JP4423063B2 - Membrane / electrode assembly and polymer electrolyte fuel cell using the same - Google Patents

Membrane / electrode assembly and polymer electrolyte fuel cell using the same Download PDF

Info

Publication number
JP4423063B2
JP4423063B2 JP2004041931A JP2004041931A JP4423063B2 JP 4423063 B2 JP4423063 B2 JP 4423063B2 JP 2004041931 A JP2004041931 A JP 2004041931A JP 2004041931 A JP2004041931 A JP 2004041931A JP 4423063 B2 JP4423063 B2 JP 4423063B2
Authority
JP
Japan
Prior art keywords
membrane
pores
electrode assembly
pore
gas diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004041931A
Other languages
Japanese (ja)
Other versions
JP2005235525A (en
JP2005235525A5 (en
Inventor
将樹 山内
昭彦 吉田
堀  喜博
庸一郎 辻
誠 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2004041931A priority Critical patent/JP4423063B2/en
Publication of JP2005235525A publication Critical patent/JP2005235525A/en
Publication of JP2005235525A5 publication Critical patent/JP2005235525A5/ja
Application granted granted Critical
Publication of JP4423063B2 publication Critical patent/JP4423063B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Description

本発明は、燃料として純水素、またはメタノールもしくは化石燃料などを改質して得られる改質水素などの水素ガスと、空気や酸素などの酸化剤ガスとを反応ガスとして用いる高分子電解質型燃料電池に関する。さらに詳しくは、高分子電解質型燃料電池に用いられる膜・電極接合体に関する。   The present invention relates to a polymer electrolyte fuel that uses pure hydrogen or hydrogen gas such as reformed hydrogen obtained by reforming methanol or fossil fuel as a fuel and an oxidant gas such as air or oxygen as reaction gases. It relates to batteries. More specifically, the present invention relates to a membrane / electrode assembly used in a polymer electrolyte fuel cell.

一般に、高分子電解質型燃料電池は、水素などの燃料ガスと、空気などの酸化剤ガスとを電気化学的に反応させ、電気と熱を同時に発生させる。
ここで、一般的な高分子電解質型燃料電池の構成を図1に示す。
Generally, a polymer electrolyte fuel cell generates electricity and heat simultaneously by electrochemically reacting a fuel gas such as hydrogen and an oxidant gas such as air.
Here, the structure of a general polymer electrolyte fuel cell is shown in FIG.

水素イオンを選択的に輸送する高分子電解質膜1の両面には、白金系の金属触媒を担持したカーボン粉末を主成分とする触媒層2a、2bが密着して配置されている。さらに、触媒層2a、2bの外側には、ガス透過性と導電性を兼ね備えた、一対のガス拡散層3a、3bが触媒層2a、2bに密着して配置されている。ガス拡散層3a、3bは、導電性を有する多孔質基材10a、10bと導電性粒子を有する被覆層(撥水カーボン層)11a、11bからなる。
電極4a、4bは、ガス拡散層3a、3bおよび触媒層2a、2bからなる。そして、膜・電極接合体(以下、MEAと表す)が、高分子電解質膜1および高分子電解質膜1を挟む一対の電極4a、4bからなる。
On both surfaces of the polymer electrolyte membrane 1 that selectively transports hydrogen ions, catalyst layers 2a and 2b mainly composed of carbon powder carrying a platinum-based metal catalyst are disposed in close contact with each other. Further, on the outside of the catalyst layers 2a and 2b, a pair of gas diffusion layers 3a and 3b having gas permeability and conductivity are disposed in close contact with the catalyst layers 2a and 2b. The gas diffusion layers 3a and 3b are composed of porous base materials 10a and 10b having conductivity and coating layers (water-repellent carbon layers) 11a and 11b having conductive particles.
The electrodes 4a and 4b are composed of gas diffusion layers 3a and 3b and catalyst layers 2a and 2b. A membrane / electrode assembly (hereinafter referred to as MEA) is composed of a polymer electrolyte membrane 1 and a pair of electrodes 4a and 4b sandwiching the polymer electrolyte membrane 1.

MEA間には、一方の面に燃料ガスを供給するガス流路7aを有し、他方の面に酸化剤ガスを供給するガス流路7bを有するセパレータ板6と、内部に冷却部8を有する複合セパレータ板(6aおよび6b)が交互に配されている。隣接するMEAは、セパレータ板6および複合セパレータ板により電気的に直列に接続されている。複合セパレータ板は、一方の面に燃料ガスを供給するガス流路7aを有し、他方の面に冷却水を供給する流路を有するアノード側セパレータ板6aおよび一方の面に酸化剤ガスを供給するガス流路7bを有し、他方の面に冷却水を供給する流路を有するカソード側セパレータ板6bからなり、冷却水の流路を有する面が対向するように、両セパレータ板を重ね合わせて構成されている。アノード側セパレータ板6aとカソード側セパレータ板6bとの間には冷却水の漏出を防止するためのシール部材9が配されている。ガス流路7a、7bは、電極反応により発生した水や余剰ガスを運び去る役目も有する。MEAとセパレータ板とを交互に積層した電池積層体が、所定の圧力で積層方向に締結されることにより、MEAとセパレータ板は所定の圧力で面状に接する。   Between the MEAs, there is a separator plate 6 having a gas flow path 7a for supplying fuel gas on one side, a gas flow path 7b for supplying oxidant gas on the other side, and a cooling unit 8 inside. Composite separator plates (6a and 6b) are arranged alternately. Adjacent MEAs are electrically connected in series by a separator plate 6 and a composite separator plate. The composite separator plate has a gas flow path 7a for supplying fuel gas on one side, an anode side separator plate 6a having a flow path for supplying cooling water on the other side, and an oxidant gas on one side. The separator plate 6b is composed of a cathode separator plate 6b having a flow passage for supplying cooling water to the other surface, and the separator plates are overlapped so that the surfaces having the flow passage for cooling water face each other. Configured. Between the anode side separator plate 6a and the cathode side separator plate 6b, a seal member 9 for preventing leakage of cooling water is disposed. The gas flow paths 7a and 7b also have a role of carrying away water and surplus gas generated by the electrode reaction. The battery stack in which the MEA and the separator plate are alternately stacked is fastened in the stacking direction with a predetermined pressure, so that the MEA and the separator plate come into contact with each other in a planar shape with a predetermined pressure.

上述した膜・電極接合体におけるガス拡散層は、(1)ガス流路から反応ガスを電極(触媒層)に供給する、(2)電解質膜や触媒層を湿潤状態に保つ、(3)触媒層で反応により生成した水蒸気や水(反応生成水)を速やかにガス流路に排出する、(4)MEAとセパレータ板との間の電子伝導性を確保する、という4つの役割を有する。
したがって、ガス拡散層を構成する基材は、ガス透過性能、水分透過性能、および電子導電性に優れていることが必要である。代表的な基材としては、カーボンクロス、カーボンペーパー、またはカーボンフェルトなどが挙げられる。
また、長時間、安定的に高い出力電圧を維持するためには、反応ガスの拡散能と生成した水蒸気や水の除去能とに優れていることが必要である。これらを改善するために、従来では、親水性を有する炭素繊維と撥水性を有する炭素繊維とを織り込んだガス拡散層用の基材が用いられた(例えば、特許文献1および2)。
The gas diffusion layer in the membrane-electrode assembly described above is (1) supplying a reaction gas from the gas flow path to the electrode (catalyst layer), (2) keeping the electrolyte membrane or catalyst layer in a wet state, (3) catalyst Water vapor or water (reaction product water) generated by the reaction in the layer is quickly discharged to the gas flow path, and (4) secures electronic conductivity between the MEA and the separator plate.
Therefore, the base material constituting the gas diffusion layer needs to be excellent in gas permeation performance, moisture permeation performance, and electronic conductivity. Typical base materials include carbon cloth, carbon paper, carbon felt, and the like.
Further, in order to stably maintain a high output voltage for a long time, it is necessary to be excellent in the ability to diffuse the reaction gas and the ability to remove the generated water vapor and water. In order to improve these, conventionally, a base material for a gas diffusion layer in which carbon fibers having hydrophilicity and carbon fibers having water repellency are woven is used (for example, Patent Documents 1 and 2).

また、アノードより排出する水分量を減少させ、相対的にカソードから排出する水分量を増加させる方法として、アノード側における撥水カーボン層の平均気孔径をカソードより小さくすることが提案されている(例えば、特許文献3)。
さらに、反応ガスを均一に供給し、かつ生成水の排出をスムーズに行う方法として、ガス拡散層用の基材に流体流通溝を設けて、ガス拡散層用の基材の垂れ込みをなくし、ガスが基材と接触する割合を増加させることが提案されている(例えば、特許文献4、5)。
また、良好なガス透過性を得るために、水銀ポロシメータ法によって求められるガス拡散層用の基材の平均細孔径を5〜40μmの範囲とすることが提案されている(例えば、特許文献6)。
Further, as a method of decreasing the amount of water discharged from the anode and relatively increasing the amount of water discharged from the cathode, it has been proposed to make the average pore diameter of the water repellent carbon layer on the anode side smaller than that of the cathode ( For example, Patent Document 3).
Furthermore, as a method of supplying the reaction gas uniformly and discharging the generated water smoothly, a fluid flow groove is provided in the base material for the gas diffusion layer to eliminate sagging of the base material for the gas diffusion layer, It has been proposed to increase the rate at which the gas contacts the substrate (eg, Patent Documents 4 and 5).
Further, in order to obtain good gas permeability, it has been proposed that the average pore diameter of the base material for the gas diffusion layer determined by the mercury porosimeter method is in the range of 5 to 40 μm (for example, Patent Document 6). .

しかしながら、特許文献1および2では、親水性を有する炭素繊維と撥水性を有する炭素繊維とで繊維径が異なるために、面内で均一なガス拡散層用の基材を作製することが困難である。また、繊維径100〜500μm程度の炭素繊維を撥水処理液に浸漬し、焼成する工程では製造プロセスが複雑になり、現実的でない。また、黒鉛化処理により撥水性を有する炭素繊維を得る方法も提案されているが、この方法では安定的な発電に必要な撥水性は得られない。また、親水部に水が滞留しやすい。
特許文献3では、撥水カーボン層の平均気孔径を規定しているが、ガス拡散層用の基材における水の排出能を改善することはできない。また、水を閉じ込める効果が大きくなるため、高分子電解質膜および触媒層中に含まれる水分の絶対量は増加し、フラッディング現象が起こりやすくなる。
However, in Patent Documents 1 and 2, since the fiber diameters of hydrophilic carbon fibers and water-repellent carbon fibers are different, it is difficult to produce a base material for a gas diffusion layer that is uniform in the plane. is there. Moreover, a manufacturing process is complicated in the process of immersing and firing carbon fibers having a fiber diameter of about 100 to 500 μm in a water-repellent treatment liquid, which is not practical. In addition, a method of obtaining carbon fiber having water repellency by graphitization has been proposed, but this method cannot provide water repellency necessary for stable power generation. Moreover, water tends to stay in the hydrophilic part.
In Patent Document 3, the average pore diameter of the water-repellent carbon layer is defined, but the water discharging ability in the base material for the gas diffusion layer cannot be improved. Moreover, since the effect of confining water is increased, the absolute amount of water contained in the polymer electrolyte membrane and the catalyst layer is increased, and a flooding phenomenon is likely to occur.

特許文献4では、PVdF樹脂と炭素粒子とを用いてガス拡散層用の基材を作製しているが、樹脂量が比較的多いため、電子伝導性が低下する。特許文献5では、平面部と凸部とを接着剤で接合するため、接合界面での電子伝導性が低下する。特許文献4および5では、長期の連続運転において、ガス拡散層用の基材が徐々に経時変化を起こし、締結圧により凸部が圧縮されてガス流路が塞がれるという問題がある。
特許文献6では、ガス拡散層用の基材において径が小さい細孔が多いため、反応生成水などの余剰水が多孔質基材内部に滞留しやすい。また、ガス拡散層用の基材は比較的脆い炭素繊維から構成されているため、水銀を圧入していく段階で、基材自体が破壊されてしまう可能性がある。このため、水銀ポロシメータ法により求められる平均細孔径のデータは信頼性に欠ける。
In Patent Document 4, a base material for a gas diffusion layer is produced using PVdF resin and carbon particles. However, since the amount of the resin is relatively large, the electron conductivity is lowered. In patent document 5, since a plane part and a convex part are joined with an adhesive agent, the electronic conductivity in a joining interface falls. In Patent Documents 4 and 5, there is a problem that in a long-term continuous operation, the base material for the gas diffusion layer gradually changes with time, and the convex portion is compressed by the fastening pressure to block the gas flow path.
In Patent Document 6, since the gas diffusion layer base material has many small pores, excess water such as reaction product water tends to stay inside the porous base material. In addition, since the base material for the gas diffusion layer is composed of relatively brittle carbon fibers, there is a possibility that the base material itself may be destroyed when mercury is injected. For this reason, the data of the average pore diameter calculated | required by the mercury porosimeter method lacks reliability.

また、特許文献7では、触媒層の細孔分布と電池の出力特性との相関関係が得られているが、上記の理由により、ガス拡散層用の多孔質基材の細孔分布と電池の出力特性との相関関係は依然として明らかになっていない。
特開平7−105957号公報 特開2002−15747号公報 特開2001−57218号公報 特開2002−100372号公報 特開2002−164058号公報 特開2003−183994号公報 特開2002−237306号公報
Further, in Patent Document 7, a correlation between the pore distribution of the catalyst layer and the output characteristics of the battery is obtained. For the above reason, the pore distribution of the porous base material for the gas diffusion layer and the battery The correlation with output characteristics remains unclear.
JP 7-105957 A JP 2002-15747 A JP 2001-57218 A JP 2002-100372 A JP 2002-164058 A JP 2003-183994 A Japanese Patent Laid-Open No. 2002-237306

そこで、本発明は、上述した従来の問題を解決するため、反応ガスの拡散能、ならびに反応により生成した水蒸気および水(反応生成水)の除去能に優れたガス拡散層用の多孔質基材を有する膜・電極接合体を提供することを目的とする。また、この膜・電極接合体を用いることにより、安定した出力性能を有する高分子電解質型燃料電池を提供することを目的とする。   Therefore, in order to solve the above-described conventional problems, the present invention provides a porous base material for a gas diffusion layer, which has an excellent ability to diffuse a reaction gas and to remove water vapor and water (reaction product water) generated by the reaction. It aims at providing the membrane electrode assembly which has this. Another object of the present invention is to provide a polymer electrolyte fuel cell having stable output performance by using this membrane-electrode assembly.

本発明の膜・電極接合体は、水素イオン伝導性高分子電解質膜と、多孔質基材からなるガス拡散層および触媒層を有する一対の電極とを具備する膜・電極接合体であって、
前記多孔質基材における細孔分布が、少なくとも2つの分布中心を有し、
バブルポイント法(ASTM F316−86、JIS K3832)を利用したバブルポイント・ハーフドライ法により測定された前記多孔質基材の細孔分布において、細孔径200μm以下の細孔に対する細孔径40μm以下の細孔が占める割合が30%以上であり、かつ細孔径80〜100μmの細孔が占める割合が40%以上であり、
前記多孔質基材が織布からなり、前記織布を構成する糸の太さが100〜200μmであり、かつ前記織布の目付量が60〜90g/m 2 であることを特徴とする
The membrane-electrode assembly of the present invention is a membrane-electrode assembly comprising a hydrogen ion conductive polymer electrolyte membrane and a pair of electrodes having a gas diffusion layer and a catalyst layer made of a porous substrate,
Pore distribution in the porous substrate, it has at least two distribution centers,
In the pore distribution of the porous substrate measured by the bubble point half-dry method using the bubble point method (ASTM F316-86, JIS K3832), the fine pore diameter of 40 μm or less with respect to the pore diameter of 200 μm or less. The proportion of the pores is 30% or more, and the proportion of the pores having a pore diameter of 80 to 100 μm is 40% or more,
Wherein the porous substrate is made of woven fabric, the thickness of the yarn constituting the woven fabric is 100-200 [mu] m, and the basis weight of the woven fabric characterized in that it is a 60 to 90 g / m 2.

また、本発明の膜・電極接合体は、水素イオン伝導性高分子電解質膜と、多孔質基材からなるガス拡散層および触媒層を有する一対の電極とを具備する膜・電極接合体であって、
前記多孔質基材における細孔分布が、少なくとも2つの分布中心を有し、
バブルポイント法(ASTM F316−86、JIS K3832)を利用したバブルポイント・ハーフドライ法により測定された前記多孔質基材の細孔分布において、細孔径200μm以下の細孔に対する細孔径40μm以下の細孔が占める割合が30%以上であり、かつ細孔径80〜100μmの細孔が占める割合が40%以上であり、
前記多孔質基材が不織布からなり、前記不織布の目付量が50〜80g/m2であり、
かつ前記不織布の厚さが100〜300μmであることを特徴とする
The membrane / electrode assembly of the present invention is a membrane / electrode assembly comprising a hydrogen ion conductive polymer electrolyte membrane and a pair of electrodes having a gas diffusion layer and a catalyst layer made of a porous substrate. And
The pore distribution in the porous substrate has at least two distribution centers;
In the pore distribution of the porous substrate measured by the bubble point half-dry method using the bubble point method (ASTM F316-86, JIS K3832), the fine pore diameter of 40 μm or less with respect to the pore diameter of 200 μm or less. The proportion of the pores is 30% or more, and the proportion of the pores having a pore diameter of 80 to 100 μm is 40% or more,
The porous substrate is made of a nonwoven fabric, and the basis weight of the nonwoven fabric is 50 to 80 g / m 2 ;
And the thickness of the said nonwoven fabric is 100-300 micrometers, It is characterized by the above-mentioned.

前記多孔質基材がフッ素樹脂を5〜30重量%含有することが好ましい。
また、本発明は、上述の膜・電極接合体、および前記膜・電極接合体を挟み、反応ガスを供給するガス流路を有する一対の導電性セパレータからなる単電池を複数個積層した積層体を具備する高分子電解質型燃料電池に関する。
It is preferable that the porous substrate contains 5 to 30% by weight of a fluororesin.
The present invention also provides a laminate in which a plurality of unit cells each including a pair of conductive separators having a gas flow path for supplying a reaction gas are sandwiched between the membrane / electrode assembly and the membrane / electrode assembly. The present invention relates to a polymer electrolyte fuel cell comprising:

本発明は、細孔分布において少なくとも2つの分布中心を有しガスの流通経路と水分の排出経路とを別々に確保したガス拡散層用の多孔質基材を用いているため、反応ガスの拡散能、ならびに反応により生成した水蒸気および水の除去能に優れた膜・電極接合体を提供することができる。また、この膜・電極接合体を用いた高分子電解質型燃料電池は、初期および長時間の連続運転において、安定した電池電圧が得られる。   Since the present invention uses a porous base material for a gas diffusion layer that has at least two distribution centers in the pore distribution and separately secures a gas flow path and a moisture discharge path, the reaction gas diffusion And a membrane / electrode assembly excellent in the ability to remove water vapor and water produced by the reaction. In addition, a polymer electrolyte fuel cell using this membrane-electrode assembly can obtain a stable battery voltage in the initial and long-time continuous operation.

また、ガス拡散層用の多孔質基材が比較的大きな細孔を多数有するため、炭素繊維の破砕片が細孔を塞ぐことによる目詰まりを防ぐことができる。
さらに、大きな細孔が分散して存在するため、ガス拡散層用の多孔質基材の厚さ方向だけでなく、面方向におけるガス拡散能および水分除去能を向上させることができる。
Further, since the porous base material for the gas diffusion layer has many relatively large pores, clogging due to clogged pieces of carbon fiber can be prevented.
Furthermore, since large pores are present in a dispersed manner, it is possible to improve not only the thickness direction of the porous base material for the gas diffusion layer but also the gas diffusion ability and moisture removal ability in the plane direction.

以下、本発明の実施の形態について図面を参照しながら説明する。
本発明は、高分子電解質型燃料電池の高加湿運転において、水が滞留せず、過剰な水分をすみやかに外部に排出するガス拡散層用の多孔質基材(例えば、電子伝導性を有する炭素繊維)を有する膜・電極接合体に関する。
本発明者らは、種々のガス拡散層用の多孔質基材の細孔分布と、それを用いた燃料電池の出力特性との相関関係について比較検討を行った。その結果、ガス拡散層用の多孔質基材の細孔分布が少なくとも2つの分布中心を有する場合に、安定した出力特性が得られることを見出した。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
The present invention relates to a porous substrate for a gas diffusion layer (for example, carbon having electronic conductivity) in which water does not stay and excess water is quickly discharged outside in a highly humidified operation of a polymer electrolyte fuel cell. The present invention relates to a membrane / electrode assembly having (fiber).
The present inventors conducted a comparative study on the correlation between the pore distribution of various porous substrates for gas diffusion layers and the output characteristics of a fuel cell using the same. As a result, it was found that stable output characteristics can be obtained when the pore distribution of the porous base material for the gas diffusion layer has at least two distribution centers.

本発明の実施の形態の一例として、細孔分布が2つの分布中心(ピーク)を有する場合を図2に示す。図2は、2つの極大点XおよびYを有する多孔質基材の細孔分布曲線を示す。
極大点Xは、細孔径40μm以下の範囲に存在するのが好ましい。極大点Yは、細孔径80〜100μmの範囲に存在するのが好ましい。
As an example of the embodiment of the present invention, FIG. 2 shows a case where the pore distribution has two distribution centers (peaks). FIG. 2 shows the pore distribution curve of a porous substrate having two local maxima X and Y.
The maximum point X is preferably present in a pore diameter range of 40 μm or less. The maximum point Y is preferably present in the pore diameter range of 80 to 100 μm.

ここで、図3および4は上記のような細孔分布を有するガス拡散層用の多孔質基材の機能を示す模式図である。図3は織布の場合、図4は不織布の場合を示す。
細孔径が40μm以下の範囲である比較的小さな細孔を細孔Aとし、細孔径が80〜100μmの範囲である比較的大きな細孔を細孔Bとする。
Here, FIGS. 3 and 4 are schematic views showing the function of the porous base material for the gas diffusion layer having the pore distribution as described above. 3 shows the case of a woven fabric, and FIG. 4 shows the case of a non-woven fabric.
A relatively small pore having a pore diameter of 40 μm or less is referred to as a pore A, and a relatively large pore having a pore diameter in the range of 80 to 100 μm is referred to as a pore B.

MEA内に供給される加湿された反応ガス(燃料ガス、酸化剤ガス、水蒸気)は、ガス拡散層用の多孔質基材において、細孔Aを通じて触媒層に到達する。一方、触媒層で反応により生じた水分は、生成直後は水蒸気であるが、撥水カーボン層を通過する過程で大部分は凝集して水となる。このため、この水は、ガス拡散層用の多孔質基材において、細孔Bを通じてMEA系外に排出され、セパレータ板のガス流路に到達する。すなわち、細孔Aが気体(反応ガス)の流通経路となり、細孔Bが液体(反応生成水)の排出経路となる。   The humidified reaction gas (fuel gas, oxidant gas, water vapor) supplied into the MEA reaches the catalyst layer through the pores A in the porous base material for the gas diffusion layer. On the other hand, the water generated by the reaction in the catalyst layer is water vapor immediately after generation, but most of the water is aggregated into water in the process of passing through the water-repellent carbon layer. For this reason, in the porous base material for the gas diffusion layer, this water is discharged out of the MEA system through the pores B and reaches the gas flow path of the separator plate. That is, the pore A serves as a gas (reaction gas) flow path, and the pore B serves as a liquid (reaction product water) discharge path.

細孔Aは、水の流通経路としては小さすぎるため、MEA系外に存在する余剰水が、細孔Aを通じてMEA内部に侵入してくることはない。仮に、少量の余剰水が細孔A内に侵入し、多孔質基材がこの水で目詰まりした場合でも、細孔Aは反応ガスの流通経路として確保されるため、反応ガスの圧力により水を吹き飛ばすことができる。
また、細孔Bは、MEA系外への水の排出経路として機能するため、MEA系外の反応ガスや水が、細孔Bを通じて(逆流して)触媒層に到達することはない。
Since the pore A is too small as a water flow path, excess water existing outside the MEA system does not enter the inside of the MEA through the pore A. Even if a small amount of excess water penetrates into the pores A and the porous substrate is clogged with this water, the pores A are secured as a reaction gas flow path. Can be blown away.
Further, since the pore B functions as a water discharge path to the outside of the MEA system, the reaction gas and water outside the MEA system do not reach the catalyst layer through the pore B (reversely flow).

図5に示すように、ガス拡散層用の多孔質基材の細孔分布曲線における極大点がXのみの場合(多孔質基材が細孔Aだけで構成される場合)は、充分な通気性が得られるが、反応生成水の排出経路が十分確保されないため、細孔A内に水が溜まりやすくなる。すなわち、反応ガスの流通経路が閉塞し、フラッディング現象が起こり、発電が停止する。   As shown in FIG. 5, when the maximum point in the pore distribution curve of the porous base material for the gas diffusion layer is only X (when the porous base material is composed of only the pores A), sufficient ventilation However, since the discharge path of the reaction product water is not sufficiently secured, water tends to accumulate in the pores A. That is, the flow path of the reactive gas is blocked, a flooding phenomenon occurs, and power generation stops.

図6に示すように、ガス拡散層用の多孔質基材の細孔分布曲線における極大点がYのみの場合(多孔質基材が細孔Bだけで構成される場合)は、水の排出経路が充分に得られるが、細孔Bが多すぎるため、MEA系外に存在する余剰水がMEA内部に侵入しやすい。すなわち、ガス拡散能が低下し、フラッディング現象が起こり、発電が停止する。
また、細孔Bのみからなるガス拡散層用の多孔質基材は、機械的強度が低下するため、多孔質基材が垂れ込んでセパレータ板のガス流路を塞ぎやすい。また、ガス拡散層用の多孔質基材の表面に撥水カーボン層を塗布した場合に、カーボン粒子の一部が細孔を塞ぎ、多孔質基材が目詰まりしやすい。
As shown in FIG. 6, when the maximum point in the pore distribution curve of the porous base material for the gas diffusion layer is only Y (when the porous base material is composed of only the fine pores B), the water is discharged. Although a sufficient path can be obtained, since there are too many pores B, excess water existing outside the MEA system easily enters the inside of the MEA. That is, the gas diffusing capacity decreases, a flooding phenomenon occurs, and power generation stops.
In addition, since the mechanical strength of the porous base material for the gas diffusion layer consisting only of the pores B is lowered, the porous base material sags easily and blocks the gas flow path of the separator plate. In addition, when a water-repellent carbon layer is applied to the surface of the porous base material for the gas diffusion layer, some of the carbon particles block the pores and the porous base material is likely to be clogged.

また、従来の導電性を有する炭素繊維からなるガス拡散層用の多孔質基材の細孔分布は、図7に示されるような一様な正規分布を有している。長期間の連続運転より、ガス拡散層用の多孔質基材が劣化することにより生じた炭素繊維の破砕片が細孔を塞ぎ、多孔質基材全体が目詰まりしやすい。このため、ガス拡散能が低下し、発電性能が低下しやすい。   In addition, the pore distribution of a porous base material for a gas diffusion layer made of a conventional carbon fiber having conductivity has a uniform normal distribution as shown in FIG. From continuous operation for a long period of time, carbon fiber fragments generated by the deterioration of the porous base material for the gas diffusion layer block the pores, and the entire porous base material tends to be clogged. For this reason, gas diffusivity falls and electric power generation performance falls easily.

これに対し、本発明の膜・電極接合体は、細孔分布において少なくとも2つの分布中心を有するガス拡散層用の多孔質基材を有するため、径が比較的小さい細孔Aだけでなく、径が比較的大きい細孔Bも多数存在している。従って、長期の耐久試験を行った場合に、炭素繊維の破砕片が細孔Aを塞いでも、細孔Bが細孔Aのガス拡散能をカバーするため、従来よりも優れた寿命特性が得られる。
さらに、ガス拡散層用の多孔質基材における径が比較的大きい細孔Bが適宜分散して配置されるため、ガス拡散層用の多孔質基材の厚さ方向だけでなく、面方向におけるガス拡散能、水分除去能を高めることが可能となる。
In contrast, since the membrane / electrode assembly of the present invention has a porous base material for a gas diffusion layer having at least two distribution centers in the pore distribution, not only the pore A having a relatively small diameter, There are many pores B having a relatively large diameter. Therefore, when a long-term durability test is performed, even if the carbon fiber fragments block the pores A, the pores B cover the gas diffusing ability of the pores A, so that a life characteristic superior to the conventional one is obtained. It is done.
Furthermore, since the pores B having a relatively large diameter in the porous base material for the gas diffusion layer are appropriately dispersed and arranged, not only in the thickness direction of the porous base material for the gas diffusion layer but also in the plane direction It becomes possible to enhance the gas diffusing ability and moisture removing ability.

前記ガス拡散層用の多孔質基材の細孔分布の測定には、ASTM F316−86、またはJIS K3832に基づくバブルポイント・ハーフドライ法を用いるのが好ましい。この方法は、水銀ポロシメーター法とは異なり、測定中に比較的脆い炭素繊維からなるガス拡散層用の多孔質基材を破壊することがないため、細孔分布を正確に測定することができる。   For measurement of the pore distribution of the porous base material for the gas diffusion layer, it is preferable to use a bubble point half dry method based on ASTM F316-86 or JIS K3832. Unlike the mercury porosimeter method, this method does not destroy the porous substrate for the gas diffusion layer made of relatively brittle carbon fibers during the measurement, so that the pore distribution can be accurately measured.

この測定方法により得られた細孔分布において、細孔径200μm以下の細孔に対して細孔径40μm以下の細孔Aが占める割合が30%以上、かつ細孔径80〜100μmの細孔Bが占める割合が40%以上であることが好ましい。
細孔径40μm以下の細孔Aが占める割合が30%未満のとき、ガス拡散能が低下し、触媒層に反応ガスが拡散しにくくなる。
また、細孔径80〜100μmの細孔Bが占める割合が40%未満のとき、水の排出能が低下し、多孔質基材に水が滞留しやすくなる。
In the pore distribution obtained by this measuring method, the proportion of the pore A having a pore diameter of 40 μm or less to the pore having a pore diameter of 200 μm or less is 30% or more, and the pore B having a pore diameter of 80 to 100 μm is occupied. The ratio is preferably 40% or more.
When the proportion of the pores A having a pore diameter of 40 μm or less is less than 30%, the gas diffusing ability is lowered and the reaction gas is difficult to diffuse into the catalyst layer.
Moreover, when the ratio which the pore B with a pore diameter of 80-100 micrometers occupies is less than 40%, the discharge capability of water falls and water becomes easy to retain in a porous base material.

なお、細孔径が100μmを超えると、MEA系外に排出される水滴の直径が大きくなりすぎるため、水滴が移動しにくくなり、かえって水の排出能が低下してしまう。したがって、高分子電解質型燃料電池におけるガス拡散層用の多孔質基材における余剰水の排出経路としては、細孔径は100μm以下であることが望ましい。   If the pore diameter exceeds 100 μm, the diameter of the water droplets discharged out of the MEA system becomes too large, so that the water droplets are difficult to move, and the water discharging ability is reduced. Therefore, it is desirable that the pore diameter is 100 μm or less as a discharge path for surplus water in the porous base material for the gas diffusion layer in the polymer electrolyte fuel cell.

前記多孔質基材が織布からなり、前記織布を構成する糸の太さが100〜200μmであり、かつ前記織布の目付量が60〜90g/m2であるのが好ましい。
前記多孔質基材が不織布からなり、前記不織布の目付量が50〜80g/m2であり、かつ前記不織布の厚さが100〜300μmであることが好ましい。
このとき、上記のような細孔分布を有する織布および不織布が得られる。
It is preferable that the porous substrate is made of a woven fabric, the thickness of the yarn constituting the woven fabric is 100 to 200 μm, and the basis weight of the woven fabric is 60 to 90 g / m 2 .
It is preferable that the porous substrate is made of a nonwoven fabric, the basis weight of the nonwoven fabric is 50 to 80 g / m 2 , and the thickness of the nonwoven fabric is 100 to 300 μm.
At this time, a woven fabric and a nonwoven fabric having the pore distribution as described above are obtained.

前記多孔質基材が撥水剤を5〜30重量%含有することが好ましい。撥水剤としては、化学的安定性の観点からフッ素樹脂を用いるのが好ましい。この中でも、特に、耐熱性、耐候性に優れたポリテトラフロオロエチレン(PTFE)を用いるのがより好ましい。
フッ素樹脂の含有量が5重量%未満のとき、撥水性が充分に得られない。一方、フッ素樹脂の含有量が30重量%を超えると、気孔率が低下し、ガス拡散能が低下する。すなわち、反応ガスの拡散律速となり、電池電圧が低下する。
It is preferable that the porous substrate contains 5 to 30% by weight of a water repellent. As the water repellent, a fluororesin is preferably used from the viewpoint of chemical stability. Among these, it is more preferable to use polytetrafluoroethylene (PTFE) having excellent heat resistance and weather resistance.
When the content of the fluororesin is less than 5% by weight, sufficient water repellency cannot be obtained. On the other hand, when the content of the fluororesin exceeds 30% by weight, the porosity is lowered and the gas diffusing ability is lowered. That is, the diffusion rate of the reaction gas is limited, and the battery voltage decreases.

また、撥水剤としてPTFEを用いた場合、炭素繊維間のPTFE粒子が付着した部分は細孔径が小さくなり、撥水性の効果と相まって、反応ガスの流通経路となりやすい。逆に、PTFE粒子が付着していない部分は細孔径が大きく、PTFE粒子が付着している部分と比べ、親水性を有するため、水の排出経路となりやすい。   Further, when PTFE is used as the water repellent, the portion where the PTFE particles between the carbon fibers are attached has a small pore diameter, and it tends to be a reaction gas flow path combined with the water repellent effect. On the other hand, the portion where the PTFE particles are not attached has a large pore diameter and is more hydrophilic than the portion where the PTFE particles are attached, and therefore tends to be a water discharge route.

前記多孔質基材としては導電性を有する炭素繊維が用いられる。前記炭素繊維としては、例えば、ポリアクリロニトリル系(PAN系)、セルロース系、ビスコースレーヨン系、ピッチ系、およびフェノール樹脂系のものが挙げられる。なかでも、機械的強度や導電性が高く、不純物が少ないなどの理由によりポリアクリルニトリル系が特に好ましい。
また、本発明の膜・電極接合体は、定置用、自動車用、またはモバイル用の高分子電解質型燃料電池に好適に用いられる。
As the porous base material, conductive carbon fiber is used. Examples of the carbon fiber include polyacrylonitrile (PAN), cellulose, viscose rayon, pitch, and phenol resin. Of these, polyacrylonitrile is particularly preferred because of its high mechanical strength and electrical conductivity and low impurities.
The membrane / electrode assembly of the present invention is suitably used for a polymer electrolyte fuel cell for stationary use, automobile use, or mobile use.

以下、本発明の実施例を詳細に説明する。
《実施例1》
(1)ガス拡散層用の多孔質基材の作製
直径7μmのポリアクリル系炭素質繊維の単繊維を縒り単糸を得た。このとき、単糸の太さを、表1〜5に示すように種々に変えた。この単糸を一般的な織機を用いて平織りで織り、織布を得た。上記の単糸を織機で平織りにする場合の経緯密度(単位長さあたりの縦糸及び横糸の本数)を変えることで目付量を、表1〜5に示すように種々に変えた。この織布を窒素雰囲気中、900℃で加熱して炭化処理した後、アルゴン雰囲気中、2000℃で加熱して黒鉛化処理し、ガス拡散層用の多孔質基材を得た。
Hereinafter, embodiments of the present invention will be described in detail.
Example 1
(1) Production of porous substrate for gas diffusion layer A single fiber of polyacrylic carbonaceous fiber having a diameter of 7 μm was wound to obtain a single yarn. At this time, the thickness of the single yarn was changed variously as shown in Tables 1-5. This single yarn was woven in a plain weave using a general loom to obtain a woven fabric. The weight per unit area was varied as shown in Tables 1 to 5 by changing the weft density (the number of warp yarns and weft yarns per unit length) when the single yarn was plain-woven with a loom. This woven fabric was heated and carbonized at 900 ° C. in a nitrogen atmosphere, and then graphitized by heating at 2000 ° C. in an argon atmosphere to obtain a porous substrate for a gas diffusion layer.

(2)ガス拡散層の作製
アセチレンブラック、水、ポリテトラフルオロエチレン(PTFE)、および界面活性剤(TritonX−100)を15:80:4:1の重量比で混合し、カーボンインクを得た。ドクターブレードを用いて、このカーボンインクを上述で得られた多孔質基材上に塗布した後、これを325℃で1時間焼成し、多孔質基材の片面に導電性粒子(カーボン粒子)を有する被覆層を形成し、ガス拡散層を得た。
(2) Preparation of gas diffusion layer Acetylene black, water, polytetrafluoroethylene (PTFE), and surfactant (Triton X-100) were mixed at a weight ratio of 15: 80: 4: 1 to obtain a carbon ink. . After applying this carbon ink on the porous substrate obtained above using a doctor blade, this was baked at 325 ° C. for 1 hour, and conductive particles (carbon particles) were placed on one side of the porous substrate. A covering layer having a gas diffusion layer was obtained.

(3)MEAの作製
アセチレンブラック系のカーボン粉末に、平均粒径約30Åの白金粒子を25重量%担持させて触媒粉末を得た。そして、この触媒粉末をイソプロパノール中に分散させたものと、パーフルオロカーボンスルホン酸の粉末をエチルアルコール中に分散させたものとを混合し、触媒インクを得た。スクリーン印刷法により、この触媒インクを高分子電解質膜(ジャパンゴアテックス社製、ゴアセレクト膜、膜厚30μm)の両面に塗布し、触媒層を形成した。なお、触媒層形成後の触媒層中に含まれる白金量は0.5mg/cm2、パーフルオロカーボンスルホン酸の量は1.2mg/cm2となるよう調整した。
高分子電解質膜の両面に形成された触媒層上に、上記で得られたガス拡散層をホットプレスで接合し、MEAを作製した。このとき、ガス拡散層は、被覆層を備えた側が触媒層と接するように触媒層上に配された。
(3) Production of MEA Catalyst powder was obtained by supporting 25% by weight of platinum particles having an average particle diameter of about 30 mm on acetylene black carbon powder. Then, the catalyst powder dispersed in isopropanol and the perfluorocarbon sulfonic acid powder dispersed in ethyl alcohol were mixed to obtain a catalyst ink. This catalyst ink was applied to both sides of a polymer electrolyte membrane (manufactured by Japan Gore-Tex, Gore Select membrane, film thickness 30 μm) by screen printing to form a catalyst layer. Incidentally, amount of platinum contained in the catalyst layer after forming the catalyst layer 0.5 mg / cm 2, the amount of perfluorocarbon sulfonic acid was adjusted to be 1.2 mg / cm 2.
On the catalyst layer formed on both surfaces of the polymer electrolyte membrane, the gas diffusion layer obtained above was joined by hot pressing to produce an MEA. At this time, the gas diffusion layer was disposed on the catalyst layer so that the side provided with the coating layer was in contact with the catalyst layer.

(4)試験電池(単電池)の組み立て
燃料ガスや酸化剤ガスをシールするために、MEAの周囲にシリコーンゴム製のガスケットを配置した。電極に反応ガスを供給し、電極反応で発生した水や余剰ガスを運び去るためのガス流路を有する一対の導電性セパレータ板を、MEAの両側に配置し、単電池を作製した。そして、単電池を10kgf/cm2の圧力で締結した。
(4) Assembly of test battery (unit cell) In order to seal the fuel gas and the oxidant gas, a gasket made of silicone rubber was arranged around the MEA. A unit cell was manufactured by supplying a reaction gas to the electrode and arranging a pair of conductive separator plates having gas flow paths for carrying away water and surplus gas generated in the electrode reaction on both sides of the MEA. The unit cell was fastened at a pressure of 10 kgf / cm 2 .

上記で得られたガス拡散層用の多孔質基材および単電池について以下に示す評価を行った。
[評価]
(イ)ガス拡散層用の多孔質基材の細孔分布の測定
細孔分布の測定装置には、Porous Materials Inc.社製のパームポロメーターCFP-1100Aを使用した。本装置の測定原理は、JIS規格(ASTMF316−86、JIS K3832)に基づいており、多孔質基材を試液で完全に濡らした後、徐々に圧力を増加させることで、試液の表面張力と印加した気体の圧力、供給流量から細孔分布を求めた(バブルポイント・ハーフドライ法)。試料のサイズは直径24mmとした。同種の試料を各5つずつ測定し、その平均値をその試料の実測値とした。
The following evaluation was performed about the porous base material and unit cell for gas diffusion layers obtained above.
[Evaluation]
(A) Measurement of pore distribution of porous base material for gas diffusion layer The pore distribution measuring apparatus includes Porous Materials Inc. A palm porometer CFP-1100A manufactured by the company was used. The measurement principle of this device is based on JIS standard (ASTMF 316-86, JIS K3832), and after the porous substrate is completely wetted with the test solution, the pressure is gradually increased to apply the surface tension and application of the test solution. The pore distribution was determined from the pressure and supply flow rate of the gas (bubble point half-dry method). The sample size was 24 mm in diameter. Five samples of the same kind were measured each, and the average value was taken as the measured value of the sample.

(ロ)単電池の寿命評価
単電池のアノード側に水素を、カソード側に空気を供給し、フル加湿で運転した。電池温度は80℃に保持し、加湿条件として、水素ガスは80℃の露点に、空気は80℃の露点に設定した。運転条件は、燃料利用率80%、空気利用率50%、電流密度0.35A/cm2とした。そして、運転開始1000時間後の電圧が750mV以上であれば、寿命性能が良好であると判断した。
上記で評価した結果を表1〜5に示す。なお、表中の寿命特性については、1000時間後の電池電圧が750mV以上の場合は○、750mV未満の場合は×とした。
(B) Life evaluation of the unit cell Hydrogen was supplied to the anode side of the unit cell and air was supplied to the cathode side, and the unit was operated with full humidification. The battery temperature was kept at 80 ° C., and the humidification conditions were as follows: hydrogen gas was set at 80 ° C. dew point, and air was set at 80 ° C. dew point. The operating conditions were a fuel utilization rate of 80%, an air utilization rate of 50%, and a current density of 0.35 A / cm 2 . And if the voltage 1000 hours after an operation start was 750 mV or more, it was judged that lifetime performance was favorable.
The results evaluated above are shown in Tables 1-5. In addition, about the lifetime characteristic in a table | surface, when the battery voltage after 1000 hours was 750 mV or more, it was set as (circle) and when less than 750 mV, it was set as x.

Figure 0004423063
Figure 0004423063

Figure 0004423063
Figure 0004423063

Figure 0004423063
Figure 0004423063

Figure 0004423063
Figure 0004423063

Figure 0004423063
Figure 0004423063

表1〜5より、細孔分布については、細孔径200μm以下の細孔に対する細孔径40μm以下の細孔が占める割合が30%以上であり、かつ細孔径80〜100μmの細孔が占める割合が40%以上である場合に、良好な寿命特性が得られることがわかった。
ガス拡散層用の多孔質基材が織布からなる場合では、このような細孔分布は、その単糸太さが100〜200μmであり、かつ目付量が60〜90g/cm2の場合に得られることがわかった。
From Tables 1 to 5, regarding the pore distribution, the proportion of pores having a pore size of 40 μm or less to pores having a pore size of 200 μm or less is 30% or more, and the proportion of pores having a pore size of 80 to 100 μm is occupied. It was found that good life characteristics can be obtained when it is 40% or more.
In the case where the porous base material for the gas diffusion layer is made of woven fabric, such a pore distribution is obtained when the single yarn thickness is 100 to 200 μm and the basis weight is 60 to 90 g / cm 2 . It turns out that it is obtained.

《実施例2》
直径7μmのポリアクリル系炭素質繊維の単繊維を、バインダーとしてポリビニルアルコール水溶液中に浸し、分散させて、掬紙法により製紙し、数枚重ね合わせて炭素繊維からなる不織布を作製した。
この不織布を、窒素ガス雰囲気中、1000℃で加熱して炭化処理した後、アルゴン雰囲気中、2000℃で加熱して黒鉛化処理し、ガス拡散層用の多孔質基材を得た。
このとき、単位体積当たりの炭素質繊維の量と、重ね合わせる枚数を制御して、表6〜10に示すように目付量および厚さの異なる種々の多孔質基材を作製した。
これらのガス拡散層用の多孔質基材を用いた以外は、実施例1と同様の方法により単電池をそれぞれ作製した。そして、これらの多孔質基材および単電池を、実施例1と同様の方法により評価した。その評価結果を表6〜10に示す。
Example 2
A single fiber of polyacrylic carbonaceous fiber having a diameter of 7 μm was immersed in a polyvinyl alcohol aqueous solution as a binder and dispersed, and paper was made by a paperboard method, and several sheets were stacked to prepare a nonwoven fabric made of carbon fibers.
The nonwoven fabric was carbonized by heating at 1000 ° C. in a nitrogen gas atmosphere, and then graphitized by heating at 2000 ° C. in an argon atmosphere to obtain a porous substrate for a gas diffusion layer.
At this time, the amount of carbonaceous fibers per unit volume and the number of sheets to be superposed were controlled to produce various porous substrates having different basis weights and thicknesses as shown in Tables 6-10.
Single cells were produced in the same manner as in Example 1 except that these porous base materials for the gas diffusion layer were used. Then, these porous substrates and single cells were evaluated by the same method as in Example 1. The evaluation results are shown in Tables 6-10.

Figure 0004423063
Figure 0004423063

Figure 0004423063
Figure 0004423063

Figure 0004423063
Figure 0004423063

Figure 0004423063
Figure 0004423063

Figure 0004423063
Figure 0004423063

表6〜10より、細孔分布については、細孔径200μm以下の細孔に対する細孔径40μm以下の細孔が占める割合が30%以上であり、かつ細孔径80〜100μmの細孔が占める割合が40%以上である場合に、良好な寿命特性が得られることがわかった。
ガス拡散層用の多孔質基材が不織布からなる場合では、このような細孔分布は、その厚さが100〜300μmであり、かつ目付量が50〜80g/cm2の場合に得られることがわかった。
From Tables 6 to 10, regarding the pore distribution, the proportion of pores having a pore size of 40 μm or less to pores having a pore size of 200 μm or less is 30% or more, and the proportion of pores having a pore size of 80 to 100 μm is It was found that good life characteristics can be obtained when it is 40% or more.
When the porous substrate for the gas diffusion layer is made of a nonwoven fabric, such a pore distribution is obtained when the thickness is 100 to 300 μm and the basis weight is 50 to 80 g / cm 2. I understood.

《実施例3》
撥水処理した織布をガス拡散層用の多孔質基材として用いた場合について検討した。
実施例1で作製した織布のうち、最も良好な寿命特性が得られた単糸の太さが150μmであり、目付量が80g/cm2の織布を準備した。
この織布をFEP(フッ化エチレン・プロピレン)の水性ディスパージョン(ダイキン工業(株)製のND−1E)に浸漬し、撥水剤としてフッ素樹脂を含む多孔質基材を得た。このとき、FEPに加えるイオン交換水の量を調整して、織布中のFEPの含有量を、表11に示すように種々に変えた。これらの多孔質基材を350℃で2時間焼成し、水分を除去した。
Example 3
The case of using a water-repellent woven fabric as a porous substrate for a gas diffusion layer was examined.
Among the woven fabrics produced in Example 1, a woven fabric having a single yarn thickness of 150 μm and a basis weight of 80 g / cm 2 with the best life characteristics was prepared.
This woven fabric was immersed in an aqueous dispersion of FEP (fluorinated ethylene / propylene) (ND-1E manufactured by Daikin Industries, Ltd.) to obtain a porous substrate containing a fluororesin as a water repellent. At this time, the amount of ion-exchanged water added to the FEP was adjusted, and the content of FEP in the woven fabric was variously changed as shown in Table 11. These porous substrates were baked at 350 ° C. for 2 hours to remove moisture.

これらのガス拡散層用の多孔質基材を用いた以外は、実施例1と同様の方法により単電池をそれぞれ作製した。そして、これらの多孔質基材および単電池を、実施例1と同様の方法により評価した。その結果を表11に示す。   Single cells were produced in the same manner as in Example 1 except that these porous base materials for the gas diffusion layer were used. Then, these porous substrates and single cells were evaluated by the same method as in Example 1. The results are shown in Table 11.

Figure 0004423063
Figure 0004423063

FEPの含有量が増加すると、FEP粒子が、径が100μmを超える大きな細孔内に入り込み、細孔径が40μm以下および80〜100μmである細孔が増加するため、寿命特性が向上した。しかし、FEPの含有量が過剰になると、多孔質基材が目詰まりし、これらの細孔径を有する細孔が急激に減少するため、寿命特性が低下した。   When the content of FEP is increased, the FEP particles enter large pores having a diameter exceeding 100 μm, and pores having a pore diameter of 40 μm or less and 80 to 100 μm are increased, thereby improving the life characteristics. However, when the content of FEP is excessive, the porous substrate is clogged, and the pores having these pore diameters are rapidly reduced, so that the life characteristics are deteriorated.

《実施例4》
撥水処理した不織布をガス拡散層用の多孔質基材として用いた場合について検討した。実施例2で作製した不織布のうち、最も良好な寿命特性が得られた厚さが200μmであり、目付量が70g/cm2である不織布を準備した。そして、実施例3と同様の方法により、この不織布を撥水処理し、多孔質基材を得た。このとき、FEPに加えるイオン交換水の量を調整して、不織布中のFEPの含有量を、表12に示すように種々に変えた。
これらのガス拡散層用の多孔質基材を用いた以外は、実施例1と同様の方法により単電池をそれぞれ作製した。そして、これらの多孔質基材および単電池を、実施例1と同様の方法により評価した。これらの評価結果を表12に示す。
Example 4
The case where the water-repellent treated non-woven fabric was used as the porous base material for the gas diffusion layer was examined. Among the nonwoven fabrics produced in Example 2, a nonwoven fabric having a thickness of 200 μm and the basis weight of 70 g / cm 2 with which the best life characteristics were obtained was prepared. And by the method similar to Example 3, this nonwoven fabric was water-repellent-treated and the porous base material was obtained. At this time, the amount of ion-exchanged water added to the FEP was adjusted, and the content of FEP in the nonwoven fabric was variously changed as shown in Table 12.
Single cells were produced in the same manner as in Example 1 except that these porous base materials for the gas diffusion layer were used. Then, these porous substrates and single cells were evaluated by the same method as in Example 1. These evaluation results are shown in Table 12.

Figure 0004423063
Figure 0004423063

FEP含有量が増加すると、FEP粒子が、径が100μmを超える大きな細孔内に入り込み、細孔径が40μm以下および80〜100μmの細孔が増加するため、寿命特性が向上した。しかし、FEP含有量が過剰になると、多孔質基材が目詰まりし、これらの細孔径を有する細孔が急激に減少するため、寿命特性が低下した。   When the FEP content is increased, the FEP particles enter large pores having a diameter exceeding 100 μm, and pore diameters of 40 μm or less and 80-100 μm pores are increased, so that the life characteristics are improved. However, when the FEP content is excessive, the porous substrate is clogged, and pores having these pore diameters are rapidly reduced, so that the life characteristics are deteriorated.

本発明の膜・電極接合体は、高分子電解質型燃料電池に適用できる。また、本発明の膜・電極接合体におけるガス拡散層は、液体燃料電池、燐酸型燃料電池など各種燃料電池用のガス拡散層などに適用することができる。また、本発明の膜・電極接合体は、酸素、オゾン、または水素などのガス発生機およびガス精製機、ならびに酸素センサ、またはアルコールセンサなどの各種ガスセンサなどにも適用することができる。   The membrane / electrode assembly of the present invention can be applied to a polymer electrolyte fuel cell. The gas diffusion layer in the membrane / electrode assembly of the present invention can be applied to gas diffusion layers for various fuel cells such as liquid fuel cells and phosphoric acid fuel cells. The membrane / electrode assembly of the present invention can also be applied to gas generators and gas purifiers such as oxygen, ozone, or hydrogen, and various gas sensors such as oxygen sensors or alcohol sensors.

一般的な高分子電解質型燃料電池の要部断面図である。It is principal part sectional drawing of a general polymer electrolyte fuel cell. 本発明の膜・電極接合体におけるガス拡散層用の多孔質基材の細孔分布図である。It is a pore distribution map of the porous base material for gas diffusion layers in the membrane-electrode assembly of the present invention. 本発明の膜・電極接合体におけるガス拡散層用の多孔質基材(織布)の機能を示す模式図である。It is a schematic diagram which shows the function of the porous base material (woven fabric) for gas diffusion layers in the membrane electrode assembly of this invention. 本発明の膜・電極接合体におけるガス拡散層用の多孔質基材(不織布)の機能を示す模式図である。It is a schematic diagram which shows the function of the porous base material (nonwoven fabric) for gas diffusion layers in the membrane / electrode assembly of the present invention. 細孔Aのみで構成されたガス拡散層用の多孔質基材の細孔分布図である。FIG. 3 is a pore distribution diagram of a porous base material for a gas diffusion layer composed only of pores A. 細孔Bのみで構成されたガス拡散層用の多孔質基材の細孔分布図である。FIG. 3 is a pore distribution diagram of a porous base material for a gas diffusion layer composed only of pores B. 従来のガス拡散層用の多孔質基材の細孔分布図である。It is a pore distribution map of the conventional porous base material for gas diffusion layers.

符号の説明Explanation of symbols

1 水素イオン伝導性高分子電解質膜
2a、2b 触媒層
3a、3b ガス拡散層
4a、4b 電極
5a、5b ガスケット
6 セパレータ板
6a アノード側セパレータ板
6b カソード側セパレータ板
7a、7b ガス流路
8 冷却部
9 シール部材
10a、10b 多孔質基材
11a、11b 被覆層(撥水カーボン層)
DESCRIPTION OF SYMBOLS 1 Hydrogen ion conductive polymer electrolyte membrane 2a, 2b Catalyst layer 3a, 3b Gas diffusion layer 4a, 4b Electrode 5a, 5b Gasket 6 Separator plate 6a Anode side separator plate 6b Cathode side separator plate 7a, 7b Gas flow path 8 Cooling part 9 Seal member 10a, 10b Porous base material 11a, 11b Coating layer (water-repellent carbon layer)

Claims (4)

水素イオン伝導性高分子電解質膜と、前記高分子電解質膜を挟み、多孔質基材からなるガス拡散層および触媒層を有する一対の電極とを具備する膜・電極接合体であって、
前記多孔質基材における細孔分布が、少なくとも2つの分布中心を有し、
バブルポイント・ハーフドライ法により測定された前記細孔分布において、細孔径200μm以下の細孔に対する細孔径40μm以下の細孔が占める割合が30%以上であり、かつ細孔径80〜100μmの細孔が占める割合が40%以上であり、
前記多孔質基材が織布からなり、前記織布を構成する糸の太さが100〜200μmであり、かつ前記織布の目付量が60〜90g/m 2 であることを特徴とする膜・電極接合体。
A membrane / electrode assembly comprising a hydrogen ion conductive polymer electrolyte membrane and a pair of electrodes sandwiching the polymer electrolyte membrane and having a gas diffusion layer and a catalyst layer made of a porous substrate,
Pore distribution in the porous substrate, it has at least two distribution centers,
In the pore distribution measured by the bubble point half-dry method, the proportion of pores having a pore diameter of 40 μm or less to pores having a pore diameter of 200 μm or less is 30% or more, and pores having a pore diameter of 80 to 100 μm Is 40% or more,
Membrane wherein the porous substrate is made of woven fabric, the thickness of the yarn constituting the woven fabric is 100-200 [mu] m, and the basis weight of the woven fabric characterized in that it is a 60 to 90 g / m 2 -Electrode assembly.
水素イオン伝導性高分子電解質膜と、前記高分子電解質膜を挟み、多孔質基材からなるガス拡散層および触媒層を有する一対の電極とを具備する膜・電極接合体であって、
前記多孔質基材における細孔分布が、少なくとも2つの分布中心を有し、
バブルポイント・ハーフドライ法により測定された前記細孔分布において、細孔径200μm以下の細孔に対する細孔径40μm以下の細孔が占める割合が30%以上であり、かつ細孔径80〜100μmの細孔が占める割合が40%以上であり、
前記多孔質基材が不織布からなり、前記不織布の目付量が50〜80g/m 2 であり、かつ前記不織布の厚さが100〜300μmであることを特徴とする膜・電極接合体。
A membrane / electrode assembly comprising a hydrogen ion conductive polymer electrolyte membrane and a pair of electrodes sandwiching the polymer electrolyte membrane and having a gas diffusion layer and a catalyst layer made of a porous substrate,
The pore distribution in the porous substrate has at least two distribution centers;
In the pore distribution measured by the bubble point half-dry method, the proportion of pores having a pore diameter of 40 μm or less to pores having a pore diameter of 200 μm or less is 30% or more, and pores having a pore diameter of 80 to 100 μm Ri der ratio is more than 40% occupied,
The membrane / electrode assembly, wherein the porous substrate is made of a nonwoven fabric, the basis weight of the nonwoven fabric is 50 to 80 g / m 2 , and the thickness of the nonwoven fabric is 100 to 300 μm .
前記多孔質基材がフッ素樹脂を5〜30重量%含有する請求項1または2記載の膜・電極接合体。 The membrane / electrode assembly according to claim 1 or 2, wherein the porous substrate contains 5 to 30 wt% of a fluororesin. 請求項1〜3のいずれかに記載の膜・電極接合体、および前記膜・電極接合体を挟み、反応ガスを供給するガス流路を有する一対の導電性セパレータからなる単電池を複数個積層した電池積層体を具備する高分子電解質型燃料電池。 A plurality of unit cells each including a pair of conductive separators having a gas flow path for supplying a reaction gas sandwiching the membrane-electrode assembly according to any one of claims 1 to 3 and the membrane-electrode assembly. A polymer electrolyte fuel cell comprising the battery laminate.
JP2004041931A 2004-02-18 2004-02-18 Membrane / electrode assembly and polymer electrolyte fuel cell using the same Expired - Fee Related JP4423063B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004041931A JP4423063B2 (en) 2004-02-18 2004-02-18 Membrane / electrode assembly and polymer electrolyte fuel cell using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004041931A JP4423063B2 (en) 2004-02-18 2004-02-18 Membrane / electrode assembly and polymer electrolyte fuel cell using the same

Publications (3)

Publication Number Publication Date
JP2005235525A JP2005235525A (en) 2005-09-02
JP2005235525A5 JP2005235525A5 (en) 2007-04-05
JP4423063B2 true JP4423063B2 (en) 2010-03-03

Family

ID=35018260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004041931A Expired - Fee Related JP4423063B2 (en) 2004-02-18 2004-02-18 Membrane / electrode assembly and polymer electrolyte fuel cell using the same

Country Status (1)

Country Link
JP (1) JP4423063B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5066911B2 (en) * 2006-12-13 2012-11-07 トヨタ自動車株式会社 FUEL CELL AND METHOD FOR PRODUCING THE FUEL CELL
JP5145831B2 (en) * 2007-09-12 2013-02-20 株式会社エクォス・リサーチ Fuel cell, diffusion layer for fuel cell and fuel cell system.
JP5843682B2 (en) * 2012-03-28 2016-01-13 本田技研工業株式会社 Diffusion layer structure of fuel cell
JP6007163B2 (en) * 2012-11-22 2016-10-12 本田技研工業株式会社 Electrolyte membrane / electrode structure

Also Published As

Publication number Publication date
JP2005235525A (en) 2005-09-02

Similar Documents

Publication Publication Date Title
US7060384B2 (en) Polymer electrolyte fuel cell
JP4083784B2 (en) Membrane electrode assembly, method for producing the same, and polymer electrolyte fuel cell
EP1485964A2 (en) Gas diffusion backing for fuel cells
JP2008204945A (en) Gas diffusion electrode substrate, gas diffusion electrode, its manufacturing method, and fuel cell
JPH09245800A (en) Fuel cell and electrode for fuel cell
JP4388314B2 (en) GAS DIFFUSION ELECTRODE BASE FOR SOLID POLYMER FUEL CELL, PROCESS FOR PRODUCING THE SAME, AND SOLID POLYMER FUEL CELL USING THE SAME
EP1139471A1 (en) Porous, electrically conductive sheet and method for production thereof
JP3853193B2 (en) Polymer electrolyte fuel cell
CN110024193B (en) Gas diffusion electrode and method for producing same
JP4177697B2 (en) Polymer membrane electrode assembly and polymer electrolyte fuel cell
US20020192538A1 (en) Current collector for fuel cell and method of producing the same
JP4942362B2 (en) Membrane-electrode assembly and polymer electrolyte fuel cell using the same
JP4423063B2 (en) Membrane / electrode assembly and polymer electrolyte fuel cell using the same
JP4238423B2 (en) Carbon sheet manufacturing method and fuel cell electrode manufacturing method
JP4686992B2 (en) Solid polymer fuel cell and power generation method thereof
EP3719897A1 (en) Micro-porous layer and manufacturing method therefor, gas diffusion electrode substrate, and fuel battery
JP2007149454A (en) Gas diffusion layer, gas diffusion electrode, membrane electrode assembly and polymer electrolyte fuel cell
KR20190103175A (en) Gas Diffusion Electrodes and Fuel Cells
CN117063315A (en) Electrode base material and method for producing same
JP5843682B2 (en) Diffusion layer structure of fuel cell
JP2006079938A (en) Gas diffusion layer and fuel cell using it
JP2001345108A (en) Gas diffusion layer, manufacturing method, electrode for fuel cell, and fuel cell
CN113497240A (en) Gas diffusion layer, membrane electrode assembly, and fuel cell
JP4202205B2 (en) Fuel cell stack
JP3738831B2 (en) Fuel cell electrode and fuel cell

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070215

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131211

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees