JP3738831B2 - Fuel cell electrode and fuel cell - Google Patents

Fuel cell electrode and fuel cell Download PDF

Info

Publication number
JP3738831B2
JP3738831B2 JP2001333990A JP2001333990A JP3738831B2 JP 3738831 B2 JP3738831 B2 JP 3738831B2 JP 2001333990 A JP2001333990 A JP 2001333990A JP 2001333990 A JP2001333990 A JP 2001333990A JP 3738831 B2 JP3738831 B2 JP 3738831B2
Authority
JP
Japan
Prior art keywords
gas
fuel cell
diffusion layer
gas diffusion
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001333990A
Other languages
Japanese (ja)
Other versions
JP2003142110A (en
Inventor
昭彦 吉田
栄一 安本
誠 内田
修 酒井
純司 森田
靖 菅原
安男 武部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2001333990A priority Critical patent/JP3738831B2/en
Publication of JP2003142110A publication Critical patent/JP2003142110A/en
Application granted granted Critical
Publication of JP3738831B2 publication Critical patent/JP3738831B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、燃料として純水素、あるいはメタノールまたは化石燃料からの改質水素、もしくはメタノール、エタノール、ジメチルエーテルなどの液体燃料を直接用い、空気や酸素を酸化剤とする燃料電池に関するものであり、とくに固体高分子を電解質に用いた燃料電池に関ものである。
【0002】
【従来の技術】
一般的に高分子電解質形燃料電池の電極は、高分子電解質を中心としてその外側両面に触媒層を持ち、さらにその触媒層の外面にガス拡散層を形成する。ガス拡散層は、主に次の三つの機能を持つ。その第一はガス拡散層のさらに外面に形成したガス流路から、触媒層中の触媒へ均一に燃料ガスもしくは酸化剤ガスなどの反応ガスを供給するために反応ガスを拡散する機能である。第二は、触媒層で反応により生成した水を速やかにガス流路に排出する機能である。第三は、反応に必要もしくは生成される電子を導電する機能である。
【0003】
従って、それぞれ高い反応ガス透過性と水排出透過性、電子導電性が必要となる。従来の一般的な技術として、ガス透過能は、ガス拡散層を多孔質構造とすること。水排出透過能は、フッ素樹脂で代表とされる撥水性の高分子などを層中に分散し水の詰まり(フラッディング)を抑制すること。電子導電性は、カーボン繊維や金属繊維、炭素微粉末などの電子導電性材料でガス拡散層を構成することが行われてきた。
【0004】
【発明が解決しようとする課題】
上記の水排出透過能を向上させるための種々の取り組みは、それぞれ相反する効果を示す。たとえば、水排出透過能を高めるために、フッ素樹脂で代表される撥水性高分子などを層中に添加させた場合、ガス透過能や電子導電性が低下する。そこで、ガス拡散層を単一の構成にするのではなく、例えば炭素繊維により形成された層と炭素微粉末と撥水性高分子とで形成された層を組み合わせて、上記相反する機能をうまく両立させる取り組みが種々なされている。
【0005】
上記撥水性高分子の使用方法として、例えば、最も一般的な代表例として特開平06−203851号や07−130373号、08−106915号、09−259893号公報に開示されているように、ポリテトラフルオロエチレン(以下PTFEと略。)またはテトラフルオロエチレンとヘキサフルオロプロピレン共重合体(以下FEP略。)のディスパージョンにガス拡散層基材であるカーボンペーパーを含浸処理する方法や、特開平07−220734号や04−67571号、03−208260号、03−208261号、03−208262号、06−44984号公報に開示されているように、PTFEを添加した炭素微粉末の層を形成する方法が開示されている。
【0006】
これらが示すように、カーボンペーパーを無作意に撥水性高分子溶液に含浸・乾燥処理する方法では、撥水性高分子は三次元構造を持つ多孔質基材の繊維の配列に従い塗着されてしまう。このため、ガス拡散層中での撥水量を部位毎に制御することが困難となり、ガス拡散層基材の多孔度分布に反比例し、空隙の大きい部位には撥水材が付着せずに、空隙の小さい部位には撥水材が集まり易い傾向があった。さらに、ガス拡散層基材表面に撥水材が多く付き、ガス拡散層基材内部へ水の閉じ込みが生じ、行き場の無くなった水によりフラッディングを引き起こし、放電特性や信頼性の低下を引き起こしていた。
【0007】
これらは、ガス拡散層中のガス透過流路と水分透過流路が同一箇所なため、余剰水を効率良く排出できずにフラディングを招き、ガス拡散性を阻害し結果として、放電特性や信頼性の低下を引き起こしていた。
【0008】
また、例えば特開昭61−138463号、特開昭61−256568号、特開平09−050817号、特開平11−288086号公報に開示されているように、セパレータのガス流路の溝幅や溝深さを最適化することで、ガス拡散性の電極内での均一化に取り組むことが図られている。特開平7−192739号公報に開示されているように、ガス流路の凸部に切り込みを入れガス拡散性を確保するなど、セパレータ側からのアプローチも盛んに行われている。しかし、セパレータのガス流路を最適化するには加工が複雑になり、ガスの分配性を最適化すればするほど製造コストが高くなるという課題がある。
【0009】
このように、ガス透過性および余剰水透過性を制御するため様々な構成が考えられているが、ガス透過性および水透過性を制御するためにはガス拡散層基材の基本構成を最適化することが必要であり、これを助ける働きとしてセパレータの流路設計が必要と考えられる。
【0010】
本発明はこれら上記従来の課題を解決するもので、ガス拡散層内でのガス拡散性および余剰水透過性を確保するため、高分子電解質とこれを挟持してなる触媒層とさらにこれを挟持してなるガス拡散層とさらにこれを挟持してなる連続した凹凸によるガス流路をもつセパレータとからなる燃料電池において、前記ガス拡散層が前記セパレータと接する面内で、集電部分とガス透過および水蒸気透過部分と水分透過部分に分かれて構成させるものであり、特に高加湿状態で、かつ、高電流密度領域での発電における放電性能および信頼性の高い電極および燃料電池を提供することを目的とするものである。
【0011】
【課題を解決するための手段】
上記課題を解決するために本発明の燃料電池用電極は、水素イオン伝導性高分子電解質膜と、前記水素イオン伝導性高分子電解質膜を挟んだ位置に配置した一対の電極と、前記電極の一方に燃料ガスを供給排出し他方に酸化ガスを供給排出するガス流路を有する一対のセパレータとを具備した燃料電池に用いる電極であって、前記電極は前記水素イオン伝導性高分子電解質膜を挟持した触媒層と、前記触媒層を挟持したガス拡散層とを有し、前記ガス拡散層を、炭素繊維をより合わせた糸を編んだ布であって、繊維の折り重なった密な部分と、繊維の折り重なっていない粗な部分と、縦方向の繊維と横方向の繊維が交差する厚み方向に、繊維の無い部分と、を有し、前記密な部分の厚みが150μmから300μmであり、前記粗な部分の厚みが7μmから150μmである炭素繊維の布で構成することによって、前記ガス拡散層は前記セパレータと接する面内で、集電部分と、ガスおよび水蒸気透過部分と、水分透過部分とに分けて構成したことを特徴とする。
【0013】
また、セパレータのガス流路を前記セパレータの凹凸で形成し、ガス拡散層の面内で前記セパレータの凸部による圧力を受けない箇所を形成したことを特徴とする。
【0014】
このとき、ガス拡散層の面内でセパレータの凸部による圧力を受けない箇所を一定の間隔で複数個形成したことが望ましい。
【0015】
さらに、ガス拡散層の面内でセパレータの凸部による圧力を受けない箇所は、隣り合う間隔を中心値で0.3mm以上10mm以下としたことが望ましい。
【0016】
また、ガス拡散層のセパレータの凸部により締め付けられる部分の締結圧力が、凸部面積換算で0.1kg/cm2以上15kg/cm2以下であることが望ましい。
【0017】
【発明の実施の形態】
上記課題を解決するために本発明の燃料電池は、燃料電池の電極を構成しているガス拡散層に下記の構成を持たせるものである。
【0018】
高分子電解質とこれを挟持してなる触媒層とさらにこれを挟持してなるガス拡散層とさらにこれを挟持してなる連続した凹凸によるガス流路をもつセパレータとからなる燃料電池において、前記ガス拡散層が前記セパレータと接する面内で、集電部分とガス透過および水蒸気透過部分と水分透過部分に分かれて構成させることを特徴とするものである。
【0019】
この構成によって、電極内でのフラッディングを抑制し、ガス拡散性および水蒸気透過性を確保することが可能となり放電性能および信頼性の高い電極および燃料電池を提供することができる。
【0020】
本発明は、高分子電解質とこれを挟持してなる触媒層とさらにこれを挟持してなるガス拡散層とさらにこれを挟持してなる連続した凹凸によるガス流路をもつセパレータとからなる燃料電池において、前記ガス拡散層が前記セパレータと接する面内で、集電部分とガス透過部分と水分透過部分に分かれて構成されていることを特徴とするガス拡散層であり、それぞれガス拡散層に求められる必要な目的を区分することでガス拡散性および水移動路を確保し、放電性能および信頼性の高い電極を提供するという作用を有する。
【0021】
また、高分子電解質とこれを挟持してなる触媒層とさらにこれを挟持してなるガス拡散層とさらにこれを挟持してなる連続した凹凸によるガス流路をもつセパレータとからなる燃料電池において、前記ガス拡散層を構成する炭素繊維が密な部分と粗な部分で構成され、かつ、前記ガス拡散層が前記セパレータと接する面内で、集電部分とガス透過部分と水分透過部分に分かれて構成されていることを特徴とするガス拡散層であり、炭素繊維の密な部分では電子伝導を行い、炭素繊維の粗な部分でガス拡散性および水の移動路を確保することで、放電性能および信頼性の高い電極を提供するという作用を有する。
【0022】
また、高分子電解質とこれを挟持してなる触媒層とさらにこれを挟持してなるガス拡散層とさらにこれを挟持してなる連続した凹凸によるガス流路をもつセパレータとからなる燃料電池において、前記ガス拡散層が前記セパレータと接する面内で、集電部分とガス透過部分と水分透過部分に分かれて構成され、かつ、前記ガス拡散層の面内で前記セパレータの凸部によって締め付けられる圧力が掛かっていない箇所をもつことを特徴とする燃料電池であり、セパレータ上に形成されたガス流路のための凸部で締め付けられた部分で十分な電子伝導性を確保し、圧力の掛かっていない部分で余剰水移動のための流路を確保できることにより、放電性能および信頼性の高い燃料電池用電極を提供するという作用を有する。
【0023】
また、高分子電解質とこれを挟持してなる触媒層とさらにこれを挟持してなるガス拡散層とさらにこれを挟持してなる連続した凹凸によるガス流路をもつセパレータとからなる燃料電池において、前記ガス拡散層が前記セパレータと接する面内で、集電部分とガス透過および水蒸気透過部分と水分透過部分に分かれて構成され、かつ、前記ガス拡散層の面内で前記セパレータの凸部によって締め付けられる箇所と締め付けられない箇所が一定の間隔で存在していることを特徴とする燃料電池であり、電極内に集電部分と水移動流路とガス拡散流路が均一に確保されているため、放電性能および信頼性の高い燃料電池用電極を提供するという作用を有する。
【0024】
また、高分子電解質とこれを挟持してなる触媒層とさらにこれを挟持してなるガス拡散層とさらにこれを挟持してなる連続した凹凸によるガス流路をもつセパレータとからなる燃料電池において、前記ガス拡散層が前記セパレータと接する面内で、集電部分とガス透過および水蒸気透過部分と水分透過部分に分かれて構成され、かつ、前記ガス拡散層の面内で前記セパレータの凸部によって締め付けられる箇所の隣り合う間隔が中心値で0.5mm以上10mm以下の間隔で存在していることを特徴とする燃料電池であり、電極内に集電部分と水移動流路とガス拡散流路が均一に確保されていると共に、集電部分と水移動流路とガス拡散流路が緻密に配置されていることにより、電流密度の集中や、余剰水の集中がない放電性能および信頼性の高い燃料電池用電極を提供するという作用を有する。
【0025】
また、高分子電解質とこれを挟持してなる触媒層とさらにこれを挟持してなるガス拡散層とさらにこれを挟持してなる連続した凹凸によるガス流路をもつセパレータとからなる燃料電池において、前記ガス拡散層が前記セパレータと接する面内で、集電部分とガス透過および水蒸気透過部分と水分透過部分に分かれて構成され、かつ、前記ガス拡散層が前記セパレータの凸部によって締め付けられる集電部分の締結圧力が凸部面積換算で0.1kg/cm2以上15kg/cm2以下であることを特徴とするガス拡散層であり、セパレータ上に形成されたガス流路のための凸部で締め付けられた部分で十分な電子伝導性を確保しながら、締め付け圧の増加に伴なう粗密度の差の低下および内部短絡を防止することが可能となり、放電性能および信頼性の高い電極を提供するという作用を有する。
【0026】
以下、本発明の実施の形態を具体的に説明する。
【0027】
図1に示すとおり、例えば、高分子電解質膜1の外面に2A、2Bで示される触媒層が挟持され、さらにその外面に3A、3Bで示されるガス拡散層が挟持されることにより燃料電池の基本が構成されている。電極反応は2Aおよび2Bの触媒表面で起こる。アノード反応ガスは5A、5Bで示されるセパレータに形成された連続した凹凸部の反応ガス供給孔4Aから3Aを通り2Aへ、カソード反応ガスは4Bから3Bを通り2Bへ供給される。
【0028】
アノード触媒層2AではH2→2H++2e-の反応が起こり、カソード触媒層2Bでは1/2O2+2H++2e-→H20の反応が起こり、全体としてH2+1/2O2→H2O+Qとなる。この反応により起電力が得られ、この電気エネルギーにより発電がなされるが、同時に水の生成がカソード触媒層2Bで起こる。また、起電反応の際、アノード触媒層2Aで生じたH+は高分子電解質膜1中を移動しカソード触媒層2Bへ至る。この際1個のH+イオンが移動する際、5〜20個のH2O分子を同伴して移動する。高分子電解質膜は十分な水が存在し初めてH+イオンの高い導電性を発揮する性質がある。
【0029】
そのため、高分子電解質膜中を移動するH+イオンに同伴して移動するため不足する水を常に供給する必要があり、この水は反応ガス供給孔を兼ね備えた4Aおよび4Bから3Aおよび3Cを通り水蒸気として供給する。また、カソード触媒層内で生成された水のうち、高分子電解質膜が必要としない余剰水はガス拡散層3Aおよび3Bを通り、反応ガス供給孔と余剰ガスおよび余剰水排出孔を兼ねた4Aおよび4Bから排出される。このため、燃料電池では、水の出入りの多いガス拡散層のガス拡散性および余剰水の排出流路を確保することが重要となり、長期信頼性の点からも余剰水を速やかに排出させる方向で設計する必要がある。
【0030】
ガス拡散層の構成として、従来ガス拡散層のさらに外面に形成されたガス流路から触媒層中の触媒へ均一に燃料ガスおよび酸化剤ガスなどの反応ガスを供給するために反応ガスを拡散する機能と、触媒層で反応により生成した水を速やかにガス流路に排出する機能と、さらには、反応に必要もしくは生成される電子を導電する機能を同時に行っていた部分を、局部的に電子伝導を行う部分とガスを通す部分と水分を通す部分に区分し、さらには、緻密で、かつ、均一に配置する。ガス拡散層基材を構成する炭素繊維が集中している密な部分で主に電子伝導を行い、逆に粗な部分で主にガス透過を行い、繊維の無い部分で主に水を排出させる構成とする。これにより、カソード触媒層中で生成された余剰水はガス拡散層の専用通路を通り排出孔まですみやかに移動することが可能となると共にガス拡散性には影響を及ぼすことは無い。このように、電極中で余剰とされる水は水移動専用の通路を通ることにより、電極中で水詰まりが起こらず、フラッディングを招くことが無く、ガス拡散性の低下をも引き起こすことの無い、放電特性および信頼性の高い燃料電池を提供することが図れる。
【0031】
以上の本発明の方法により作製されたガス拡散層を用いることによって、放電特性および信頼性の高い燃料電池を提供することができる。さらに詳しくは実施例において具体的に説明する。
【0032】
【実施例】
(実施例1)
ガス拡散層基材として太さ約10μmのポリアクリルニトリル繊維をより合わせて太さ約300μmにした糸を編んだ布を作製し、次いでこれを窒素雰囲気下2000℃で24時間加熱し、黒鉛化させカーボンクロスを得た。これを、ダイキン工業製FEPディスパージョン(商品名ND−1)と水が重量比で1:10となるように作製したFEPディスパージョンの希釈溶液に1分間含浸させ、約60℃で1時間乾燥させた。この上に、アセチレンブラックとPTFEとが重量比で3:1になるよう水溶媒の分散液を作製し、ドクターブレードを用いて分散液を塗工し撥水層を作製した。約60℃で1時間乾燥させた後、約380℃で15分焼成した。
【0033】
この際、出来上がったガス拡散層には面内に、繊維の折り重なった密な部分と、繊維の折り重なっていない粗な部分と、縦方向の繊維と横方向の繊維が交差する厚み方向に繊維の無い部分とを作った。この部分の厚みは繊維の密な部分が約150μmから300μm、繊維の粗な部分が約7μmから150μmであり、繊維の折り重なりあう部分が隣り合う間隔は約1mmとした。
【0034】
ライオン社の炭素微粉末ケッチェンブラックEC100重量%上に白金触媒を100重量%担持した触媒を、米国デュポン社製Nafion膜と同じ高分子であるパーフルオロスルホン酸樹脂を100重量%混合し、成形した触媒層を160℃の熱溶着により、米国デュポン社製Nafion112膜の両面に接合した。さらにこの両側から上記の通り作製したガス拡散層で撥水層が触媒層と接するように接合し、これを、連続した凹凸によるガス流路を持つセパレータで挟み水素―空気型の燃料電池として単電池Aを作成した。この際、電極に掛かる締結圧力は約10kg/cm2とした。
【0035】
(比較例
ガス拡散層基材として、太さ約20μmのポリアクリルニトリル繊維をより合わせて太さ約500μmにした糸を編んだ布を作製し、次いでこれを窒素雰囲気下2000℃で24時間加熱し、黒鉛化させカーボンクロスを得た。これを、ダイキン工業製FEPディスパージョン(商品名ND−1)と水が重量比で1:10となるように作製したFEPディスパージョンの希釈溶液に1分間含浸させ、約60℃で1時間乾燥させた。この上に、アセチレンブラックとPTFEとが重量比で3:1になるよう水溶媒の分散液を作製し、ドクターブレードを用いて分散液を塗工し撥水層を作製した。約60℃で1時間乾燥させた後、約380℃で15分焼成した。
【0036】
この際、出来上がったガス拡散層には面内に、繊維の折り重なった密な部分と、繊維の折り重なっていない粗な部分と、縦方向の繊維と横方向の繊維が交差する厚み方向に繊維の無い部分とを作った。この部分の厚みは繊維の密な部分が約250μmから500μm、繊維の粗な部分が約10μmから250μmであり、繊維の折り重なりあう部分が隣り合う間隔は約11mmとした。ライオン社の炭素微粉末ケッチェンブラックEC100重量%上に白金触媒を100重量%担持した触媒をNafion膜と同じ高分子であるパーフルオロスルホン酸樹脂を100重量%混合し、成形した触媒層を160℃の熱溶着により米国デュポン社製Nafion112膜の両面に接合し、さらにこの両側から上記の通り作製したガス拡散層で撥水層が触媒層と接するように接合し、これを、連続した凹凸によるガス流路を持つセパレータで挟み水素―空気型の燃料電池として単電池Bを作成した。この際、電極に掛かる締結圧力は約10kg/cm2とした。
【0037】
(比較例
実施例1で作製した電極およびセパレータと同様のものを用いて、水素―空気型の燃料電池として単電池Cを作成した。この際、電極に掛かる締結圧力を約16kg/cm2とした。
【0038】
(比較例
ガス拡散層基材としては太さ約10μm、長さ約5μmに切断したポリアクリルニトリル繊維を水に分散させ、これを抄紙しシートを作製した。次いでこれをエタノールにて濃度40重量%に希釈したフェノール樹脂溶液に含浸させ約100℃で10分間乾燥させ樹脂を硬化させた。これを窒素雰囲気下2000℃で24時間加熱し、黒鉛化させカーボンペーパを得た。さらに、これをダイキン工業製FEPディスパージョン(商品名ND−1)と水が重量比で1:10となるように作製したFEPディスパージョンの希釈溶液に含浸させ、約60℃で1時間乾燥させた。
【0039】
この上に、アセチレンブラックとPTFEとが重量比で3:1になるよう水溶媒の分散液を作製し、ドクターブレードを用いて分散液を塗工し撥水層を作製した。約60℃で1時間乾燥させた後、約380℃で15分焼成した。この際、出来上がったガス拡散層には繊維の折り重なった密な部分と繊維の折り重なっていない粗な部分を作ることができていたが、面内でこの粗密部分は不均一に分布していた。
【0040】
ライオン社の炭素微粉末ケッチェンブラックEC100重量%上に白金触媒を100重量%担持した触媒を、Nafion膜と同じ高分子であるパーフルオロスルホン酸樹脂を100重量%混合し、成形した触媒層を160℃の熱溶着により米国デュポン社製Nafion112膜の両面に接合し、さらにこの両側から上記の通り作製したガス拡散層で撥水層が触媒層と接するように接合し、これを、連続した凹凸によるガス流路を持つセパレータで挟み、水素―空気型の燃料電池として単電池Dを作成した。この際、電極に掛かる締結圧力は約10kg/cm2とした。
【0041】
以上のとおり作製した実施例1および比較例1、2、3の単電池AおよびB、C、Dの燃料極に純水素ガスを,空気極に空気をそれぞれ供給し、電池温度を75℃、燃料ガス利用率を70%、空気利用率(以下Uoと略。)を40%とした。ガス加湿は燃料ガスを70℃、空気を70℃のバブラーをそれぞれ通して供給し、水素―空気燃料電池としての単電池の放電試験を行った。
【0042】
図2に,本発明の実施例1の単電池Aと比較例1、2、3の単電池B、C、Dの水素−空気型燃料電池としての放電特性試験結果を示した。電流密度800mA/cm2における単電池電圧で示すと、単電池AおよびB、C、Dの電池電圧は、それぞれ649mV、438mV、435mV、551mVであった。また、電流密度100mA/cm2における単電池電圧で示すと、単電池AおよびB、C、Dの電池電圧は、それぞれ827mV、731mV、808mV、813mVであった。
【0043】
図2から分かるとおり、電流密度が高くなればなるほど、放電特性に差が生じている。電流密度が高くなると、電池からの生成水はそれに比例して多くなるため、実施例1で作製した集電部分とガス透過部分と水透過部分に分かれて構成されているガス拡散層をもちいたものでは、余剰水の滞留がなくフラッディングを引き起こすことは無く、また、ガス拡散性も確保しているため、放電性能が良好である。逆に、比較例1で作製した集電部分に相当するセパレータからの締結圧を受けるガス拡散層の繊維が密な部分の隣り合う間隔が広いものでは、電子伝導性が十分に行えず内部抵抗を増加させ、性能が低下している。
【0044】
また、比較例3で作製した集電部分とガス透過および水蒸気透過部分と水透過部分が明確に分かれていないガス拡散層では、電極内部で水が詰まり、さらに、これによりガス透過性を阻害し、放電特性の低下を引き起こしている。さらに、比較例2で作製した燃料電池は、締め付け圧力が高すぎるため、ガス拡散層内に設けた繊維の粗密な部分の差が少なくなり、ガス透過性のための流路および余剰水排出のための流路の区分が不明確になり、局部的にフラッディングが生じガス透過性を阻害したため放電特性の低下を引き起こした。さらには、締め付け圧力が高すぎるため内部短絡を起こし、特に低電流密度領域で性能が低下している。
【0045】
図3に、本発明の実施例1の単電池Aと比較例3の単電池Dの水素−空気型燃料電池としての耐久試験結果を示した。実施例1および比較例3の単電池AおよびDの燃料極に純水素ガスを,空気極に空気をそれぞれ供給し、電池温度を75℃、燃料ガス利用率を70%、空気利用率(以下Uoと略。)を40%、電流密度を0.3A/cm2とし、ガス加湿は燃料ガスを70℃、空気を70℃のバブラーをそれぞれ通して供給し、水素―空気燃料電池としての単電池の耐久試験を行った。この結果からも分かる通り、実施例1で作製した集電部分とガス透過部分と水透過部分に分かれて構成されているガス拡散層をもちいたものでは、余剰水の滞留がなくフラッディングを引き起こすことがなく、また、ガス拡散性も低下させないため、信頼性が良好である。逆に、比較例3で作製した集電部分とガス透過部分と水透過部分が明確に分かれていないガス拡散層では、電極内部で水が詰まり、さらに、ガス拡散層の構成がガス透過および水蒸気透過部分と水分透過部分に分かれていないことによりガス透過性も阻害し、放電特性の低下を引き起こしている。
【0046】
このように、本発明の燃料電池のようにガス拡散層がセパレータと接する面内で、集電部分とガス透過および水蒸気透過部分と水分透過部分に分かれて構成されていることにより、電極内でのフラッディングを抑制し、かつ、ガス拡散性および水蒸気透過性を良好に保つことが可能となり、放電性能および信頼性の高い電極および燃料電池を提供することが可能となる。
【0047】
燃料電池は通常、複数の単電池を直列または並列に接続して用いられる。したがって、単電池でのフラッディングは燃料電池スタックの性能に大きく影響する。とくに、直列に接続された場合には、最も特性の低い単電池の限界電流値が燃料電池スタック全体の限界電流値となってしまうため、最も低い単電池の性能が燃料電池スタック全体の性能の限界値となる。つまり、単電池でのフラッディング現象を低減することも今後の重要な課題となる。
【0048】
なお、本実施例において燃料の一例として、水素と空気を用いたが、水素は改質水素として炭酸ガスや窒素、一酸化炭素などの不純物を含む燃料においても同様の結果が得られ、水素の代わりにメタノール、エタノール、ヂメチルエーテルなどの液体燃料およびその混合物を用いても同様の結果が得られた。また、液体燃料はあらかじめ蒸発させ、蒸気として供給してもよい。
【0049】
さらに、本発明の燃料電池の構成は、実施例に示した構成に限定されるものではなく、種種の構成でも効果があった。
【0050】
さらに、本発明の固体高分子型電解質と電極との接合体を用いて、酸素、オゾン、水素などのガス発生機やガス精製機および酸素センサ、アルコールセンサなどの各種ガスセンサへの応用にも効果がある。
【0051】
【発明の効果】
以上、実施例の説明から明らかなように、本発明によるガス拡散層および燃料電池の構成を最適化することによって、触媒層中の触媒に均一に反応ガスを供給し、かつ生成された余剰水や生成炭酸ガスを速やかに排出することが可能となり、高い放電性能と信頼性を持つ電極および燃料電池を実現することができた。
【図面の簡単な説明】
【図1】従来および本発明の燃料電池用電極の断面概略図
【図2】本発明の実施例である燃料電池の電圧−電流特性を示す図
【図3】本発明の実施例である燃料電池の信頼性を示す図
【符号の説明】
1 高分子電解質膜
2A,2B 触媒層
3A,3B ガス拡散層
4A,4B ガス供給孔および余剰水および余剰ガス排出孔
5A,5B セパレータ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fuel cell using pure hydrogen as a fuel, reformed hydrogen from methanol or fossil fuel, or liquid fuel such as methanol, ethanol, dimethyl ether, etc., and using air or oxygen as an oxidant. The present invention relates to a fuel cell using a solid polymer as an electrolyte.
[0002]
[Prior art]
In general, an electrode of a polymer electrolyte fuel cell has a catalyst layer on both outer sides of the polymer electrolyte, and a gas diffusion layer is formed on the outer surface of the catalyst layer. The gas diffusion layer mainly has the following three functions. The first is a function of diffusing the reaction gas in order to uniformly supply a reaction gas such as a fuel gas or an oxidant gas from the gas flow path formed on the outer surface of the gas diffusion layer to the catalyst in the catalyst layer. The second function is to quickly discharge water produced by the reaction in the catalyst layer to the gas flow path. The third function is to conduct electrons necessary or generated for the reaction.
[0003]
Therefore, high reaction gas permeability, water discharge permeability, and electronic conductivity are required. As a conventional general technique, a gas diffusion layer has a porous structure for a gas diffusion layer. Water discharge permeability is to suppress water clogging (flooding) by dispersing a water-repellent polymer represented by fluorine resin in the layer. For electronic conductivity, it has been practiced to form a gas diffusion layer with an electronically conductive material such as carbon fiber, metal fiber, or carbon fine powder.
[0004]
[Problems to be solved by the invention]
The various efforts to improve the water discharge / permeability described above have conflicting effects. For example, when a water repellent polymer typified by a fluororesin is added to the layer in order to enhance water discharge permeability, gas permeability and electronic conductivity are lowered. Therefore, instead of making the gas diffusion layer into a single structure, for example, a layer formed of carbon fiber, a layer formed of carbon fine powder, and a water-repellent polymer are combined to achieve both the above conflicting functions well. Various efforts have been made.
[0005]
As a method of using the above water-repellent polymer, for example, as disclosed in Japanese Patent Application Laid-Open Nos. 06-203851, 07-130373, 08-106915, and 09-259893 as the most common representative examples, A method of impregnating carbon paper as a gas diffusion layer base material with a dispersion of tetrafluoroethylene (hereinafter abbreviated as PTFE) or tetrafluoroethylene and a hexafluoropropylene copolymer (hereinafter abbreviated as FEP); No. 220734, 04-67571, 03-208260, 03-208261, 03-208262, 06-44984, and a method for forming a layer of carbon fine powder added with PTFE Is disclosed.
[0006]
As these show, in the method of randomly impregnating and drying carbon paper in a water-repellent polymer solution, the water-repellent polymer is applied according to the fiber arrangement of the porous substrate having a three-dimensional structure. End up. For this reason, it becomes difficult to control the amount of water repellency in the gas diffusion layer for each part, which is inversely proportional to the porosity distribution of the gas diffusion layer base material, and the water repellent material does not adhere to the part where the gap is large. There was a tendency for the water-repellent material to gather easily in the small gap area. In addition, a lot of water repellent material is attached to the surface of the gas diffusion layer base material, water is confined inside the gas diffusion layer base material, causing flooding due to water that has gone out of place, causing deterioration in discharge characteristics and reliability. It was.
[0007]
Since the gas permeation flow path and the water permeation flow path in the gas diffusion layer are the same location, the surplus water cannot be efficiently discharged, causing flooding and hindering gas diffusivity, resulting in discharge characteristics and reliability. It was causing sex decline.
[0008]
Further, as disclosed in, for example, JP-A-61-138463, JP-A-61-256568, JP-A-09-050817, and JP-A-11-288086, By optimizing the groove depth, efforts have been made to make the gas diffusive electrode uniform. As disclosed in Japanese Patent Application Laid-Open No. 7-192739, approaches from the separator side are actively performed, such as incising the convex portions of the gas flow path to ensure gas diffusibility. However, in order to optimize the gas flow path of the separator, the processing becomes complicated, and there is a problem that the manufacturing cost increases as the gas distribution property is optimized.
[0009]
In this way, various configurations are considered to control gas permeability and excess water permeability, but in order to control gas permeability and water permeability, the basic configuration of the gas diffusion layer base material is optimized. It is necessary to design the flow path of the separator to help this.
[0010]
The present invention solves these conventional problems, and in order to ensure gas diffusibility and excess water permeability in the gas diffusion layer, a polymer electrolyte and a catalyst layer sandwiching the polymer electrolyte and further sandwiching the polymer electrolyte In the fuel cell comprising the gas diffusion layer formed and a separator having a gas flow path with continuous irregularities sandwiching the gas diffusion layer, the current collecting portion and the gas permeation are within the plane where the gas diffusion layer is in contact with the separator. It is intended to provide an electrode and a fuel cell that are divided into a water vapor permeation part and a water permeation part, and that are particularly highly humidified and have high discharge performance and high reliability in power generation in a high current density region. It is what.
[0011]
[Means for Solving the Problems]
In order to solve the above problems, an electrode for a fuel cell of the present invention comprises a hydrogen ion conductive polymer electrolyte membrane, a pair of electrodes disposed at a position sandwiching the hydrogen ion conductive polymer electrolyte membrane, An electrode used in a fuel cell having a pair of separators having a gas flow path for supplying and discharging fuel gas on one side and supplying and discharging oxidizing gas on the other side, the electrode comprising the hydrogen ion conductive polymer electrolyte membrane Having a sandwiched catalyst layer and a gas diffusion layer sandwiching the catalyst layer, the gas diffusion layer, It is a fabric knitted with yarns made of carbon fibers, and in the thickness direction where the fiber is folded and dense, the fiber is not folded, and the longitudinal and transverse fibers intersect. A portion having no fiber, the thickness of the dense portion is 150 μm to 300 μm, and the thickness of the rough portion is 7 μm to 150 μm. The gas diffusion layer is divided into a current collecting portion, a gas and water vapor permeation portion, and a water permeation portion in a plane in contact with the separator. .
[0013]
Further, the gas flow path of the separator is formed by the unevenness of the separator, and a portion that is not subjected to pressure by the convex portion of the separator is formed in the plane of the gas diffusion layer.
[0014]
At this time, it is desirable to form a plurality of locations that are not subjected to pressure by the convex portions of the separator in the plane of the gas diffusion layer at regular intervals.
[0015]
Furthermore, it is desirable that the portion where the pressure due to the convex portion of the separator is not received in the plane of the gas diffusion layer is set such that the adjacent interval is 0.3 mm or more and 10 mm or less in the central value.
[0016]
Moreover, the fastening pressure of the portion fastened by the convex portion of the separator of the gas diffusion layer is 0.1 kg / cm in terms of the convex portion area. 2 15 kg / cm 2 The following is desirable.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
In order to solve the above-described problems, the fuel cell of the present invention is such that the gas diffusion layer constituting the electrode of the fuel cell has the following configuration.
[0018]
In the fuel cell comprising a polymer electrolyte, a catalyst layer sandwiching the polymer electrolyte, a gas diffusion layer sandwiching the polymer electrolyte, and a separator having a gas channel with continuous irregularities sandwiching the polymer diffusion layer, the gas In the plane where the diffusion layer is in contact with the separator, the diffusion layer is divided into a gas collecting portion, a gas permeable portion, and a water vapor permeable portion and a moisture permeable portion.
[0019]
With this configuration, flooding in the electrode can be suppressed, and gas diffusibility and water vapor permeability can be secured, thereby providing an electrode and a fuel cell with high discharge performance and reliability.
[0020]
The present invention relates to a fuel cell comprising a polymer electrolyte, a catalyst layer sandwiching the polymer electrolyte, a gas diffusion layer sandwiching the polymer layer, and a separator having a gas flow path having continuous irregularities sandwiching the polymer diffusion layer. The gas diffusion layer is divided into a current collecting portion, a gas permeable portion, and a moisture permeable portion within a surface in contact with the separator, and each gas diffusion layer is obtained from the gas diffusion layer. By separating the necessary purposes, the gas diffusibility and the water movement path are ensured, and an electrode having high discharge performance and high reliability is provided.
[0021]
Further, in a fuel cell comprising a polymer electrolyte, a catalyst layer sandwiching the polymer electrolyte, a gas diffusion layer sandwiching the polymer electrolyte, and a separator having a gas flow path with continuous irregularities sandwiching the polymer layer, The carbon fiber constituting the gas diffusion layer is composed of a dense portion and a rough portion, and the gas diffusion layer is divided into a current collecting portion, a gas permeable portion, and a moisture permeable portion in a plane in contact with the separator. It is a gas diffusion layer characterized in that it conducts electrons in the dense part of the carbon fiber and discharge performance by securing gas diffusion and water movement path in the coarse part of the carbon fiber And it has the effect | action of providing a reliable electrode.
[0022]
Further, in a fuel cell comprising a polymer electrolyte, a catalyst layer sandwiching the polymer electrolyte, a gas diffusion layer sandwiching the polymer electrolyte, and a separator having a gas flow path with continuous irregularities sandwiching the polymer layer, The gas diffusion layer is divided into a current collecting portion, a gas permeable portion, and a moisture permeable portion within a surface in contact with the separator, and a pressure that is tightened by a convex portion of the separator within the surface of the gas diffusion layer. The fuel cell is characterized by having a portion that is not hung, and ensures sufficient electron conductivity at the portion clamped by the convex portion for the gas flow path formed on the separator, and no pressure is applied. Since the flow path for surplus water movement can be secured in the portion, it has the effect of providing a fuel cell electrode with high discharge performance and reliability.
[0023]
Further, in a fuel cell comprising a polymer electrolyte, a catalyst layer sandwiching the polymer electrolyte, a gas diffusion layer sandwiching the polymer electrolyte, and a separator having a gas flow path with continuous irregularities sandwiching the polymer layer, The gas diffusion layer is divided into a current collecting portion, a gas permeation portion, a water vapor permeation portion, and a water permeation portion within a surface in contact with the separator, and is tightened by a convex portion of the separator within the surface of the gas diffusion layer. This is a fuel cell characterized in that there is a certain interval between the place where it can be tightened and the place where it cannot be tightened, and since the current collecting part, the water movement channel, and the gas diffusion channel are uniformly secured in the electrode It has the effect of providing an electrode for a fuel cell with high discharge performance and reliability.
[0024]
Further, in a fuel cell comprising a polymer electrolyte, a catalyst layer sandwiching the polymer electrolyte, a gas diffusion layer sandwiching the polymer electrolyte, and a separator having a gas flow path with continuous irregularities sandwiching the polymer layer, The gas diffusion layer is divided into a current collecting portion, a gas permeation portion, a water vapor permeation portion, and a water permeation portion within a surface in contact with the separator, and is tightened by a convex portion of the separator within the surface of the gas diffusion layer. The fuel cell is characterized in that the interval between adjacent portions is 0.5 to 10 mm at the center value, and a current collecting portion, a water movement channel, and a gas diffusion channel are provided in the electrode. Discharge performance and reliability without concentration of current density and concentration of surplus water by being uniformly secured and by densely arranging the current collecting part, water movement channel and gas diffusion channel It has the effect of providing a high fuel cell electrode.
[0025]
Further, in a fuel cell comprising a polymer electrolyte, a catalyst layer sandwiching the polymer electrolyte, a gas diffusion layer sandwiching the polymer electrolyte, and a separator having a gas flow path with continuous irregularities sandwiching the polymer layer, A current collector in which the gas diffusion layer is divided into a current collecting portion, a gas permeation portion, a water vapor permeation portion, and a water permeation portion in a plane in contact with the separator, and the gas diffusion layer is clamped by a convex portion of the separator. The gas diffusion layer is characterized in that the fastening pressure of the part is 0.1 kg / cm 2 or more and 15 kg / cm 2 or less in terms of the convex part area, and is fastened by the convex part for the gas flow path formed on the separator. It is possible to prevent a decrease in the difference in coarse density and an internal short circuit with an increase in tightening pressure, while ensuring sufficient electronic conductivity in the areas where It has the effect of providing a reliable electrode.
[0026]
Hereinafter, embodiments of the present invention will be specifically described.
[0027]
As shown in FIG. 1, for example, a catalyst layer indicated by 2A and 2B is sandwiched on the outer surface of the polymer electrolyte membrane 1, and a gas diffusion layer indicated by 3A and 3B is further sandwiched on the outer surface, thereby The basics are configured. The electrode reaction takes place on the 2A and 2B catalyst surfaces. The anode reaction gas is supplied to the 2A through the reaction gas supply holes 4A to 3A of the continuous uneven portion formed in the separators indicated by 5A and 5B, and the cathode reaction gas is supplied to the 2B through 4B to 3B.
[0028]
In the anode catalyst layer 2A, H 2 → 2H + + 2e - Of the cathode catalyst layer 2B. 2 + 2H + + 2e -H 2 0 reaction occurs and H as a whole 2 + 1 / 2O 2 → H 2 O + Q. An electromotive force is obtained by this reaction, and electric power is generated by this electric energy. At the same time, water is generated in the cathode catalyst layer 2B. Further, H generated in the anode catalyst layer 2A during the electromotive reaction + Moves through the polymer electrolyte membrane 1 and reaches the cathode catalyst layer 2B. At this time, one H + As the ions move, 5-20 H 2 Move with O molecules. The polymer electrolyte membrane is H for the first time when there is enough water + It has the property of exhibiting high ion conductivity.
[0029]
Therefore, H moves through the polymer electrolyte membrane. + It is necessary to always supply insufficient water because it moves with ions, and this water is supplied as water vapor from 4A and 4B having reaction gas supply holes through 3A and 3C. Further, of the water generated in the cathode catalyst layer, surplus water that does not require the polymer electrolyte membrane passes through the gas diffusion layers 3A and 3B, and serves as a reactive gas supply hole and a surplus gas and surplus water discharge hole 4A. And 4B. For this reason, in fuel cells, it is important to ensure the gas diffusivity of the gas diffusion layer where water flows in and out and the drain flow path for surplus water. From the viewpoint of long-term reliability, the surplus water is quickly discharged. Need to design.
[0030]
As a structure of the gas diffusion layer, the reaction gas is diffused in order to uniformly supply a reaction gas such as a fuel gas and an oxidant gas from a gas flow path formed on the outer surface of the conventional gas diffusion layer to the catalyst in the catalyst layer. The function, the function of quickly discharging the water generated by the reaction in the catalyst layer to the gas flow path, and the part that conducts the function of conducting the electrons necessary or generated in the reaction simultaneously are locally It is divided into a portion that conducts, a portion that allows gas to pass, and a portion that allows moisture to pass through. The electron conduction is mainly conducted in the dense part where the carbon fibers constituting the gas diffusion layer base material are concentrated, and conversely, the gas permeation is mainly conducted in the rough part, and the water is mainly discharged in the part without the fiber. The configuration. As a result, surplus water generated in the cathode catalyst layer can move quickly through the dedicated passage of the gas diffusion layer to the discharge hole and does not affect the gas diffusivity. In this way, surplus water in the electrode does not cause water clogging in the electrode, does not cause flooding, and does not cause deterioration in gas diffusivity by passing through a passage dedicated to water movement. Therefore, it is possible to provide a fuel cell with high discharge characteristics and reliability.
[0031]
By using the gas diffusion layer produced by the above-described method of the present invention, a fuel cell having high discharge characteristics and high reliability can be provided. Further details will be specifically described in Examples.
[0032]
【Example】
Example 1
Fabricate a fabric knitted with about 10 μm thick polyacrylonitrile fiber as a gas diffusion layer base material, and then heat it at 2000 ° C. for 24 hours in a nitrogen atmosphere to graphitize. Carbon cloth was obtained. This was impregnated with a diluted solution of FEP dispersion prepared so that the weight ratio of FEP dispersion (trade name ND-1) manufactured by Daikin Industries and water was 1:10, and dried at about 60 ° C. for 1 hour. I let you. On this, a dispersion of an aqueous solvent was prepared so that the weight ratio of acetylene black and PTFE was 3: 1, and the dispersion was applied using a doctor blade to prepare a water repellent layer. After drying at about 60 ° C. for 1 hour, baking was performed at about 380 ° C. for 15 minutes.
[0033]
At this time, the resulting gas diffusion layer has in-plane dense portions where the fibers are folded, rough portions where the fibers are not folded, and fibers in the thickness direction where the longitudinal fibers and the transverse fibers intersect. Made with no part. The thickness of this portion was about 150 μm to 300 μm for the dense portion of the fiber, about 7 μm to 150 μm for the rough portion of the fiber, and the interval between adjacent portions where the fiber overlaps was about 1 mm.
[0034]
Molded by mixing 100% by weight of perfluorosulfonic acid resin, which is the same polymer as Nafion membrane manufactured by DuPont, USA, on 100% by weight of Lion's carbon powder Ketjen Black EC with 100% by weight of platinum catalyst. The obtained catalyst layer was bonded to both surfaces of a Nafion 112 membrane manufactured by DuPont, USA by heat welding at 160 ° C. Furthermore, the gas diffusion layer produced as described above is joined from both sides so that the water-repellent layer is in contact with the catalyst layer, and this is sandwiched between separators having gas channels with continuous irregularities, so that a hydrogen-air type fuel cell is obtained. Battery A was created. At this time, the fastening pressure applied to the electrode is about 10 kg / cm. 2 It was.
[0035]
(Comparative example 1 )
As a gas diffusion layer base material, a fabric knitted from a polyacrylonitrile fiber having a thickness of about 20 μm and knitted to a thickness of about 500 μm was prepared, and then this was heated at 2000 ° C. in a nitrogen atmosphere for 24 hours to obtain graphite. To obtain a carbon cloth. This was impregnated with a diluted solution of FEP dispersion prepared so that the weight ratio of FEP dispersion (trade name ND-1) manufactured by Daikin Industries and water was 1:10, and dried at about 60 ° C. for 1 hour. I let you. On this, a dispersion of an aqueous solvent was prepared so that the weight ratio of acetylene black and PTFE was 3: 1, and the dispersion was applied using a doctor blade to prepare a water repellent layer. After drying at about 60 ° C. for 1 hour, baking was performed at about 380 ° C. for 15 minutes.
[0036]
At this time, the resulting gas diffusion layer has in-plane dense portions where the fibers are folded, rough portions where the fibers are not folded, and fibers in the thickness direction where the longitudinal fibers and the transverse fibers intersect. Made with no part. The thickness of this portion was about 250 μm to 500 μm for the dense portion of the fiber, about 10 μm to 250 μm for the coarse portion of the fiber, and the interval between adjacent portions where the fiber overlaps was about 11 mm. A catalyst comprising 100% by weight of a platinum catalyst supported on 100% by weight of Lion's carbon fine powder ketjen black EC was mixed with 100% by weight of a perfluorosulfonic acid resin, which is the same polymer as the Nafion membrane. Bonded to both sides of a Nafion 112 membrane manufactured by DuPont, USA by thermal welding at 0 ° C., and further bonded so that the water-repellent layer is in contact with the catalyst layer with the gas diffusion layer prepared as described above from both sides. A cell B was prepared as a hydrogen-air type fuel cell sandwiched between separators having gas flow paths. At this time, the fastening pressure applied to the electrode is about 10 kg / cm. 2 It was.
[0037]
(Comparative example 2 )
Using the same electrode and separator prepared in Example 1, a unit cell C was prepared as a hydrogen-air type fuel cell. At this time, the fastening pressure applied to the electrode is about 16 kg / cm. 2 It was.
[0038]
(Comparative example 3 )
As the gas diffusion layer base material, polyacrylonitrile fiber cut to a thickness of about 10 μm and a length of about 5 μm was dispersed in water, and paper was made to produce a sheet. Next, this was impregnated with a phenol resin solution diluted with ethanol to a concentration of 40% by weight and dried at about 100 ° C. for 10 minutes to cure the resin. This was heated at 2000 ° C. for 24 hours under a nitrogen atmosphere to be graphitized to obtain carbon paper. Further, this was impregnated with a diluted solution of FEP dispersion prepared so that the weight ratio of FEP dispersion (trade name ND-1) manufactured by Daikin Industries and water was 1:10, and dried at about 60 ° C. for 1 hour. It was.
[0039]
On this, a dispersion of an aqueous solvent was prepared so that the weight ratio of acetylene black and PTFE was 3: 1, and the dispersion was applied using a doctor blade to prepare a water repellent layer. After drying at about 60 ° C. for 1 hour, baking was performed at about 380 ° C. for 15 minutes. At this time, in the finished gas diffusion layer, a dense portion where the fibers were folded and a rough portion where the fibers were not folded could be formed, but the dense portions were unevenly distributed in the plane.
[0040]
A catalyst having 100% by weight of a platinum catalyst supported on 100% by weight of lion's carbon fine powder ketjen black EC and 100% by weight of perfluorosulfonic acid resin, which is the same polymer as the Nafion membrane, are mixed together to form a molded catalyst layer. Joined to both surfaces of Nafion 112 membrane manufactured by DuPont, USA by heat welding at 160 ° C., and joined from both sides so that the water-repellent layer is in contact with the catalyst layer with the gas diffusion layer prepared as described above. A cell D was prepared as a hydrogen-air type fuel cell. At this time, the fastening pressure applied to the electrode is about 10 kg / cm. 2 It was.
[0041]
Pure hydrogen gas was supplied to the fuel electrodes of unit cells A and B, C, and D of Example 1 and Comparative Examples 1, 2, and 3 manufactured as described above, and air was supplied to the air electrode. The fuel gas utilization rate was 70%, and the air utilization rate (hereinafter abbreviated as Uo) was 40%. For gas humidification, a fuel cell was supplied through a bubbler at 70 ° C. and air was supplied at 70 ° C., and a discharge test of a unit cell as a hydrogen-air fuel cell was performed.
[0042]
FIG. 2 shows the discharge characteristic test results of unit cell A of Example 1 of the present invention and unit cells B, C, and D of Comparative Examples 1, 2, and 3 as hydrogen-air fuel cells. Current density 800mA / cm 2 The cell voltages of the cells A and B, C, and D were 649 mV, 438 mV, 435 mV, and 551 mV, respectively. Also, the current density is 100 mA / cm 2 The cell voltages of the cells A and B, C, and D were 827 mV, 731 mV, 808 mV, and 813 mV, respectively.
[0043]
As can be seen from FIG. 2, the higher the current density, the greater the difference in discharge characteristics. As the current density increases, the amount of water generated from the battery increases in proportion to the current density. Therefore, the gas diffusion layer formed in Example 1 is divided into a current collecting portion, a gas permeable portion, and a water permeable portion. In the case, there is no stagnation of excess water, no flooding is caused, and gas diffusibility is ensured, so that the discharge performance is good. On the contrary, in the gas diffusion layer that receives the fastening pressure from the separator corresponding to the current collecting portion produced in Comparative Example 1, the adjacent portions of the dense portion of the fiber in which the fibers are dense have a wide interval and the internal resistance cannot be sufficiently achieved. The performance is reduced.
[0044]
Moreover, in the gas diffusion layer in which the current collecting part and the gas permeation part and the water vapor permeation part and the water permeation part prepared in Comparative Example 3 are not clearly separated, water is clogged inside the electrode, and this further impedes gas permeability. , Causing the deterioration of the discharge characteristics. Furthermore, the fuel cell produced in Comparative Example 2 has too high a clamping pressure, so that the difference in the coarse and dense portions of the fibers provided in the gas diffusion layer is reduced, and the flow path for gas permeability and excess water discharge are reduced. As a result, the flow path section became unclear, and flooding occurred locally, impeding gas permeability and causing a decrease in discharge characteristics. Furthermore, since the tightening pressure is too high, an internal short circuit is caused, and the performance is deteriorated particularly in a low current density region.
[0045]
In FIG. 3, the durability test result as a hydrogen-air type fuel cell of the single cell A of Example 1 of this invention and the single cell D of the comparative example 3 was shown. Pure hydrogen gas was supplied to the fuel electrode of each of the cells A and D of Example 1 and Comparative Example 3 and air was supplied to the air electrode. The cell temperature was 75 ° C., the fuel gas utilization rate was 70%, and the air utilization rate (below) Uo.) 40%, current density 0.3 A / cm 2 Gas humidification was performed by supplying a fuel gas at 70 ° C. and air through a bubbler at 70 ° C., and performing a durability test on the unit cell as a hydrogen-air fuel cell. As can be seen from these results, the gas diffusion layer composed of the current collecting part, the gas permeation part and the water permeation part prepared in Example 1 causes no flooding and no flooding of excess water. In addition, since the gas diffusibility is not lowered, the reliability is good. On the contrary, in the gas diffusion layer in which the current collecting part, the gas permeable part, and the water permeable part produced in Comparative Example 3 are not clearly separated, water is clogged inside the electrode, and the gas diffusion layer has a gas permeable and water vapor structure. Since it is not divided into a permeable part and a moisture permeable part, gas permeability is also hindered, causing a reduction in discharge characteristics.
[0046]
As described above, the gas diffusion layer is divided into the current collecting part, the gas permeation part, the water vapor permeation part and the water permeation part within the surface in contact with the separator as in the fuel cell of the present invention. It is possible to suppress the flooding of the gas and to maintain good gas diffusibility and water vapor permeability, and to provide an electrode and a fuel cell with high discharge performance and reliability.
[0047]
A fuel cell is usually used by connecting a plurality of single cells in series or in parallel. Therefore, flooding in a single cell greatly affects the performance of the fuel cell stack. In particular, when connected in series, the limit current value of the unit cell with the lowest characteristics becomes the limit current value of the entire fuel cell stack, so the performance of the lowest unit cell is the performance of the entire fuel cell stack. Limit value. In other words, reducing the flooding phenomenon in single cells will be an important issue in the future.
[0048]
In this example, hydrogen and air were used as an example of fuel. However, the same results were obtained with hydrogen containing impurities such as carbon dioxide, nitrogen, and carbon monoxide as reformed hydrogen. Instead, similar results were obtained using liquid fuels such as methanol, ethanol, dimethyl ether and mixtures thereof. Further, the liquid fuel may be vaporized in advance and supplied as a vapor.
[0049]
Furthermore, the configuration of the fuel cell of the present invention is not limited to the configuration shown in the examples, and various configurations are effective.
[0050]
Furthermore, using the solid polymer electrolyte-electrode assembly of the present invention, it is also effective for application to various gas sensors such as oxygen, ozone, hydrogen and other gas generators, gas purifiers, oxygen sensors, and alcohol sensors. There is.
[0051]
【The invention's effect】
As described above, as is clear from the description of the embodiments, by optimizing the configuration of the gas diffusion layer and the fuel cell according to the present invention, the reaction gas is uniformly supplied to the catalyst in the catalyst layer, and the generated surplus water And the generated carbon dioxide gas can be discharged quickly, and an electrode and a fuel cell having high discharge performance and reliability can be realized.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of a conventional fuel cell electrode according to the present invention.
FIG. 2 is a graph showing voltage-current characteristics of a fuel cell that is an embodiment of the present invention.
FIG. 3 is a view showing the reliability of a fuel cell which is an embodiment of the present invention.
[Explanation of symbols]
1 Polymer electrolyte membrane
2A, 2B catalyst layer
3A, 3B gas diffusion layer
4A, 4B Gas supply hole and surplus water and surplus gas discharge hole
5A, 5B separator

Claims (7)

水素イオン伝導性高分子電解質膜と、前記水素イオン伝導性高分子電解質膜を挟んだ位置に配置した一対の電極と、前記電極の一方に燃料ガスを供給排出し他方に酸化ガスを供給排出するガス流路を有する一対のセパレータとを具備した燃料電池に用いる電極であって、前記電極は前記水素イオン伝導性高分子電解質膜を挟持した触媒層と、前記触媒層を挟持したガス拡散層とを有し、前記ガス拡散層を、炭素繊維をより合わせた糸を編んだ布であって、繊維の折り重なった密な部分と、繊維の折り重なっていない粗な部分と、縦方向の繊維と横方向の繊維が交差する厚み方向に、繊維の無い部分と、を有し、前記密な部分の厚みが150μmから300μmであり、前記粗な部分の厚みが7μmから150μmである炭素繊維の布で構成することによって、前記ガス拡散層は前記セパレータと接する面内で、集電部分と、ガスおよび水蒸気透過部分と、水分透過部分とに分けて構成したことを特徴とする燃料電池用電極。A hydrogen ion conductive polymer electrolyte membrane, a pair of electrodes arranged at positions sandwiching the hydrogen ion conductive polymer electrolyte membrane, and a fuel gas supplied to and discharged from one of the electrodes and an oxidizing gas supplied to and discharged from the other An electrode for use in a fuel cell comprising a pair of separators having gas flow paths, the electrode comprising a catalyst layer sandwiching the hydrogen ion conductive polymer electrolyte membrane, and a gas diffusion layer sandwiching the catalyst layer And the gas diffusion layer is a fabric knitted with yarns combined with carbon fibers, the densely folded portions of the fibers, the rough portions where the fibers are not folded, the longitudinal fibers and the transverse direction. in the thickness direction of the direction of the fibers intersect, has a part having no fibers, the said a 300μm from 150μm thick dense parts, the thickness of the rough part from 7μm to 150μm der Ru carbon fiber fabric Configure with And by, the gas diffusion layer in the plane in contact with the separator, the current collecting portion and the gas and water vapor permeability portion, a fuel cell electrode characterized by being configured divided into a moisture permeable portion. セパレータのガス流路を前記セパレータの凹凸で形成し、ガス拡散層の面内で前記セパレータの凸部による圧力を受けない箇所を形成したことを特徴とする請求項1記載の燃料電池用電極。  2. The fuel cell electrode according to claim 1, wherein a gas flow path of the separator is formed by unevenness of the separator, and a portion not subjected to pressure by the convex portion of the separator is formed in the plane of the gas diffusion layer. ガス拡散層の面内でセパレータの凸部による圧力を受けない箇所を一定の間隔で複数個形成したことを特徴とする請求項2記載の燃料電池用電極。  3. The electrode for a fuel cell according to claim 2, wherein a plurality of portions that are not subjected to pressure by the convex portions of the separator are formed at regular intervals within the surface of the gas diffusion layer. ガス拡散層の面内でセパレータの凸部による圧力を受けない箇所は、隣り合う間隔を中心値で0.3mm以上10mm以下としたことを特徴とする請求項3記載の燃料電池用電極。  4. The fuel cell electrode according to claim 3, wherein a portion where the pressure due to the convex portion of the separator is not applied within the plane of the gas diffusion layer has an adjacent interval of 0.3 mm or more and 10 mm or less as a central value. ガス拡散層のセパレータの凸部により締め付けられる部分の締結圧力が、凸部面積換算で0.1kg/cm2以上15kg/cm2以下であることを特徴とする請求項3または4記載の燃料電池用電極。The fuel cell according to claim 3 or 4, wherein a fastening pressure of a portion of the gas diffusion layer fastened by the convex portion of the separator is 0.1 kg / cm 2 or more and 15 kg / cm 2 or less in terms of the convex portion area. Electrode. 請求項1から5記載の燃料電池用電極を有する燃料電池。  A fuel cell comprising the fuel cell electrode according to claim 1. 前記炭素繊維は、単繊維を複数本より合わせたことを特徴とする請求項1記載の燃料電池用電極。  2. The fuel cell electrode according to claim 1, wherein the carbon fiber is composed of a plurality of single fibers.
JP2001333990A 2001-10-31 2001-10-31 Fuel cell electrode and fuel cell Expired - Fee Related JP3738831B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001333990A JP3738831B2 (en) 2001-10-31 2001-10-31 Fuel cell electrode and fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001333990A JP3738831B2 (en) 2001-10-31 2001-10-31 Fuel cell electrode and fuel cell

Publications (2)

Publication Number Publication Date
JP2003142110A JP2003142110A (en) 2003-05-16
JP3738831B2 true JP3738831B2 (en) 2006-01-25

Family

ID=19149185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001333990A Expired - Fee Related JP3738831B2 (en) 2001-10-31 2001-10-31 Fuel cell electrode and fuel cell

Country Status (1)

Country Link
JP (1) JP3738831B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050142432A1 (en) * 2003-12-29 2005-06-30 Reiser Carl A. Fuel cell with randomly-dispersed carbon fibers in a backing layer
JP4559767B2 (en) * 2004-04-13 2010-10-13 三菱レイヨン株式会社 Carbon electrode substrate manufacturing method
US7608334B2 (en) * 2005-03-29 2009-10-27 3M Innovative Properties Company Oxidatively stable microlayers of gas diffusion layers

Also Published As

Publication number Publication date
JP2003142110A (en) 2003-05-16

Similar Documents

Publication Publication Date Title
JP4326179B2 (en) Polymer electrolyte fuel cell
KR100513183B1 (en) Fuel cell
KR100474940B1 (en) Polymer electrolyte fuel cell
WO2002073721A1 (en) Gas diffusion electrode and fuel cell using this
KR102084568B1 (en) Component for fuel cell including graphene foam and functioning as flow field and gas diffusion layer
JP3596773B2 (en) Polymer electrolyte fuel cell
JP2003178780A (en) Polymer electrolyte type fuel cell system and operating method of polymer electrolyte type fuel cell
US20040009389A1 (en) Electrode material, membrane-electrode assembly and polymer electrolyte fuel cell made therefrom, and method of making the electrode material
JP3562809B2 (en) Gas diffusion layer for polymer electrolyte fuel cell, electrolyte membrane-electrode assembly using the same, and polymer electrolyte fuel cell
JP2004030959A (en) Gas diffusion member, gas diffusion electrode, and fuel cell
JP4880131B2 (en) Gas diffusion electrode and fuel cell using the same
JP2007335163A (en) Membrane catalyst layer assembly, membrane electrode assembly, and polymer-electrolyte fuel cell
JP2001135326A (en) Solid high molecular electrolyte fuel cell and stack of the same
JP3738831B2 (en) Fuel cell electrode and fuel cell
JP4475743B2 (en) Gas diffusion layer
US20020150808A1 (en) Fuel cell
JP4686992B2 (en) Solid polymer fuel cell and power generation method thereof
JP2007149454A (en) Gas diffusion layer, gas diffusion electrode, membrane electrode assembly and polymer electrolyte fuel cell
JP2008041348A (en) Polymer electrolyte fuel cell and its manufacturing method
JP2008071633A (en) Solid polymer electrolyte fuel cell
JP5518721B2 (en) FUEL CELL AND FUEL CELL STACK HAVING THE SAME
JP2010123511A (en) Fuel cell and method of manufacturing the same
JP2009043688A (en) Fuel cell
JP6356436B2 (en) Electrolyte membrane / electrode structure
JP2002289201A (en) Fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050517

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051025

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111111

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121111

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121111

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131111

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees