm from being damaged is more marked by being disposed on both surfaces. .
The interlayer is preferably disposed in contact with the surface of the diaphragm.

水素イオンが透過でない中間膜は、正極液と負極液間の水素イオンの移動、すなわち電池反応を妨げるので、中間膜としては、水素イオンが透過可能なものが使用される。
また、隔膜の場合と同様、水素イオンの透過性が高い中間膜の方が、セル抵抗を増大させないので好ましい。
The intermediate film that is not permeable to hydrogen ions hinders the movement of hydrogen ions between the positive electrode solution and the negative electrode solution, that is, the battery reaction, and therefore, an intermediate film that is permeable to hydrogen ions is used.
As in the case of the diaphragm, an intermediate film having a high hydrogen ion permeability is preferable because it does not increase cell resistance.

さらに、この中間膜としては、水素イオンを含めた電解液そのものを透過しやすいものが、セル抵抗を増大させることがないので好ましい。このような中間膜として、多孔質であるものが挙げられる。本発明の請求項2は、この好ましい態様に該当するものであり、前記のレドックス電池であって、前記中間膜が多孔質であることを特徴とするレドックス電池である。   Further, as this intermediate film, one that easily permeates the electrolytic solution itself containing hydrogen ions is preferable because it does not increase cell resistance. Examples of such an intermediate film include a porous film. A second aspect of the present invention corresponds to this preferred embodiment, and is the redox battery described above, wherein the intermediate film is porous.

多孔質の中間膜の材質としては、導電性のもの、絶縁性のものいずれも使用可能である。通常、多孔質絶縁材が好ましく用いられ、この多孔質絶縁材としては、PTFE多孔膜、ポリオレフィン系多孔膜、ポリオレフィン系不織布、塩化ビニル織布、またはこれらの複合膜が好ましく例示される。   As a material for the porous intermediate film, either a conductive material or an insulating material can be used. Usually, a porous insulating material is preferably used, and examples of the porous insulating material include a PTFE porous film, a polyolefin-based porous film, a polyolefin-based nonwoven fabric, a vinyl chloride woven fabric, or a composite film thereof.

本発明の請求項3の態様は、この好ましい態様に該当するものである。すなわち、前記のレドックス電池であって、前記中間膜が、PTFE多孔膜、ポリオレフィン系多孔膜、ポリオレフィン系不織布、塩化ビニル織布、またはこれらの複合膜であることを特徴とするレドックス電池である。   The aspect of Claim 3 of this invention corresponds to this preferable aspect. That is, in the redox battery, the intermediate film is a PTFE porous film, a polyolefin-based porous film, a polyolefin-based nonwoven fabric, a vinyl chloride woven fabric, or a composite film thereof.

例示された多孔質絶縁材の中でも、特にPTFE多孔膜、ポリオレフィン系多孔膜、ポリオレフィン系不織布、またはこれらの複合膜が好ましい。   Among the exemplified porous insulating materials, a PTFE porous film, a polyolefin-based porous film, a polyolefin-based nonwoven fabric, or a composite film thereof is particularly preferable.

中間膜の膜厚が薄い場合は、機械的強度も弱くなり、電極材などの突刺さりなどにより中間膜の破損が生じやすくなる傾向がある。一方膜厚が厚い場合は、水素イオンを含む電解液が透過しにくくなり、セル抵抗が増大する傾向がある。
また、前記のように中間膜としては多孔質のものが好ましいが、その空隙率が低いと電解液が透過しにくくなる傾向があり、一方、空隙率が大きいと中間膜の破損が生じやすくなる傾向がある。
When the film thickness of the intermediate film is small, the mechanical strength is also weakened, and the intermediate film tends to be damaged due to piercing of an electrode material or the like. On the other hand, when the film thickness is thick, the electrolytic solution containing hydrogen ions is difficult to permeate, and the cell resistance tends to increase.
As described above, the interlayer film is preferably porous, but if the porosity is low, the electrolyte solution tends to be difficult to permeate. On the other hand, if the porosity is large, the interlayer film is easily damaged. Tend.

そこで、中間膜の空隙率および膜厚は、特定の範囲内であることが好ましい。発明者は、PTFE多孔膜、ポリオレフィン系多孔膜、ポリオレフィン系不織布、塩化ビニル織布またはこれらの複合膜からなる中間膜について、空隙率および膜厚の検討を行った結果、空隙率および膜厚が、所定の関係を満たす場合、好ましい結果が得られることを見出した。   Therefore, the porosity and film thickness of the intermediate film are preferably within a specific range. The inventors have examined the porosity and film thickness of the PTFE porous film, the polyolefin-based porous film, the polyolefin-based nonwoven fabric, the vinyl chloride woven fabric, or the intermediate film made of these composite films. The inventors have found that a preferable result can be obtained when a predetermined relationship is satisfied.

本発明の請求項4の態様は、この知見に基づき完成された好ましい態様であって、PTFE多孔膜、ポリオレフィン系多孔膜、ポリオレフィン系不織布、塩化ビニル織布またはこれらの複合膜からなる中間膜を有する前記のレドックス電池であって、前記中間膜の空隙率をV(%)、膜厚をT(μm)としたとき、(0.35T+10)<V<(0.35T+65)かつ10<Tの関係を満たすことを特徴とするレドックス電池である。
なお空隙率は、中間膜を約15cm角に切断し、そのサンプルの縦および横の長さ、重量、膜厚の測定値と、樹脂の比重に基づき、下記の式1により求めた値である。
The aspect of Claim 4 of this invention is a preferable aspect completed based on this knowledge, Comprising: The intermediate film which consists of a PTFE porous membrane, a polyolefin-type porous membrane, a polyolefin-type nonwoven fabric, a vinyl chloride woven fabric, or these composite films is provided. In the above redox battery, when the porosity of the intermediate film is V (%) and the film thickness is T (μm), (0.35T + 10) <V <(0.35T + 65) and 10 <T It is a redox battery characterized by satisfying the relationship.
The porosity is a value obtained by the following formula 1 based on the measured values of the length and width, weight, and film thickness of the sample and the specific gravity of the resin after cutting the intermediate film into about 15 cm square. .

Figure 2005158383
Figure 2005158383

空隙率および膜厚が、(0.35T+25)<V<(0.35T+50)の関係を満たす中間膜がより好ましい。
さらに、膜厚については20〜150μmの範囲にあることがより好ましい。本発明の請求項5の態様は、この好ましい態様に該当し、前記のレドックス電池であって、前記中間膜の膜厚が、20〜150μmの範囲にあることを特徴とするレドックス電池である。
An intermediate film satisfying the relationship (0.35T + 25) <V <(0.35T + 50) in terms of porosity and film thickness is more preferable.
Furthermore, the film thickness is more preferably in the range of 20 to 150 μm. The aspect of Claim 5 of this invention corresponds to this preferable aspect, It is the said redox battery, Comprising: The film thickness of the said intermediate film exists in the range of 20-150 micrometers, It is a redox battery characterized by the above-mentioned.

また通常、電解液は水溶液である。親水性の中間膜は、水溶液である電解液を透過しやすく、その結果セル抵抗の増大を抑えることができるので好ましい。
本発明の請求項6の態様は、この好ましい態様に該当し、前記のレドックス電池であって、前記中間膜が、親水性を付与された材質からなることを特徴とするレドックス電池である。中間膜に親水性を付与する方法は特に限定されない。
Usually, the electrolytic solution is an aqueous solution. A hydrophilic intermediate film is preferable because it easily permeates the electrolytic solution, which is an aqueous solution, and as a result, an increase in cell resistance can be suppressed.
The aspect of Claim 6 of this invention corresponds to this preferable aspect, It is the said redox battery, Comprising: The said intermediate film consists of a material provided with hydrophilic property, It is a redox battery characterized by the above-mentioned. The method for imparting hydrophilicity to the interlayer film is not particularly limited.

本発明のレドックス電池に用いられる隔膜の膜厚は、特に限定されず、またその材質により適当な膜厚の範囲は変動する。しかし通常の材質の場合、膜厚が50μmを越えるものは、中間膜がなくても隔膜の破損の問題をそれほど生じない。従って、膜厚が50μmを越える範囲は、本発明の効果が顕著に奏される範囲ではない。   The film thickness of the diaphragm used in the redox battery of the present invention is not particularly limited, and the appropriate film thickness range varies depending on the material. However, in the case of a normal material, a film having a film thickness exceeding 50 μm does not cause much damage to the diaphragm even without an intermediate film. Therefore, the range in which the film thickness exceeds 50 μm is not a range in which the effects of the present invention are remarkably exhibited.

また通常の材質の場合、膜厚が1μm未満では中間膜を用いても破損などがおこりやすい。従って、通常の材質を用いる場合、膜厚が1〜50μmの範囲にて本発明の効果が顕著に発揮される。
本発明の請求項7の態様は、この好ましい態様に該当し、前記のレドックス電池であって、前記隔膜の膜厚が、1〜50μmであることを特徴とするレドックス電池である。隔膜の膜厚は、より好ましくは5〜30μmの範囲である。
In the case of a normal material, if the film thickness is less than 1 μm, damage or the like is likely to occur even if an intermediate film is used. Therefore, when a normal material is used, the effect of the present invention is remarkably exhibited when the film thickness is in the range of 1 to 50 μm.
The aspect of Claim 7 of this invention corresponds to this preferable aspect, It is said redox battery, Comprising: The film thickness of the said diaphragm is 1-50 micrometers, It is a redox battery characterized by the above-mentioned. The thickness of the diaphragm is more preferably in the range of 5 to 30 μm.

本発明のレドックス電池は、薄い隔膜を使用した場合でも、隔膜に破損が生じにくい構造を有している。その結果、薄い隔膜を使用した本発明のレドックス電池を用いることにより、低いセル抵抗を達成することができ、しかも電流効率の低下の問題を生じない。   The redox battery of the present invention has a structure in which even when a thin diaphragm is used, the diaphragm is not easily damaged. As a result, by using the redox battery of the present invention using a thin diaphragm, a low cell resistance can be achieved, and the problem of a decrease in current efficiency does not occur.

図1は、本発明のレドックス電池のセルの一例の断面を表す概略断面図である。
図中1は、イオン交換膜からなる隔膜であって、その両方の表面上に多孔質の中間膜2が配設されている。隔膜1およびそれを挟む中間膜2は、さらに塩化ビニルなどの材質により構成される一対のフレーム3により挟持されている。フレーム3は、その中央部分に双極板4を有し、フレーム3と双極板4により凹部、すなわち正極室5および負極室6が形成され、その中に黒鉛フェルトからなる正電極7、負電極8が配設されている。
正電極7、負電極8がそれぞれ接する双極板4の反対側には、それぞれ他の負電極、正電極が接しているが、これらは図示されていない。
FIG. 1 is a schematic cross-sectional view showing a cross section of an example of a cell of the redox battery of the present invention.
In the figure, reference numeral 1 denotes a diaphragm made of an ion exchange membrane, and a porous intermediate membrane 2 is disposed on both surfaces thereof. The diaphragm 1 and the intermediate film 2 sandwiching the diaphragm 1 are further sandwiched by a pair of frames 3 made of a material such as vinyl chloride. The frame 3 has a bipolar plate 4 at the center thereof, and a recess, that is, a positive electrode chamber 5 and a negative electrode chamber 6 are formed by the frame 3 and the bipolar plate 4, and a positive electrode 7 and a negative electrode 8 made of graphite felt are formed therein. Is arranged.
Other negative electrodes and positive electrodes are in contact with the opposite side of the bipolar plate 4 with which the positive electrode 7 and the negative electrode 8 are in contact, respectively, but these are not shown.

フレーム3は、正極液の流入口9、正極液の排出口10、負極液の流入口11および負極液の排出口12を有し、正極液は流入口9より正極室5に流入し、正電極7を通過して排出口10より排出され、負極液は流入口11より負極室6に流入し、負電極8を通過して排出口12より排出される。   The frame 3 has a cathode solution inlet 9, a cathode solution outlet 10, a cathode solution inlet 11, and a cathode solution outlet 12. The cathode solution flows into the cathode chamber 5 through the inlet 9, It passes through the electrode 7 and is discharged from the discharge port 10, and the negative electrode liquid flows into the negative electrode chamber 6 from the inflow port 11, passes through the negative electrode 8 and is discharged from the discharge port 12.

中間膜2は多孔質であるので正極液、負極液を透過する。この、正極液と負極液の間で、水素イオンを透過する隔膜1を通して、電池反応が行われ電気が発生する。
正電極7および負電極8は、黒鉛フェルトで構成されているので、その表面に針状の突起などを有する。しかし、隔膜1は中間膜2によりその表面が覆われているので、この針状の突起などにより破損されることはない。従って、電流効率の低下を防ぐことができる。
Since the intermediate film 2 is porous, it passes through the positive electrode solution and the negative electrode solution. A battery reaction is performed between the positive electrode solution and the negative electrode solution through the diaphragm 1 that transmits hydrogen ions, and electricity is generated.
Since the positive electrode 7 and the negative electrode 8 are made of graphite felt, they have needle-like protrusions on their surfaces. However, since the surface of the diaphragm 1 is covered with the intermediate film 2, it is not damaged by the needle-like protrusions. Accordingly, it is possible to prevent a decrease in current efficiency.

図2の構造を有する小型電池(フレーム:80mm×60mm、電極:30mm×30mm、電解液:硫酸バナジウム溶液)を組立てた。フレーム13は塩化ビニル製であり、正電極14および負電極15は、黒鉛フェルト製のものを用いた。また隔膜16は、膜厚30μmの陰イオン交換膜を用いた。
正極室17および負極室18には、それぞれ正極液、負極液を流通させ、中間膜19には、表1に示す材質、膜厚、空隙率を持つもの用いて、下記の条件で充放電試験を行った。
A small battery (frame: 80 mm × 60 mm, electrode: 30 mm × 30 mm, electrolyte: vanadium sulfate solution) having the structure of FIG. 2 was assembled. The frame 13 is made of vinyl chloride, and the positive electrode 14 and the negative electrode 15 are made of graphite felt. As the diaphragm 16, an anion exchange membrane having a thickness of 30 μm was used.
The positive electrode chamber 17 and the negative electrode chamber 18 were respectively circulated with a positive electrode solution and a negative electrode solution, and the intermediate film 19 having the material, film thickness, and porosity shown in Table 1 was used, and a charge / discharge test was performed under the following conditions. Went.

充放電方法 :定電流運転
電流密度 :70mA/cm
充電終了電圧 :1.55V
放電終了電圧 :1.00V
温度 :25℃
Charging / discharging method: Constant current operation Current density: 70 mA / cm 2
Charging end voltage: 1.55V
Discharge end voltage: 1.00V
Temperature: 25 ° C

得られた充放電カーブより、電流効率とセル抵抗を求めて中間膜の評価を行った。その結果を表1に示す。比較のために中間膜19を用いない場合についても他は同じ条件で充放電試験を行った。その結果も表1に示す。
なお、表1中での電流効率とセル抵抗の判定は、電流効率については99%以上を○、98%以上99%未満を△、98%未満を×とした。
また、セル抵抗については1.05Ωcm未満を○、1.05Ωcm以上1.25Ωcm未満を△、1.25Ωcm以上を×とした。
From the obtained charge / discharge curve, the current efficiency and the cell resistance were determined, and the interlayer film was evaluated. The results are shown in Table 1. For comparison, the charge / discharge test was performed under the same conditions even when the intermediate film 19 was not used. The results are also shown in Table 1.
In Table 1, the current efficiency and the cell resistance were determined as ◯ for 99% or more, Δ for 98% or more and less than 99%, and × for 98% or less.
Moreover, less than 1.05Omucm 2 for cell resistance ○, the 1.05Omucm 2 or more 1.25Omucm than 2 △, and as × 1.25Omucm 2 or more.

表1の結果より明らかなように、中間膜19を使用した場合は、電流効率の低下は見られないが、中間膜19を使用しない場合は、電流効率が著しく低下している。これは、隔膜16に正電極14または/および負電極15の表面の突起物が突刺さったか、隔膜に亀裂が入ったためと考えられる。電流効率の低下がおきた隔膜をSEMで観察すると、電極が突刺さっている様子が見えた。   As is clear from the results in Table 1, when the intermediate film 19 is used, the current efficiency is not lowered, but when the intermediate film 19 is not used, the current efficiency is remarkably lowered. This is probably because the protrusions on the surface of the positive electrode 14 and / or the negative electrode 15 pierced the diaphragm 16 or the diaphragm was cracked. When the diaphragm with a decrease in current efficiency was observed with an SEM, it was seen that the electrode was stuck.

Figure 2005158383
Figure 2005158383

以上、本発明の実施の態様や実施例を説明したが、本発明の範囲は、これらの実施の態様や実施例に限定されない。   Although the embodiments and examples of the present invention have been described above, the scope of the present invention is not limited to these embodiments and examples.

本発明のレドックス電池のセルの一例を表す概略断面図である。It is a schematic sectional drawing showing an example of the cell of the redox battery of this invention. 実施例で用いたミニセルを表す概略断面図である。It is a schematic sectional drawing showing the minicell used in the Example.

符号の説明Explanation of symbols

1.16.隔膜
2.19.中間膜
3.13.フレーム
4.双極板
5.17.正極室
6.18.負極室
7.14.正電極
8.15.負電極
9.11.流入口
10.12.排出口

1.16. Diaphragm 2.19. Intermediate film 3.13. Frame 4. Bipolar plate 5.17. Positive electrode chamber 6.18. Negative electrode chamber 7.14. Positive electrode 8.15. Negative electrode 9.11. Inlet 10.12. Vent

Claims (7)

水素イオンが透過可能な隔膜と、水素イオンが透過可能で前記隔膜の表面上に配設された中間膜とを有することを特徴とするレドックス電池。   A redox battery comprising: a diaphragm capable of transmitting hydrogen ions; and an intermediate film capable of transmitting hydrogen ions and disposed on a surface of the diaphragm. 前記中間膜が、多孔質であることを特徴とする請求項1に記載のレドックス電池。   The redox battery according to claim 1, wherein the intermediate film is porous. 前記中間膜が、PTFE多孔膜、ポリオレフィン系多孔膜、ポリオレフィン系不織布、塩化ビニル織布、またはこれらの複合膜であることを特徴とする請求項1または請求項2に記載のレドックス電池。   The redox battery according to claim 1 or 2, wherein the intermediate film is a PTFE porous film, a polyolefin-based porous film, a polyolefin-based nonwoven fabric, a vinyl chloride woven fabric, or a composite film thereof. 前記中間膜の空隙率をV(%)、膜厚をT(μm)としたとき、(0.35T+10)<V<(0.35T+65)かつ10<Tの関係を満たすことを特徴とする請求項3に記載のレドックス電池。   The relationship of (0.35T + 10) <V <(0.35T + 65) and 10 <T is satisfied, where the porosity of the intermediate film is V (%) and the film thickness is T (μm). Item 4. The redox battery according to Item 3. 前記中間膜の膜厚が、20〜150μmの範囲にあることを特徴とする請求項4に記載のレドックス電池。   The redox battery according to claim 4, wherein the thickness of the intermediate film is in the range of 20 to 150 μm. 前記中間膜が、親水性を付与された材質からなることを特徴とする請求項1ないし請求項5のいずれかに記載のレドックス電池。   The redox battery according to any one of claims 1 to 5, wherein the intermediate film is made of a material imparted with hydrophilicity. 前記隔膜の膜厚が、1〜50μmであることを特徴とする請求項1ないし請求項6のいずれかに記載のレドックス電池。

The redox battery according to claim 1, wherein a thickness of the diaphragm is 1 to 50 μm.

JP2003393478A 2003-11-25 2003-11-25 Redox cell Pending JP2005158383A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003393478A JP2005158383A (en) 2003-11-25 2003-11-25 Redox cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003393478A JP2005158383A (en) 2003-11-25 2003-11-25 Redox cell

Publications (1)

Publication Number Publication Date
JP2005158383A true JP2005158383A (en) 2005-06-16

Family

ID=34719829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003393478A Pending JP2005158383A (en) 2003-11-25 2003-11-25 Redox cell

Country Status (1)

Country Link
JP (1) JP2005158383A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013065530A (en) * 2011-09-20 2013-04-11 Sumitomo Electric Ind Ltd Redox flow battery
WO2013100083A1 (en) 2011-12-28 2013-07-04 旭化成イーマテリアルズ株式会社 Redox flow secondary battery and electrolyte membrane for redox flow secondary battery
WO2013100082A1 (en) 2011-12-28 2013-07-04 旭化成イーマテリアルズ株式会社 Redox flow secondary battery and electrolyte membrane for redox flow secondary battery
WO2013100079A1 (en) 2011-12-28 2013-07-04 旭化成イーマテリアルズ株式会社 Redox flow secondary battery and electrolyte membrane for redox flow secondary batteries
WO2013100087A1 (en) 2011-12-28 2013-07-04 旭化成イーマテリアルズ株式会社 Redox flow secondary battery and electrolyte membrane for redox flow secondary batteries
WO2014077257A1 (en) * 2012-11-13 2014-05-22 旭化成イーマテリアルズ株式会社 Separation membrane for redox flow secondary batteries, and redox flow secondary battery using same
WO2018043720A1 (en) * 2016-09-02 2018-03-08 昭和電工株式会社 Redox flow secondary battery and electrode thereof
WO2018096895A1 (en) 2016-11-24 2018-05-31 旭化成株式会社 Carbon foam and membrane electrode composite
WO2019030844A1 (en) 2017-08-09 2019-02-14 住友電気工業株式会社 Redox flow battery

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013065530A (en) * 2011-09-20 2013-04-11 Sumitomo Electric Ind Ltd Redox flow battery
US9905875B2 (en) 2011-12-28 2018-02-27 Asahi Kasei Kabushiki Kaisha Redox flow secondary battery and electrolyte membrane for redox flow secondary battery
WO2013100083A1 (en) 2011-12-28 2013-07-04 旭化成イーマテリアルズ株式会社 Redox flow secondary battery and electrolyte membrane for redox flow secondary battery
EP3091599A1 (en) 2011-12-28 2016-11-09 Asahi Kasei Kabushiki Kaisha Redox flow secondary battery and electrolyte membrane for redox flow secondary batteries
WO2013100087A1 (en) 2011-12-28 2013-07-04 旭化成イーマテリアルズ株式会社 Redox flow secondary battery and electrolyte membrane for redox flow secondary batteries
EP3091598A1 (en) 2011-12-28 2016-11-09 Asahi Kasei Kabushiki Kaisha Redox flow secondary battery and electrolyte membrane for redox flow secondary batteries
KR20140098189A (en) 2011-12-28 2014-08-07 아사히 가세이 이-매터리얼즈 가부시키가이샤 Redox flow secondary battery and electrolyte membrane for redox flow secondary batteries
WO2013100082A1 (en) 2011-12-28 2013-07-04 旭化成イーマテリアルズ株式会社 Redox flow secondary battery and electrolyte membrane for redox flow secondary battery
US10256493B2 (en) 2011-12-28 2019-04-09 Asahi Kasei Kabushiki Kaisha Redox flow secondary battery and electrolyte membrane for redox flow secondary battery
US9799906B2 (en) 2011-12-28 2017-10-24 Asahi Kasei Kabushiki Kaisha Redox flow secondary battery and electrolyte membrane for redox flow secondary battery
EP3091600A1 (en) 2011-12-28 2016-11-09 Asahi Kasei Kabushiki Kaisha Redox flow secondary battery and electrolyte membrane for redox flow secondary batteries
US10211474B2 (en) 2011-12-28 2019-02-19 Asahi Kasei E-Materials Corporation Redox flow secondary battery and electrolyte membrane for redox flow secondary battery
WO2013100079A1 (en) 2011-12-28 2013-07-04 旭化成イーマテリアルズ株式会社 Redox flow secondary battery and electrolyte membrane for redox flow secondary batteries
EP3046174A1 (en) 2011-12-28 2016-07-20 Asahi Kasei E-materials Corporation Redox flow secondary battery and electrolyte membrane for redox flow secondary battery
CN104813529A (en) * 2012-11-13 2015-07-29 旭化成电子材料株式会社 Separation membrane for redox flow secondary batteries, and redox flow secondary battery using same
US9837678B2 (en) 2012-11-13 2017-12-05 Asahi Kasei E-Materials Corporation Separation membrane for redox flow secondary battery and redox flow secondary battery comprising the same
JP5942210B2 (en) * 2012-11-13 2016-06-29 旭化成株式会社 Membrane for redox flow secondary battery and redox flow secondary battery using the same
WO2014077257A1 (en) * 2012-11-13 2014-05-22 旭化成イーマテリアルズ株式会社 Separation membrane for redox flow secondary batteries, and redox flow secondary battery using same
WO2018043720A1 (en) * 2016-09-02 2018-03-08 昭和電工株式会社 Redox flow secondary battery and electrode thereof
JPWO2018043720A1 (en) * 2016-09-02 2018-09-06 昭和電工株式会社 Redox flow secondary battery and electrode thereof
WO2018096895A1 (en) 2016-11-24 2018-05-31 旭化成株式会社 Carbon foam and membrane electrode composite
WO2019030844A1 (en) 2017-08-09 2019-02-14 住友電気工業株式会社 Redox flow battery
US11342572B2 (en) 2017-08-09 2022-05-24 Sumitomo Electric Industries, Ltd. Redox flow battery

Similar Documents

Publication Publication Date Title
US10727498B2 (en) Redox flow battery electrode, and redox flow battery
US20070020501A1 (en) Polyelectrolyte membranes as separator for battery and fuel cell applications
JP7009146B2 (en) Alkaline water electrolysis diaphragm and its manufacturing method, multi-pole electrolytic cell
EP2784861B1 (en) Diaphragm for redox flow batteries
US8679701B2 (en) Fuel cells
JP6155469B2 (en) Membrane electrode assembly for polymer electrolyte fuel cell, production method thereof, and polymer electrolyte fuel cell
KR20180058571A (en) Component for fuel cell including graphene foam and functioning as flow field and gas diffusion layer
JP2005158383A (en) Redox cell
KR20160128919A (en) Electrode for secondary battery and secondary battery comprising the same
EP1326298A1 (en) Solid polymer type fuel battery
CN203574057U (en) Gas diffusion layer and membrane electrode in fuel cell or electrolytic bath
JP6970388B2 (en) Redox flow battery electrodes, redox flow battery cells and redox flow batteries
EP3550649B1 (en) Electrode and redox flow battery
US20150295247A1 (en) Perforated Electrodes for Achieving High Power in Flow Batteries
JP2016023371A (en) Proton exchange membrane for electrochemical cell
JP4828864B2 (en) Gas diffusion electrode for polymer electrolyte fuel cell, membrane-electrode assembly for polymer electrolyte fuel cell, production method thereof, and polymer electrolyte fuel cell
JP4423063B2 (en) Membrane / electrode assembly and polymer electrolyte fuel cell using the same
JP5132997B2 (en) Polymer electrolyte fuel cell
US10403920B2 (en) Fuel battery cell
JP2004319375A (en) Electrode of fuel cell and fuel cell using its electrode
JP2008108507A (en) Polymer electrolyte fuel cell and its manufacturing method
US20220123324A1 (en) Electrode for vanadium redox flow battery and method for manufacturing same
WO2011039523A1 (en) Cell stack
KR101143963B1 (en) Electrolyzer Stack for high temperature Water Electrolysis and preparing Method thereof
JP2009032542A (en) Solid polymer fuel cell and its manufacturing method